Subclasses, Access Control, and Class Methods
Advanced Topics

Object Oriented Programming in C++
2501ICT/7421ICT Nathan

René Hexel and Joel Fenwick

School of Information and Communication Technology
Griffith University

Semester 1, 2012

René Hexel and Joel Fenwick Object Oriented Programming in C++

Outline

Q Subclasses, Access Control, and Class Methods
@ Subclasses and Access Control
@ Class Methods

© Advanced Topics
@ Introduction to C++ Memory Management
@ Strings

René Hexel and Joel Fenwick Object Oriented Programming in C++

Subclasses, Access Control, and Class Methods Subclasses and Access Control
Class Methods

C++ Subclasses

C++ Subclasses

René Hexel and Joel Fenwick Object Oriented Programming in C++

Subclasses, Access Control, and Class Methods Subclasses and Access Control
Class Methods

Subclasses in C++

@ Like in Java and Objective-C, classes can extend other
classes

@ class AClass: public SuperClass
@ no single root class like NSObject

@ this
o references the current object
@ There is no super keyword in C++

o the parent class needs to be referenced by name for
method invocations

@ constructors needs to specify an initialisation list if
superclass constructors need to be invoked

René Hexel and Joel Fenwick Object Oriented Programming in C++

Subclasses, Access Control, and Class Methods

Subclasses and Access Control
Class Methods

Creating Subclasses: Point 3D

Objective-C Child: Point3D.h

#import

@interface Point3D: Point
{

int z; // add z dimension
}

- init; // constructor
- (void) setZ: (int) newz;

- (void) setX: (int) newx
y: (int) newy
2 (int) newz;
@end

C++ Child: Point3D.h

#include

class Point3D: public Point
{

protected: // needed in C++
int z; // add z dimension
public:
Point3D () ; // constructor

void setZ(int newz);

void setXYZ (int nx, int ny, int nz);
i

René Hexel and Joel Fenwick

Object Oriented Programming in C++

Subclasses, Access Control, and Class Methods Subclasses and Access Control
Class Methods

Subclass Implementation: Point 3D

Objective-C: Point3D.m C++: Point
#import #include
@implementation Point3D // constructor with initialisation list
- init // initialiser Point3D::Point3D(): Point()
{ if ([super init]) {
z = 0; z = 0;

return self; }
}
- (void) setZ: (int) newz void Point3D::setZ (int newz)
{ {

z = newz; Z = newz;
} }
- (void) setX: (int) nx void Point3D::setXYZ (int nx,int ny,int nz)

y: (int) ny {
%3 (int) nz setXY (nx, ny); // in

{ // the following does t

[super setX: nx y: nyl; // Poir etXY (nx, ny);

[self setZ: nz];
} setZ (nz); // in Point3D
Qend }

v v

René Hexel and Joel Fenwick Object Oriented Programming in C++

Subclasses, Access Control, and Class Methods Subclasses and Access Control
Class Methods

Access Control in C++

Access Control in C++

René Hexel and Joel Fenwick Object Oriented Programming in C++

Subclasses, Access Control, and Class Methods Subclasses and Access Control
Class Methods

Access Control

@ public:
e everyone has access
@ private:
@ nobody has access, except the defining class
o default for C++ classes
e useful for variables that should not be accessed by
subclasses
® protected:
e only the defining class and subclasses have access
e useful for most member variables
@ In C++, public, private, and protected apply to
methods as well as member variables

René Hexel and Joel Fenwick Object Oriented Programming in C++

Subclasses, Access Control, and Class Methods

Access Control Example

Subclasses and Access Control
Class Methods

Objective-C Access Control

#import <Foundation/Foundation.h>

@interface MyClass: MySuperClass
{
Qpublic // public vars
int a;
int b;
@private // private vars
int c;
int d;
@protected // protected vars
int e;
int f;
}
- init; // constructor
// other class meth
@end

C++ Access Control

// MyClass wi

contro

class MyClass:
{
public:
int a;
int b;

public MySuperClass

private:
int c;
int d;

protected:
int e;
int f;

public: // public methods
MyClass(); // constructor

methods

René Hexel and Joel Fenwick

Object Oriented Programming in C++

Subclasses, Access Control, and Class Methods

Which printf is wrong?

