Introduction to Multitasking
Tasks
Concurrency and Synchronisation

Multitasking
2501ICT/7421ICTNathan

René Hexel

School of Information and Communication Technology
Griffith University

Semester 1, 2012

René Hexel Multitasking

Outline

o Introduction to Multitasking
@ Overview
@ Multitasking Introduction

9 Tasks

@ Task Models
@ Processes and Threads

Q Concurrency and Synchronisation

@ Concurrency
@ Task Synchronisation

René Hexel Multitasking

Introduction to Multitasking CEiED

Multitasking Introduction

Overview

@ Multitasking Basics

@ Process/Thread Life Cycle

@ Creating and Starting Threads

@ Creating and Starting Processes
@ Concurrency

@ Semaphores

René Hexel Multitasking

Introduction to Multitasking B

Multitasking Introduction

Processes

@ Running Program: a Process

e when started, there is just one Process
e Sequential Program

o start
@ sequence of statements (Instructions)
@ program counter (Instruction Counter)
@ end

@ Spawning a new Process
e Do more than one thing at a time

René Hexel Multitasking

Introduction to Multitasking B

Multitasking Introduction

Multitasking

@ Run more than one Process

e multiple processors (Multiprocessing)
@ single processor (Timesharing)

@ Non-Preemptive Multitasking

e Process does not get interrupted
e Yields Processor when waiting (e.g. File 1/0)

@ Preemptive Multitasking

e Process loses CPU after using up its Slice of Time
(Time-Slicing)

René Hexel Multitasking

Introduction to Multitasking Overview

Multitasking Introduction

Non-Preemptive Multitasking

+ Easier to implement in an OS
— Processes must yield CPU

o Cooperative Multitasking
e what happens if a Process doesn’t cooperate?

@ it uses all CPU, no other Process can run
@ whole system can hang

@ OS Examples

e Windows <= 3.x, MacOS <= 9.x
e Some embedded systems

René Hexel Multitasking

Introduction to Multitasking Overview

Multitasking Introduction

Preemptive Multitasking

— More Complex

e requires Time Slice Controller
@ access to shared resources: Synchronisation

-+ Allows “simultaneous” Processes
e appear to be all running at the same time
@ OS Examples

e Windows >= 95, MacOS X, Linux, BSD, Unix
e Modern embedded Systems

René Hexel Multitasking

Introduction to Multitasking B

Multitasking Introduction

Why Multitasking?

@ Run multiple programs at a time
@ appear to be running simultaneously
@ Run multiple Threads/Processes within the same program

e do a number of things concurrently
— Browser: scroll pages during download
— Multimedia: play sound and video at the same time

René Hexel Multitasking

Introduction to Multitasking Overview

Multitasking Introduction

Processes

@ Modern Operating Systems offer Memory Protection
@ Separate (writable) Data Space for each Process
+ One Program cannot overwrite other Processes’ Memory

+ If one Program crashes, other Programs and the Operating
System can continue

Process (Context) Switching Overhead (MMU)

Difficult to Share Data among Processes

René Hexel Multitasking

Introduction to Multitasking B

Multitasking Introduction

Solutions

@ Data Sharing

Shared Memory

Message Queues

Pipes

Sockets (“networked Pipes”)

Using Threads instead of Processes

@ Context Switch Overhead
e Threads (lightweight Processes)

René Hexel Multitasking

Introduction to Multitasking B

Multitasking Introduction

Threads

@ Common Memory

— among all Threads belonging to a Process
e context switching is quick

@ A Thread can overwrite other Threads’ memory

e easy data sharing
e unwanted side-effects (inconsistency, memory corruption)

René Hexel Multitasking

Introduction to Multitasking B

Multitasking Introduction

Tasks

@ Threads
e can usually be switched quicker than Processes
e do not have memory protection
e intrinsically shared data
@ Processes
e have more context-switching overhead
e are usually protected from one another
e require explicitly shared memory

René Hexel Multitasking

Task Models

ks Processes and Threads

Task States

Two State Task Model

dispatch
e N /—\// - N
Lter}‘ Stopped | Running A
\\ - //_/\ - //
pause

René Hexel Multitasking

Task Models

oSS Processes and Threads

Two State Model Problems

@ A Task is not always ready
e it could be blocked while waiting for .. .

— ...user input, a hardware device, data from another
Process, etc.

