
Subclasses, Access Control, and Class Methods
Advanced Topics

Object Oriented Programming in C++
2501ICT/7421ICT Nathan

René Hexel and Joel Fenwick

School of Information and Communication Technology
Griffith University

Semester 1, 2012

René Hexel and Joel Fenwick Object Oriented Programming in C++



Subclasses, Access Control, and Class Methods
Advanced Topics

Outline

1 Subclasses, Access Control, and Class Methods
Subclasses and Access Control
Class Methods

2 Advanced Topics
Introduction to C++ Memory Management
Strings

René Hexel and Joel Fenwick Object Oriented Programming in C++



Subclasses, Access Control, and Class Methods
Advanced Topics

Subclasses and Access Control
Class Methods

C++ Subclasses

C++ Subclasses

René Hexel and Joel Fenwick Object Oriented Programming in C++



Subclasses, Access Control, and Class Methods
Advanced Topics

Subclasses and Access Control
Class Methods

Subclasses in C++

Like in Java and Objective-C, classes can extend other
classes

class AClass: public SuperClass
no single root class like NSObject

this
references the current object

There is no super keyword in C++
the parent class needs to be referenced by name for
method invocations
constructors needs to specify an initialisation list if
superclass constructors need to be invoked

René Hexel and Joel Fenwick Object Oriented Programming in C++



Subclasses, Access Control, and Class Methods
Advanced Topics

Subclasses and Access Control
Class Methods

Creating Subclasses: Point3D

Objective-C Child: Point3D.h
#import "Point.h"

@interface Point3D: Point
{

int z; // add z dimension
}
- init; // constructor

- (void) setZ: (int) newz;

- (void) setX: (int) newx
y: (int) newy
z: (int) newz;

@end

C++ Child: Point3D.h
#include "Point.h"

class Point3D: public Point
{
protected: // needed in C++
int z; // add z dimension

public:
Point3D(); // constructor

void setZ(int newz);

void setXYZ(int nx, int ny, int nz);
};

René Hexel and Joel Fenwick Object Oriented Programming in C++



Subclasses, Access Control, and Class Methods
Advanced Topics

Subclasses and Access Control
Class Methods

Subclass Implementation: Point3D

Objective-C: Point3D.m
#import "Point3D.h"

@implementation Point3D

- init // initialiser
{ if ([super init])

z = 0;
return self;

}

- (void) setZ: (int) newz
{

z = newz;
}

- (void) setX: (int) nx
y: (int) ny
z: (int) nz

{
[super setX: nx y: ny];
[self setZ: nz];

}
@end

C++: Point3D.m
#include "Point3D.h"

// constructor with initialisation list

Point3D::Point3D(): Point()
{

z = 0;
}

void Point3D::setZ(int newz)
{

z = newz;
}

void Point3D::setXYZ(int nx,int ny,int nz)
{

setXY(nx, ny); // in super class
// the following does the same:
// Point::setXY(nx, ny);

setZ(nz); // in Point3D
}

René Hexel and Joel Fenwick Object Oriented Programming in C++



Subclasses, Access Control, and Class Methods
Advanced Topics

Subclasses and Access Control
Class Methods

Access Control in C++

Access Control in C++

René Hexel and Joel Fenwick Object Oriented Programming in C++



Subclasses, Access Control, and Class Methods
Advanced Topics

Subclasses and Access Control
Class Methods

Access Control

public:
everyone has access

private:
nobody has access, except the defining class
default for C++ classes
useful for variables that should not be accessed by
subclasses

protected:
only the defining class and subclasses have access
useful for most member variables

In C++, public, private, and protected apply to
methods as well as member variables

René Hexel and Joel Fenwick Object Oriented Programming in C++



Subclasses, Access Control, and Class Methods
Advanced Topics

Subclasses and Access Control
Class Methods

Access Control Example

Objective-C Access Control
#import <Foundation/Foundation.h>

@interface MyClass: MySuperClass
{

@public // public vars
int a;
int b;

@private // private vars
int c;
int d;

@protected // protected vars
int e;
int f;

}

- init; // constructor

// ... other class methods

@end

C++ Access Control
// MyClass with access control

class MyClass: public MySuperClass
{

public:
int a;
int b;

private:
int c;
int d;

protected:
int e;
int f;

public: // public methods
MyClass(); // constructor

// ... other class methods

};

René Hexel and Joel Fenwick Object Oriented Programming in C++



Subclasses, Access Control, and Class Methods
Advanced Topics

Subclasses and Access Control
Class Methods

Which printf is wrong?

