
'

&

$

%

Griffith University

3515ICT Theory of Computation

Context-Free Languages

(Based loosely on slides by Harald Søndergaard of

The University of Melbourne)

6-0

'

&

$

%

Context-Free Grammars

. . . were invented in the fifties, when Chomsky

proposed different formalisms for describing

natural language syntax.

They were popularised by Naur with the Algol 60

report, and programming language grammars are

sometimes presented in this Backus-Naur Form

(BNF).

Standard tools for parsing owe much to this

notation, which has helped make parsing a

routine task.

Context-free grammars are extensively used to

specify the syntax of programming languages, and

now the structure of documents (XML’s

document-type definitions).

6-1

'

&

$

%

Context-Free Grammars (cont.)

We can specify the syntax (or form) of regular

expressions with the following grammar:

R → 0

R → 1

R → ε

R → ∅

R → R ∪ R

R → RR

R → R∗

I.e., a grammar is basically a set of rewriting

rules, or productions. We can also abbreviate the

grammar to:

R → 0 | 1 | ε | ∅ | R ∪ R | R ◦ R | R∗

6-2

'

&

$

%

Sentences

A simpler example is this grammar G:

A → ε

A → 0 A 1 1

Using the two rules as a rewrite system, we get

derivations such as

A ⇒ 0A11

⇒ 00A1111

⇒ 000A111111

⇒ 000111111

A is called a variable or nontermina symbol.

Other symbols (here 0 and 1) are called terminals

or terminal symbols.

The intermediate sequences that contain both

variables and terminals are called sentential

forms. The final sequence that contains only

terminals is called a sentence.

6-3

'

&

$

%

Context-Free Languages

Clearly, each context-free grammar determines a

language (a set of strings of terminals).

The language of grammar G (from the previous

slide), denoted L(G), is

L(G) = { 0n12n | n ≥ 0 }

A language is called a context-free language

(CFL) if it can be generated by some context-free

grammar.

Some of the languages that we showed were not

regular are context-free, for example

{ 0n1n | n ≥ 1 }

The grammar for this language is simply

A → 0A 1 | 0 1

6-4

'

&

$

%

Context-Free Grammars Formally

A context-free grammar (CFG) G is a 4-tuple

(V, Σ, R, S), where

1. V is a finite set of variables,

2. Σ is a finite set of terminals,

3. R is a finite set of rules, each consisting of a

variable (the left-hand side) and a sentential

form (the right-hand side),

4. S is the start variable.

The binary relation ⇒ on sentential forms is

defined as follows.

Let u, v, and w be sentential forms. Then

uAw ⇒ uvw iff A → v is a rule in R.

I.e., ⇒ captures a single derivation step.

Then
∗
⇒ is the reflexive transitive closure of ⇒,

and

L(G) = {s ∈ Σ∗ | S
∗
⇒ s}

6-5

'

&

$

%

Examples

The following languages are context-free:

• L = { 0m1n | m ≤ n }

• L = { 0m1m2n3n | m, n ≥ 0 }

• L = {w ∈ {0, 1}∗ | w has an equal number

of 0s and 1s }

• L = {wwR | w ∈ {a, b}∗ }

• L = {w ∈ {a, b}∗ | w = wR }

• L = {w ∈ {(,)}∗ | w is a balanced parenthesis

string }

• L = { s ∈ {a, b}∗ | s 6= ww, for any w }

• Many programming languages.

• Simplified natural languages.

6-6

'

&

$

%

Regular languages are context-free

Theorem. Every regular language is

context-free.

Proof. Let A = (Q, Σ, δ, q0, F) be a DFA for a

regular language L. Define a context-free

grammar G = (V, Σ, R, S) as follows:

• V = Q

• R = { p → a q | δ(p, a) = q }∪{ p → ε | p ∈ F }

• S = q0

Then, it is straightforward to show by induction

on |s| that G derives a string s if and only if A

accepts s.

6-7

'

&

$

%

Derivations

Note 1. A CFL is regular iff it has a CFG in

which every rule has the form A → ε or A → aB,

where A and B are variables and a is a terminal.

Note 2. More generally, a CFL is regular iff it

has a CFG in which every rule has the form

A → w or A → wB, where A and B are variables

and w is a sequence of terminals. This is

sometimes called right-linear normal form.

Note 3. Every context-free language over

Σ = {1} is regular.

Exercise. Prove Note 3.