Subclasses and Access Control
Class Methods

Example (Which of the following lines will cause a compiler

error?)

class ClassX
{

public int x;
private int y;
int z;

protected
i

class ClassY:
{

public ClassX

void print () ;
i

// implementation of

void ClassY::print ()

printf("x = %d\n", x);
printf("y = %d\n", y);
printf("z = %d\n", z);

// a print method
// print x
// print y

// print

N

René Hexel and Joel Fenwick

Object Oriented Programming in C++

Subclasses, Access Control, and Class Methods Subclasses and Access Control

Class Methods
Class Methods in C++

Class Methods in C++

René Hexel and Joel Fenwick Object Oriented Programming in C++

Subclasses, Access Control, and Class Methods Subclasses and Access Control

Class Methods
Class Methods

@ C++ also supports Class Methods

e method that can be invoked without an instance
e like in Java, these methods are designated static

@ C++ also supports static member variables
e e.g. variables that are common between instances

René Hexel and Joel Fenwick Object Oriented Programming in C++

Subclasses, Access Control, and Class Methods

Class Method Example

Subclasses and Access Control
Class Methods

Objective-C
#import <Foundation/Foundation.h>

Qinterface Point:
{ int %, y; }

NSObject

+ (int)
- init;
@end

numberOfInstances;

Q@implementation Point
static int instanceCount = 0;

+ (int)
{

return instanceCount;

numberOfInstances

- init
{
if (! (self = [super init]))
return nil;
instanceCount++;

return self;
}
@end

4

class Point

{

protected:
int x, y;

public:
static int numberOflInstances();
Point () ;

protected:
static int instanceCount = 0;
bi

int Point::numberOfInstances
{

return instanceCount;

Point::Point ()
{

x = 0;

y = 0;

instanceCount++;

René Hexel and Joel Fenwick

Object Oriented Programming in C++

Introduction to C++ Memory Management
Advanced Topics Strings

C++ Memory Management

C++ Memory Management

René Hexel and Joel Fenwick Object Oriented Programming in C++

Introduction to C++ Memory Management
Advanced Topics Strings

Memory Management

@ C++ Memory management is completely manual
@ no garbage collector
@ no reference counting
= program needs to track how long an object is required
@ new operator
o allocates memory for an object
e invokes the corresponding constructor
@ delete operator
o releases an object (frees memory)
@ Problem: how to track object usage?
@ copies instead of references
— often inefficient
— stack objects
@ individual solutions for individual programs
e implement reference counting
o difficult because of lack of reflection capabilities
@ possible only through complex language features

René Hexel and Joel Fenwick Object Oriented Programming in C++

Advanced Topics

Introduction to C++ Memory Management
Strings

Person Record Interface Example

Objective-C

#import <Foundation/Foundation.h>
@interface Person: NSObject
{
int yearOfBirth;
NSString *name;
Person *mother, xfather;
}
— (void) setYearOfBirth: (int) born;
- (void) setName: (NSstring %) newName;
- (void) setMother: (Person x) theMother
father: (Person *) theFather;
- (int) yearOfBirth;
- (NSString *) name;
- (Person) mother;
- (Person) father;
- (void) dealloc;
@end

#include <string>

class Person
{

int yearOfBirth;

std::string name;

Person *mother, *father;
public:

void setYearOfBirth (int born);

void setName (std::string &newName) ;

void setMotherFather (Person =m,
Person =f);

int getYearOfBirth();

std::string &getName () ;

Person *getMother ();

Person *getFather();

René Hexel and Joel Fenwick

Object Oriented Programming in C++

Advanced Topics

Introduction to C++ Memory Management
Strings

Person Record Implementation, Part 1

Objective-C

#import

@implementation Person

- (int) yearOfBirth
{ return yearOfBirth; }
- (NSString %) name

- (Person x)

— (Person x)

- (void)

return name;

mother
return mother;
father
return father; }

setYearOfBirth: (int) born

yearOfBirth = born;

#include

// Person implementation
int Person::getYearOfBirth ()

{ return yearOfBirth; }

std::string &Person::getName ()
{

return name;

Person *Person::getMother ()
{

return mother;

Person *Person::getFather ()
{ return father; }

void Person::setYearOfBirth (int born)
{
yearOfBirth = born;

René Hexel and Joel Fenwick

Object Oriented Programming in C++

Introduction to C++ Memory Management
Advanced Topics Strings

Person Record Implementation (continued)

Objective-C

- (void) setName: (NSString %) newName void Person::setName (std::string &newName)
{ {

[name release];

name = [newName copy]; name.assign (newName) ;
} }
— (void) setMother: (Person *) m void Person::setMotherFather (Person =m,

father: (Person *) £ Person xf)

{ {

[m retain]; [f retain]; [%

[mother release]; *

[father release]; * /£

mother = m; father = f; *
} mother = m;

father = £;

- (void) dealloc }
{

[name release];