Example (Which of the following lines will cause a compiler
error?)
class ClassX
{

public int x;
private int y;
protected int z;

};

class ClassY: public ClassX
{

void print(); // a print method
};

// implementation of ClassY:

void ClassY::print()
{

printf("x = %d\n", x); // print x
printf("y = %d\n", y); // print y
printf("z = %d\n", z); // print z

}

René Hexel and Joel Fenwick Object Oriented Programming in C++



Subclasses, Access Control, and Class Methods
Advanced Topics

Subclasses and Access Control
Class Methods

Class Methods in C++

Class Methods in C++

René Hexel and Joel Fenwick Object Oriented Programming in C++



Subclasses, Access Control, and Class Methods
Advanced Topics

Subclasses and Access Control
Class Methods

Class Methods

C++ also supports Class Methods
method that can be invoked without an instance
like in Java, these methods are designated static

C++ also supports static member variables
e.g. variables that are common between instances

René Hexel and Joel Fenwick Object Oriented Programming in C++



Subclasses, Access Control, and Class Methods
Advanced Topics

Subclasses and Access Control
Class Methods

Class Method Example

Objective-C
#import <Foundation/Foundation.h>

@interface Point: NSObject
{ int x, y; }

+ (int) numberOfInstances;
- init;
@end

@implementation Point
static int instanceCount = 0;

+ (int) numberOfInstances
{

return instanceCount;
}

- init
{

if (!(self = [super init]))
return nil;

instanceCount++;

return self;
}
@end

C++
class Point
{
protected:
int x, y;

public:
static int numberOfInstances();
Point();

protected:
static int instanceCount = 0;

};

int Point::numberOfInstances
{

return instanceCount;
}

Point::Point()
{

x = 0;
y = 0;

instanceCount++;
}

René Hexel and Joel Fenwick Object Oriented Programming in C++



Subclasses, Access Control, and Class Methods
Advanced Topics

Introduction to C++ Memory Management
Strings

C++ Memory Management

C++ Memory Management

René Hexel and Joel Fenwick Object Oriented Programming in C++



Subclasses, Access Control, and Class Methods
Advanced Topics

Introduction to C++ Memory Management
Strings

Memory Management

C++ Memory management is completely manual
no garbage collector
no reference counting

⇒ program needs to track how long an object is required
new operator

allocates memory for an object
invokes the corresponding constructor

delete operator
releases an object (frees memory)

Problem: how to track object usage?
copies instead of references
→ often inefficient
→ stack objects

individual solutions for individual programs
implement reference counting

difficult because of lack of reflection capabilities
possible only through complex language features

René Hexel and Joel Fenwick Object Oriented Programming in C++



Subclasses, Access Control, and Class Methods
Advanced Topics

Introduction to C++ Memory Management
Strings

Person Record Interface Example

Objective-C
#import <Foundation/Foundation.h>

@interface Person: NSObject
{

int yearOfBirth;
NSString *name;
Person *mother, *father;

}

- (void) setYearOfBirth: (int) born;
- (void) setName: (NSString *) newName;
- (void) setMother: (Person *) theMother

father: (Person *) theFather;
- (int) yearOfBirth;
- (NSString *) name;
- (Person *) mother;
- (Person *) father;

- (void) dealloc;

@end

C++
#include <string>

class Person
{

int yearOfBirth;
std::string name;
Person *mother, *father;

public:
void setYearOfBirth(int born);
void setName(std::string &newName);
void setMotherFather(Person *m,

Person *f);
int getYearOfBirth();
std::string &getName();
Person *getMother();
Person *getFather();

};

René Hexel and Joel Fenwick Object Oriented Programming in C++



Subclasses, Access Control, and Class Methods
Advanced Topics

Introduction to C++ Memory Management
Strings

Person Record Implementation, Part 1

Objective-C
#import "Person.h"

@implementation Person

- (int) yearOfBirth
{ return yearOfBirth; }

- (NSString *) name
{

return name;
}

- (Person *) mother
{

return mother;
}

- (Person *) father
{ return father; }

- (void) setYearOfBirth: (int) born
{

yearOfBirth = born;
}

C++
#include "Person.h"

// Person implementation

int Person::getYearOfBirth()
{ return yearOfBirth; }

std::string &Person::getName()
{

return name;
}

Person *Person::getMother()
{

return mother;
}

Person *Person::getFather()
{ return father; }

void Person::setYearOfBirth(int born)
{

yearOfBirth = born;
}

René Hexel and Joel Fenwick Object Oriented Programming in C++



Subclasses, Access Control, and Class Methods
Advanced Topics

Introduction to C++ Memory Management
Strings

Person Record Implementation (continued)

Objective-C
- (void) setName: (NSString *) newName
{

[name release];
name = [newName copy];

}

- (void) setMother: (Person *) m
father: (Person *) f

{
[m retain]; [f retain];
[mother release];
[father release];
mother = m; father = f;

}

- (void) dealloc
{

[name release];
[mother release];
[father release];

[super dealloc];
}

@end

C++
void Person::setName(std::string &newName)
{

name.assign(newName);
}

void Person::setMotherFather(Person *m,
Person *f)

{
/*
* no reference counting,

* program needs to track m/f

*/
mother = m;
father = f;