@ When the Task is ready ...
— the CPU could be fully utilised by another Task
@ Management Overhead
e New and Exit states

René Hexel Multitasking

Task Models

Tasks Processes and Threads
Five State Model
Five State Task Model
(New) [N\
w BIocked ‘
admit
resume (EX|t)
wait release -

\ Ready w

dispatch /
K/ Running
\ /

timeout or yield S~

René Hexel Multitasking

Task Models

Tasks
Processes and Threads

Scheduling

@ The Scheduler enqueues Tasks
e Ready Queue contains all scheduled Tasks
e different algorithms determine priority
— FCFS, Round Robin, Fair Share, Shortest Process Next
(SPN), Shortest Remaining Time (SRT), ...
@ The Dispatcher
o runs the first Task on the Ready Queue
e as long as tasks and CPUs are available
e Timeout or Yield returns CPU to the Dispatcher

René Hexel Multitasking

Task Models

ks Processes and Threads

Processes in C

@ fork ()

e creates a new Child Process
e Parent and Child execute exactly the same Code

— the return value of fork () is used to distinguish between
Parent (old Process) and Child (new Process)

@ wait ()

e waits for Child to exit
e collects the Child’s status
@ needs to be called by Parent at the end

René Hexel Multitasking

Tasks

Forking a new Process

Task Models
Processes and Threads

Example (prin

#include
#include
#include
#include

int main

{

<unistd.h>
<sys/wait.h>
<stdio.h>
<stdlib.h>

(int argc, char xargv[])

int status = EXIT_SUCCESS;

pid_t pid = fork();
switch (pid)
{
case -1:
perror ("fork") ;
status=EXIT_FAILURE;
break;
case 0:
printf ("child\n");
break;
default:
printf ("parent\n");
wait (&status) ;
}

return status;

nt childorchild p

//
// required
// require
// required

requirec

// standard main() function

// child proc status
// fork child p

// check fork() return value

an error occurred
print an

// exit

with

// this is th
// execute

// parent
// execute
// wait for

return the child

René Hexel

Multitasking

Task Models

ks Processes and Threads

Child Processes

@ Get a unique Process ID (pid)
@ Inherit from their Parent Process ...
—all variables and open files
@ Run in a separate, protected memory area
@ Often used to run external program

— exec () system calls in C, Objective-C, or C++
— NSTask class in Objective-C

René Hexel Multitasking

Task Models

ks Processes and Threads

NSTask example

using 1

Example (list the current directo

#import <Foundation/Foundation.h>

int main(int argc, char xargv([])

{

NSAutoreleasePool *pool = [NSAutoreleasePool new];

NSString *cmd = @"/bin/ls"; // ommand

NSArray xargs = [NSArray arrayWithObjects: @"-als", nil]; // -als args

NSTask *task = [NSTask launchedTaskWithLaunchPath: cmd // run command
arguments: args]; // 2

als" now runs

* in the meantime,

[task waitUntilExit];

int status = [task terminationStatus]; // get exit value
printf ("Task returned %d\n", status) ; // and print

[pool release];

return EXIT_SUCCESS;

René Hexel Multitasking

Introduction to Multitasking
Tasks
Concurrency and Synchronisation

execl () example

Task Models
Processes and Threads

Example (list the current directory using 1s)

#include <unistd.h> // required
#include <sys/wait.h> // required
#include <stdio.h> // required
#include <stdlib.h> // required
int main (int argc, char xargv[]) // standard main() function
{
pid_t pid; // the child prc
int status = EXIT_SUCCESS; // child proc
pid = fork(); // fork child p
if (pid == -1) { // an error oc
perror ("fork"); // print an

status=EXIT_FAILURE; // exit with
}
else if (pid == 0) { // this is tt
status = execl("/bin/1ls", "1ls", "-als", NULL);
} else { // D
wait (&status); /] w
printf ("child returned %d\n", status) ; // print child status
}
return status; // return the child status

René Hexel Multitasking

Task Models

lExle Processes and Threads

Threads in C

@ pthread_create ()

@ spawns a new thread
o takes a function as an argument

— new thread will call this function
@ pthread_exit ()
e exits current thread (like exit () for processes)
@ pthread_join ()
o waits for thread to exit (like wait () for processes)

René Hexel Multitasking

Task Models

ks Processes and Threads

Spawning a new Thread in C

Example (

#include <pthread.h> //
#include <stdio.h> //
#include <stdlib.h> //

threads
printf ()
for exit ()

void xchild(void xarg)