[mother release]; / *

[father release]; * c

* -

[super dealloc]; *

} *
*
Qend *
V. v

René Hexel and Joel Fenwick Object Oriented Programming in C++

Introduction to C++ Memory Management
Advanced Topics Strings

The Call-By-Reference Type &

@ In a type definition, the ampersand character « defines an
implicit reference type.

o like a pointer, it references the memory address of a
variable
e even though it is a pointer, it uses non-pointer notation (like
call-by-reference in Java)
@ References can be passed to methods and returned by
methods

René Hexel and Joel Fenwick Object Oriented Programming in C++

Introduction to C++ Memory Management
Advanced Topics Strings

Stack Objects and Member Objects

@ C++ allows Stack Objects
e object lives on the stack instead of the heap
— similar to primitive types (int, double, ...)
@ C++ allows Member Objects
e whole objects inside of other objects
— whole copies, not just references
@ Accessed through type name without the « pointer symbol
@ No new and delete operators needed

e object lifetime is equivalent to its scope

e object gets allocated when it comes into scope
— constructor gets called

e object gets deallocated when it loses scope
— destructor gets called

René Hexel and Joel Fenwick Object Oriented Programming in C++

Introduction to C++ Memory Management
Advanced Topics Strings

Destructors

Like dealloc in Objective-C, the destructor is used to clean up
an object before its memory is deallocated. They have the
same name as the class with a ~ in front, and no return type. If
you do not declare one C++ makes an empty one for you.

Example (Destructor Example)

class MyClass

{

public:
MyClass () ;
~MyClass () ;

/ Meanwhile in .cc
MyClass::~MyClass ()
{

René Hexel and Joel Fenwick Object Oriented Programming in C++

Advanced Topics

Destructor Example

Introduction to C++ Memory Management
Strings

Header File

class Card { /+ ... x/}

class Test

{

protected:
int 1i;
Cardx c;

public:
Test () ;
~Test ();
}i

René Hexel and Joel Fenwick

Implementation

Test::Test ()
{

c = new Card();
}

Test:
{

:~Test ()

delete c;

}

Object Oriented Programming in C++

Subclasses, Access Control, and Class Methods

Introduction to C++ Memory Management

Advanced Topics Strings
Object Lifecycle
C++ C++
Task Objective-C Java Heap Stack
allocate + alloc new new entry
initialise - init constr. constr. constr.
hold object | - retain automatic - -
let go - release automatic = s
destroy final - release G.C. delete | fnexit
clean up - dealloc finalise () | destr. destr.
deallocate | [super dealloc] | G.C. delete | return

René Hexel and Joel Fenwick

Object Oriented Programming in C++

Introduction to C++ Memory Management
Advanced Topics Strings

Strings

String Objects in C++

René Hexel and Joel Fenwick Object Oriented Programming in C++

Introduction to C++ Memory Management
Advanced Topics Strings

C++ Strings

@ Like Objective-C, there is a String class in C++
@ std::string
e lower case!
e much nicer than having to use char =
@ Mutable Strings
— all std: :string objects are mutable
@ String Constants
— there are no string constants in C++

@ C++ strings can be created from C strings
@ like in Objective-C, this also works for C string constants
embedded in ""

René Hexel and Joel Fenwick Object Oriented Programming in C++

Introduction to C++ Memory Management
Advanced Topics Strings

C++ String Examples

Example (

#include <string>
#include <cstdio>

//

std::string sl; //
std::string s3("Hello, void"); //
std::string *s4 = new std::string("Hi, it’s "); //

s4->append ("28 degrees celsius"); /7
sl.append (s3); //

int len4 = s4->length(); // s4
if (sl.compare(s3) == 0) // same co
printf("sl is equal to s3 -- how come?\n");
else if (sl.compare(s3) < 0) // which comes first?
printf("sl comes before s3\n");
else
printf ("s3 comes before sl\n");
printf("s3 is: %s\n", s3.c_str()); // t s3 to C string for pri
delete s4; // don’t forget proper memory management!

René Hexel and Joel Fenwick Object Oriented Programming in C++

Introduction to C++ Memory Management
Advanced Topics Strings

Other Useful Methods

@ getline ()

e reads a single line of a file (stream) into a string
- f£find ()

e searches for a string within another String
- substr ()

e returns a substring within a given range

— See the Strings Section of the C/C++ API

René Hexel and Joel Fenwick Object Oriented Programming in C++

http://www.cppreference.com/cppstring/index.html

	Subclasses, Access Control, and Class Methods
	Subclasses and Access Control
	Class Methods

	Advanced Topics
	Introduction to C++ Memory Management
	Strings