6-8

'

&

$

%

Derivations

A sequence of rewritings that transforms the start

variable S of a grammar G to a sentence s is

called a derivation of s from G.

A derivation in which every derivation step uses

the leftmost variable in the sentential form is

called a leftmost derivation.

A grammar G is called ambiguous if there exists a

string s with two different leftmost derivations

from G.

For example, the arithmetic expression grammar

E → 0 | 1 | . . . | 9 | (E) | E ∗ E | E + E

is ambiguous because the sentence

2 + 3 ∗ 4

has two different leftmost derivations.

6-9

'

&

$

%

Parse Trees

Here is another grammar for arithmetic

expressions:

E → T | T + E

T → F | F ∗ T

F → 0 | 1 | . . . | 9 | (E)

(When the start variable is unspecified, it is

assumed to be the variable of the first rule, in this

case E.)

This grammar is unambiguous. (Convince

yourself of this fact.)

Moreover, this grammar ensures that * binds

tighter than +.

So it is a “better” grammar than the previous

one. (And it emphasises the fact that there may

be multiple grammars for the same language.)

6-10

'

&

$

%

Parse Trees (cont.)

Here is a parse tree for (3 + 7) * 2:

E

T

F

(E

T

F

3

+ E

T

F

7

)

* T

F

2

6-11

'

&

$

%

Parse Trees (cont.)

This is the only parse tree for this sentence (using

this second grammar).

In contrast, consider the previous grammar

E → 0 | 1 | . . . | 9 | (E) | E ∗ E | E + E

This grammar has two different parse trees for

the sentence 3 + 7 * 2:

E

E

3

+ E

E

7

* E

2

E

E

E

3

+ E

7

* E

2

6-12

'

&

$

%

Ambiguity (cont.)

Previously, we said a grammar was ambiguous if

there exists some sentence with two differentl

leftmost derivations.

Equivalently, a grammar is ambiguous if there

exists some sentence with two different parse tree.

Sometimes we can find a better grammar (as in

our example) which is not ambiguous, and which

generates the same language.

However, this is not always possible: There are

CFLs that are inherently ambiguous, for example,

L = { aibjck | i = j or j = k }.

(For any grammar for L, there are two different

parse trees for a3b3c3.)

6-13

'

&

$

%

Chomsky Normal Form

It is sometimes convenient to transform a CFG

into a normal form.

A CFG is in Chomsky normal form (CNF) if

every rule has one of the following forms:

S → ε

A → a

A → B C

where S is the start variable, A may be the start

variable, B and C are (non-start) variables, and a

is a terminal.

Theorem. Every CFL has a CFG in CNF.

6-14

'

&

$

%

CNF Transformation

To transform an arbitrary CFG into CNF (S,

Thorem 2.9):

1. Add a new start symbol S0.

2. Eliminate all ε symbols not involving S0.

3. Eliminate all unit rules A → B.

4. Transform all remaining rules into the correct

form.

Exercise. Construct a CNF grammar for the

language of arithmetic expressions.

6-15

'

&

$

%

Griebach Normal Form

Another important normal form is Griebach

normal form (GNF), in which every rule has one

of the following forms:

S → ε

A → aB1 . . . Bn

where S is the start variable, A may be the start

variable, B1, . . . , Bn are (non-start) variables, and

a is a terminal.

Theorem. Every CFL has a CFG in Griebach

normal form.

Exercise. Construct a GNF grammar for the

language of arithmetic expressions.

Both these normal forms are important for

different purposes.

6-16

'

&

$

%

Not every language is context-free

The following languages are not context-free:

• L = { 0n1n2n | n ≥ 0 }

• L = {ww | w ∈ {a, b}∗ }

• L = { 0n2

| n ≥ 0 }

• The set of legal Java class definitions.

• The set of correct English sentences.

We describe later how to prove languages are not

context-free. . .

6-17

'

&

$

%

Pushdown Automata

The automata we considered so far were limited

by their lack of memory.

A pushdown automaton (PDA) is a

nondeterministic, finite-state automaton,

equipped with a stack.

stack

state

control

b a a

y

y

x

x

input

The language { aibi | i ≥ 0 } is not recognised by

any DFA as it requires the DFA to remember how

many a’s were in the input (and it can’t do this).

6-18

'

&

$

%

Pushdown Automata (cont.)

(Initially), we consider non-deterministic PDAs.

A PDA may, in one transition step, read a symbol

from input and read the top stack symbol.