{

printf ("$s\n", arg);
return "okay"; /

int main(int argc, char xargvl[]) //
{
pthread_t tid;

char xarg = "child"; d
void xstatus;
if (pthread_create(&tid, NULL, child, child, check

perror ("error creating child");
return EXIT_FAILURE;
}

printf ("parent\n"); /
pthread_join(tid, &status); //
printf ("child said: %s\n", status); // print child status

return EXIT_SUCCESS;

René Hexel Multitasking

Task Models

ks Processes and Threads

Threads in Objective-C

@ NSThread class

e allows a method (selector) on an object to be invoked on a
child thread

@ [NSSThread detachNewThreadSelector: sel
toTarget: t withObject: obj]

@ launches (detaches) new thread
@ +exit
e class method that exits the current thread
@ +tcurrentThread
e returns the current thread object

René Hexel Multitasking

Task Models

lExle Processes and Threads

Threads in C++-11

@ std::thread class

e allows a C++ function to be called on a child thread
@ std::thread my_thread(some_function);

@ constructor launches new thread
@ join ()
e instance method that waits for the thread

René Hexel Multitasking

Concurrency

- Task hronisati
Concurrency and Synchronisation Bl Sy

Concurrency Problems

@ Two Tasks accessing common resources (e.g. memory)

— no problem as long as both tasks only read
e what happens if one task writes while the other task reads?
e what happens if both tasks try writing?

— Let’s look at some examples!

René Hexel Multitasking

Concurrency
Concurrency and Synchronisation VB SYEASIEEEn

Concurrency Example (1)

Example (two tasks modifying shared data)

int shared = 0;

extern int shared;
void taskl (void) void task2 (void)
{ {

shared = 1;

shared = 2;
}

}

@ No concurrency problem!
@ shared is either 0, 1, or 2
— Both tasks use Atomic Operations

René Hexel Multitasking

Concurrency
Concurrency and Synchronisation 1L S IETEIEEE

Concurrency Example (2)

Example (two tasks modifying shared data)

int shared = 0; extern int shared;
void taskl (void) void task2 (void)
{ {
shared++; shared += 2;
shared++;

@ Inconsistencies can occur!

e tasks can interrupt each other at critical points
e Read-Modify-Write operations are not Atomic
= shared can suddenly end up with an odd value

René Hexel Multitasking

Concurrency

- Task hronisati
Concurrency and Synchronisation Bl Sy

Avoiding Inconsistencies

@ Always use Atomic Actions

e not always possible for certain operations
e hard to tell if an operation is atomic

— depends on compiler and system implementation
@ Protect Critical Regions

e use synchronisation constructs before accessing shared
resources
— transforms operations into atomic actions

René Hexel Multitasking

Concurrency and Synchronisation

Concurrency
Task Synchronisation

Mutual Exclusion, Attempt #1

Example (turn-based mutual exclusion)

int turn = 0;
int shared = 0;

void taskl (void)
{

while (turn != 0)

; // do nothing
// critical section
shared++;
shared++;
turn = 1;

extern int turn;
extern int shared;

void task2 (void)
{
while (turn != 1)
; // do nothing

// critical section
shared += 2;

// end critical section

turn = 0;

René Hexel

Multitasking

Concurrency

- Task h i
Concurrency and Synchronisation Bl Sy

Analysis of Attempt #1

@ Guarantees Mutual Exclusion
@ Drawbacks
o tasks are forced to strictly alternate their use of the shared
resource
= pace is dictated by the slower process
e if one Task fails even outside the critical region, the other

Task is stuck forever
e Waiting Task consumes 100% CPU time

— Busy Waiting

René Hexel Multitasking

Concurrency and Synchronisation

Attempt #2

Concurrency
Task Synchronisation

Example (fl

int flag[2]
int shared = 0;

{FALSE, FALSE};

void taskl (void)
{
while (flag([1])

; // do

hing

flag[0] =

//

TRUE;
critical section
shared++;

shared++;

flag([0] = FALSE;

-based mutual exclusion)

extern int flag(2];
extern int shared;

void task2 (void)
{

while (flag[0])
; // do
flag[l] = TRUE;

// critical s
shared += 2;

/)

end crit
flag[l] = FALSE;

nothing

ion

René Hexel

Multitasking

Concurrency

- Task hronisati
Concurrency and Synchronisation Bl Sy

Analysis of Attempt #2

@ Task failing outside Critical Section
— no longer affects the other task!
@ Mutual Exclusion not guaranteed:

e Task 0 enters and exits while () because flag[1] is
FALSE

e Task 1 enters and exits while () because flag[0] is
FALSE
e both set their flags and enter critical section!
= flags are set too late!