}

/*
* for this C++ program, dealloc

* or equivalent is difficult --

* the program needs to manually

* track object ownership and

* release objects accordingly

*/

René Hexel and Joel Fenwick Object Oriented Programming in C++



Subclasses, Access Control, and Class Methods
Advanced Topics

Introduction to C++ Memory Management
Strings

The Call-By-Reference Type &

In a type definition, the ampersand character & defines an
implicit reference type.

like a pointer, it references the memory address of a
variable
even though it is a pointer, it uses non-pointer notation (like
call-by-reference in Java)

References can be passed to methods and returned by
methods

René Hexel and Joel Fenwick Object Oriented Programming in C++



Subclasses, Access Control, and Class Methods
Advanced Topics

Introduction to C++ Memory Management
Strings

Stack Objects and Member Objects

C++ allows Stack Objects
object lives on the stack instead of the heap

→ similar to primitive types (int, double, . . . )
C++ allows Member Objects

whole objects inside of other objects
→ whole copies, not just references

Accessed through type name without the * pointer symbol
No new and delete operators needed

object lifetime is equivalent to its scope
object gets allocated when it comes into scope
→ constructor gets called

object gets deallocated when it loses scope
→ destructor gets called

René Hexel and Joel Fenwick Object Oriented Programming in C++



Subclasses, Access Control, and Class Methods
Advanced Topics

Introduction to C++ Memory Management
Strings

Destructors

Like dealloc in Objective-C, the destructor is used to clean up
an object before its memory is deallocated. They have the
same name as the class with a ∼ in front, and no return type. If
you do not declare one C++ makes an empty one for you.

Example (Destructor Example)
class MyClass
{
public:

MyClass();
∼MyClass();

...
// Meanwhile in .cc
MyClass::∼MyClass()
{
...

René Hexel and Joel Fenwick Object Oriented Programming in C++



Subclasses, Access Control, and Class Methods
Advanced Topics

Introduction to C++ Memory Management
Strings

Destructor Example

Header File
class Card { /* ... */};

class Test
{
protected:

int i;
Card* c;

public:
Test();
∼Test();

};

Implementation
Test::Test()
{

c = new Card();
}

Test::∼Test()
{

delete c;
}

René Hexel and Joel Fenwick Object Oriented Programming in C++



Subclasses, Access Control, and Class Methods
Advanced Topics

Introduction to C++ Memory Management
Strings

Object Lifecycle

C++ C++
Task Objective-C Java Heap Stack

allocate + alloc new new entry
initialise - init constr. constr. constr.

hold object - retain automatic - -
let go - release automatic - -

destroy final - release G.C. delete fn exit
clean up - dealloc finalise() destr. destr.

deallocate [super dealloc] G.C. delete return

René Hexel and Joel Fenwick Object Oriented Programming in C++



Subclasses, Access Control, and Class Methods
Advanced Topics

Introduction to C++ Memory Management
Strings

Strings

String Objects in C++

René Hexel and Joel Fenwick Object Oriented Programming in C++



Subclasses, Access Control, and Class Methods
Advanced Topics

Introduction to C++ Memory Management
Strings

C++ Strings

Like Objective-C, there is a String class in C++
std::string

lower case!
much nicer than having to use char *

Mutable Strings
→ all std::string objects are mutable

String Constants
→ there are no string constants in C++

C++ strings can be created from C strings
like in Objective-C, this also works for C string constants
embedded in ""

René Hexel and Joel Fenwick Object Oriented Programming in C++



Subclasses, Access Control, and Class Methods
Advanced Topics

Introduction to C++ Memory Management
Strings

C++ String Examples

Example (Some std::string methods)
#include <string>
#include <cstdio>
// ...
std::string s1; // empty string
std::string s3("Hello, void"); // from C string
std::string *s4 = new std::string("Hi, it’s "); // string pointer

s4->append("28 degrees celsius"); // appending char *
s1.append(s3); // appending string

int len4 = s4->length(); // get length of s4

if (s1.compare(s3) == 0) // same content?
printf("s1 is equal to s3 -- how come?\n");

else if (s1.compare(s3) < 0) // which one comes first?
printf("s1 comes before s3\n");

else
printf("s3 comes before s1\n");

printf("s3 is: %s\n", s3.c_str()); // convert s3 to a C string for printf

delete s4; // don’t forget proper memory management!

René Hexel and Joel Fenwick Object Oriented Programming in C++



Subclasses, Access Control, and Class Methods
Advanced Topics

Introduction to C++ Memory Management
Strings

Other Useful Methods

getline()
reads a single line of a file (stream) into a string

- find()
searches for a string within another String

- substr()
returns a substring within a given range

→ See the Strings Section of the C/C++ API

René Hexel and Joel Fenwick Object Oriented Programming in C++

http://www.cppreference.com/cppstring/index.html

	Subclasses, Access Control, and Class Methods
	Subclasses and Access Control
	Class Methods

	Advanced Topics
	Introduction to C++ Memory Management
	Strings