Based on the current state, input symbol and

stack top, it may change to a new state, pop the

stack top, and push a sequence of symbols onto

the stack.

It may ignore any input symbol (an ε-transition).

It may choose not to pop the stack (another

ε-transition) and/or not to push anything onto

the stack.

(Hmmm, seems a bit complicated. . .)

6-19

'

&

$

%

Pushdown Automata Formally

A pushdown automaton is a 6-tuple

P = (Q, Σ, Γ, δ, q0, F)

where

• Q is a finite set of states,

• Σ is a finite input alphabet,

• Γ is a finite stack alphabet,

• δ : Q × Σε × Γε → P(Q × Γ∗) is the transition

function,

• q0 ∈ Q is a start state, and

• F ⊆ Q are the final states.

Here, Σε = Σ ∪ {ε} and Γε = Γ ∪ {ε}.

(This definition is more general than Sipser’s, but

it is not more expressive.)

6-20

'

&

$

%

PDA Example 1

This PDA recognises {0n1n | n ≥ 0}:

// ?>=<89:;76540123q0

ε, ε → $
// ?>=<89:;q1

1, 0 → ε

��

0, ε → 0
ss

?>=<89:;76540123q3
?>=<89:;q2

ε, $ → ε
oo 1, 0 → ε

ss

6-21

'

&

$

%

Acceptance Precisely

The PDA (Q, Σ, Γ, δ, q0, F) accepts input w iff

w = w1w2 · · ·wn with each wi ∈ Σε, and there are

states r0, r1, . . . , rn ∈ Q and strings

s0, s1, . . . , sn ∈ Γ∗ such that

1. r0 = q0 and s0 = ε.

2. (ri+1, b1 . . . bk) ∈ δ(ri, wi+1, a), si = as,

si+1 = b1 . . . bks, with a ∈ Γε, b1 . . . bk ∈ Γ∗

and s ∈ Γ∗.

3. rn ∈ F .

Note 1 There is no requirement that sn = ε, so

the stack may be non-empty when the PDA halts

(even if it accepts).

Note 2 Trying to pop an empty stack leads to

nonacceptance of input, not to “runtime error”.

6-22

'

&

$

%

PDA Example 2

This PDA recognises {wwR | w ∈ {0, 1}∗}:

// ?>=<89:;76540123q0

ε, ε → $
// ?>=<89:;q1

ε, ε → ε

��

0, ε → 0
1, ε → 1

ss

?>=<89:;76540123q3
?>=<89:;q2

ε, $ → ε
oo

0, 0 → ε
1, 1 → ε

ss

Note that this PDA is (very) nondeterministic: at

any time in state q1, it can either continue to read

more of w or it can move to state q2 and start

reading wR.

6-23

'

&

$

%

More Examples

Exercise. Construct a PDA that recognises

strings of a’s and b’s with an equal number of a’s

and b’s.

Exercise. Construct a PDA that recognises

L = { 0i1j2k | i = j or j = k }

Hint. Choose nondeterministically whether to

recognise strings with i = j or with j = k.

Exercise. Construct a PDA that recognises the

set of arithmetic expressions constructed from an

identifer a, operators + and ×, and parentheses.

6-24

'

&

$

%

CFLs Have PDAs

Lemma. Every context-free language L is

recognised by some PDA.

Proof. Given a CFG G, we construct a PDA P

such that L(P) = L(G). The PDA uses its stack

to store a list of pending recogniser tasks.

For example, if S → xAy is a rule in G, then the

PDA may replace an S on top of its stack by the

sequence x, A, y.

y

state
control

input stack

x y y

S

state
control

input stack

x y y

x

A

If x is the next input symbol and x is on top of

the stack, then the PDA may consume x and pop

the stack.

6-25

'

&

$

%

CFLs Have PDAs (cont.)

Construct the PDA with an initial state, an

intermediate state q, and a final state.

Add a self-loop from q for each terminal a.

// /.-,()*+
ε, ε → S$

//?>=<89:;q
ε, $ → ε

//

a, a → ε

��

/.-,()*+��������

Also add, for each rule A → w1 . . . wn, another

self-loop from q.

?>=<89:;q

ε, S → w1 . . . wn

��

6-26

'

&

$

%

Example PDA

For the grammar S → ε | aSbS we get

��
/.-,()*+

ε, ε → S$

��

?>=<89:;q

a, a → ε
b, b → ε
ε, S → ε
ε, S → aSbS

((

ε, $ → ε

��
/.-,()*+��������

6-27

'

&

$

%

PDAs Recognise CFLs

Lemma. Every language recognised by some

PDA is context-free.

Proof outline. We show how to construct a CFG

G which “simulates” the given PDA P .

Without loss of generality, we assume that P has

only one accept state, qf , that P empties its stack

before accepting, and that each transition either

pops or pushes a symbol (but not both).

The variables will be Apq where p and q are states

in P . Each Apq will generate a string w iff

w takes P from state p to state q leaving the

stack unchanged. The start variable will be Aq0qf

where q0 is the start state of P .

6-28

'

&

$

%

Example

//?>=<89:;1
ε, ε → $

//

ε, ε → $
��

?>=<89:;2

1, 0 → ε

��

0, ε → 0
vv

?>=<89:;5

ε, $ → ε
��

?>=<89:;/.-,()*+4 ?>=<89:;3
ε, $ → ε

oo 1, 0 → ε
vv

Identify all pairs of transitions where the same

stack symbol is pushed then popped.

For $: A14 → ε A23 ε | ε A55 ε | ε A25 ε | ε A53 ε

For 0: A23 → 0 A22 1 | 0 A23 1

Add the five rules: Aii → ε

Add the 125 rules: Aik → Aij Ajk

Fortunately, most of these variables are

unreachable.

6-29

'

&

$

%

Example (cont.)

Cleaning up, the PDA

//?>=<89:;1
ε, ε → $

//

ε, ε → $
��

?>=<89:;2

1, 0 → ε

��

0, ε → 0
vv

?>=<89:;5

ε, $ → ε
��

?>=<89:;/.-,()*+4 ?>=<89:;3
ε, $ → ε

oo 1, 0 → ε
vv

is simulated by the CFG

A14 → A23 | ε

A23 → 0 1 | 0 A23 1

6-30

'

&

$

%

PDAs Recognise CFLs Precisely

The construction precisely:

Let P = (Q, Σ, Γ, δ, q0, {qf}).

The variables of G are {Apq | p, q ∈ Q} and the

start variable is Aq0qf
.

• Add rule Apq → a Ars b whenever δ(p, a, ε)

contains (r, t) and δ(s, b, t) contains (q, ε).

• Add rule Apq → Apr Arq for all p, q, r ∈ Q.

• Add rule App → ε for all p ∈ Q.

We then have: Apq generates x iff x can bring P

from p to q with unchanged stack.

The detailed proof is by induction on the length

of the derivation Apq
∗
⇒ x.

6-31

'

&

$

%

PDAs Recognise Exactly the CFLs

From these two lemmas:

Theorem. A language L is context-free if and

only if it is recognised by some PDA.

Since every NFA is also a PDA (which ignores its

stack), we have another proof of the fact that

every regular language is context-free.

Note again that PDAs are nondeterministic! We

describe later the properties of deterministic

PDAs. . .

First, we show how to prove languages are not

context-free.

6-32

'

&

$

%

Pumping Lemma for CFLs

If A is context-free, there exists a number p ≥ 0

such that every string s ∈ A with |s| ≥ p can be

written as s = uvxyz, where

1. |vxy| ≤ p

2. |vy| > 0

3. uvixyiz ∈ A for all i ≥ 0

(Wow!)

6-33

'

&

$

%

Proving the Pumping Lemma

Let T be the start variable of a CFG G which

generates A.

Let b be the length of the longest right-hand side

in G.

Set p = b|V |+2.

Consider some string s derived from T . If |s| ≥ p

then the height of the parse tree is at least

|V | + 2, as the tree has branching factor b or less.

T

��
��

��
��

��
��

��

88
88

88
88

88
88

88

R

��
��

��
��

�

::
::

::
::

:

R

~~
~ @@

@

u v x y z

Hence the longest path has |V | + 1 variables or

more, so some variable (e.g., R) occurs repeatedly.

6-34

'

&

$

%

Proving the Pumping Lemma (cont.)

This gives the desired splitting into uvxyz.

Clearly these are also valid parse trees:

T

��
��

��
��

��
��

��
�

77
77

77
77

77
77

77
7

R

��
��

��
��

��

88
88

88
88

88

R

��
��

��
��

�

::
::

::
::

:

u v R

~~
~ @@

@ y z

v x y

T

��
��

��
��

��
��

�

;;
;;

;;
;;

;;
;;

;

R

��
��

��
��

??
??

??
??

x

u z

6-35

'

&

$

%

Proving the Pumping Lemma (cont.)

The condition that |vxy| ≤ p is satisfied if we

make sure that the occurrences of R we consider

are in the lowest part of the tree.

If both occurrences of R fall within the bottom

|V |+1 variables on the longest path, then the tree

that generates vxy has height at most |V | + 2.

And so it generates a string of length at most

b|V |+2, that is, p.

6-36

'

&

$

%

Example 1

B = {anbncn | n ∈ N} is not context-free.

Assume it is, and let p be the pumping length.

Consider apbpcp ∈ B with length greater than p.

By the pumping lemma, apbpcp = uvxyz, with

uvixyiz in B for all i ≥ 0.

Either v or y is non-empty.

If one of them contains two different symbols

from {a, b, c} then uv2xy2z has symbols in the

wrong order, and so cannot be in B.

So both v and y must contain only one kind of

symbol. But then uv2xy2z can’t have the same

number of as, bs, and cs (because we’ve increased

the number of only one or two of them).

In all cases we have a contradiction.

6-37

'

&

$

%

Example 2

D = {ww | w ∈ {0, 1}∗} is not context-free.

Assume it is, and let p be the pumping length.

Consider 0p1p0p1p ∈ D.

By the pumping lemma, 0p1p0p1p = uvxyz, with

uvixyiz in D for all i ≥ 0, and |vxy| ≤ p.

There are three ways that vxy can be part of

00. . .0011. . .1100. . .0011. . .11

If it straddles the midpoint, it has form 1n0m, so

pumping down, we are left with 0p1i0j1p, with

i < p, or j < p, or both.

If it is in the first half, uv2xy2z will have pushed

a 1 into the first position of the second half.

Similarly if vxy is in the second half.

In all cases the result is not in D.

6-38

'

&

$

%

Closure Properties for CFLs

The class of context-free languages is closed under

• union,

• concatenation,

• repetition (Kleene star),

• reversal.

They are not closed under intersection!

Consider these two CFLs:

E = {ambncn | m, n ∈ N}

F = {anbncm | m, n ∈ N}

Exercise. Prove that they are context-free!

But E ∩ F is the language B = {anbncn | n ∈ N}

which we just proved not to be context-free.

However, we do have: If A is context-free and R

is regular then A ∩ R is context-free.

6-39

'

&

$

%

Regular Grammars

We have seen “context-free grammars”.

Is there a grammar formalism that corresponds to

the regular languages?

If we restrict the kind of rules allowed in CFGs,

so they must be either of form

A → w

or

A → w B

with w ∈ Σ∗ and A, B ∈ V , then we have “regular

grammars”.

These generate exactly the regular languages.

(Here we chose the right-linear form — we could

have said A → B w instead of A → w B.)

6-40

'

&

$

%

Deterministic PDAs

A deterministic PDA (DPDA) is a PDA for which

there is at most one possible transition for every

(state, input symbol, stack symbol)-triple.

Exercise. Is the PDA in Example 1

deterministic or nondeterministic? If it is

nondeterministic, construct an equivalent DPDA.

Exercise. Construct a DPDA for the language of

regular expressions.

Theorem. Not every context-free language can

be recognised by a deterministic PDA.

Thus, nondeterminism adds real expressive power

to pushdown automata!

Also, every DPDA-recognisable language has an

unambiguous grammar.

6-41

'

&

$

%

Deterministic PDAs (cont.)

Example. A DPDA can recognise the

context-free language

{wcwR | c ∈ Σ, w ∈ (Σ \ {c})∗}

but not the context-free language

{wwR | w ∈ Σ∗ }.

The intuition is that a deterministic PDA cannot

know when the middle of the input has been

reached. E.g., suppose it reads

00001100000000110000

How can the deterministic PDA know when to

start popping the stack?

On the other hand, efficient parsing must be done

deterministically, and hence must be restricted to

CFLs recognised by DPDAs.

6-42

'

&

$

%

Decision Problems for CFLs

The following problems are decidable:

1. Emptiness. Is CFL L empty?

2. Finiteness. Is CFL L finite?

3. Membership. Does string w belong to CFL L?

The following problems are undecidable!

1. Ambiguity. Is CFG G ambiguous?

2. Inherent ambiguity. Is CFL L inherently

ambiguous?

3. Empty intersection. Is the intersection of two

CFLs L1 and L2 empty?

4. Equality. Are two CFLs L1 and L2 equal?

5. Totality. Is the CFL L equal to Σ∗?

6-43