René Hexel Multitasking

Concurrency

Concurrency and Synchronisation VB SYEASIEEEn

Attempt #3

Example (setting flag

int flag[2] = {FALSE, FALSE}; extern int flag(2];

int shared = 0; extern int shared;

void taskl (void) void task2 (void)

{ {
flag[0] = TRUE; flag([l] = TRUE;
while (flag([1]) while (flag[0])

; // dc hing i // d

// critical section // critical se on
shared++; shared += 2;
shared++; // end critical s
flag([0] = FALSE; flag[l] = FALSE;

René Hexel Multitasking

Concurrency

- Task hronisati
Concurrency and Synchronisation Bl Sy

Analysis of Attempt #3

@ Mutual Exclusion guaranteed
e only one Task enters critical section at a time
@ Deadlock can occur:

e both tasks set their flags to TRUE

e both tasks enter their while () loops and wait
indefinitely for the other task to clear its flag!

@ no task will ever be able to do anything useful again.

René Hexel Multitasking

Attempt #4

Concurrency and Synchronisation

Concurrency

Task Synchronisation

Example (backing off)

int flag[2]

int shared =

= {FALSE,
0;

FALSE};

void taskl (void)

{

flag([0] = TRUE;

while

}

// critical secti

(flag[1]) |
flag[0] =
// delay

flag[0] =

FALSE;
a bit
TRUE;

shared++;
shared++;

flag[0] =

FALSE;

extern int flag[2];
extern int shared;

void task2 (void)

{

flag([l] = TRUE;

while (flag[0]) {
flag[1l] = FALSE;
// delay a bit
flag([1l] = TRUE;

}

// critical
shared += 2;
// end critical
flag[l] = FALSE;

sect

tion

René Hexel

Multitasking

Concurrency

- Task hronisati
Concurrency and Synchronisation Bl Sy

Analysis of Attempt #4

@ Close to a correct solution
e mutual exclusion guaranteed, no Deadlock
@ Livelock can occur:

o both tasks set their flags to TRUE
o both tasks check the their task’s flag (TRUE)
o both tasks release their flag and start again
— endless loop grabbing and releasing their flag, consuming
100% of (useless) CPU time

René Hexel Multitasking

Concurrency and Synchronisation

Peterson’s Algorithm

Concurrency
Task Synchronisation

Example (backing off)

int flag[2] = {FALSE, FALSE}; extern int flag[2];

int turn = 0; extern int turn;

void taskl (void) void task2 (void)

{ {
flag[0] = TRUE, turn = 1; flag([l] = TRUE, turn = 0;
while (flag[l] && turn==0) while (flag[0] && turn==1)

; // do nothing ; // do nothing

// critical section // critical section
shared++; shared += 2;
shared++; // end critical section
flag([0] = FALSE; flag([l] = FALSE;

} }

v
René Hexel Multitasking

Concurrency

- Task hronisati
Concurrency and Synchronisation Bl Sy

Peterson’s Algorithm (2)

@ Correct solution
e mutual Exclusion, no Dead-/Livelocks
@ Not a generic solution
e works only for two tasks
— still uses Busy Waiting
@ Solution: Hardware and/or OS-Support

e atomic Test-And-Set (TAS) CPU instructions
e blocking a task w/o consuming CPU time

René Hexel Multitasking

Concurrency

Concurrency and Synchronisation e on==to]

Semaphores

@ Simple Signalling Mechanism
e synchronisation of multiple Tasks
@ Shared Integer Variable

e usually initialised to nonnegative value
@ Wait () operation: P ()

@ block task while semaphore < 0, decrement value
@ Signal () operation: v ()
@ increment value, unblock task(s) on waiting queue

René Hexel Multitasking

Concurrency

Concurrency and Synchronisation T SYSiIEAEEE

Semaphore Algorithm

Semaphore Operations

int semaphore = 1; extern int semaphore;
I
{() V()
. {
while (semaphore <= 0)
++;
o semaphore++;
WAKEUP;

semaphore-—; }

@ P () and v () cannot be interrupted!
@ BLOCK enqueues a Task on the waiting queue
@ WAKEUP removes the first Task from the waiting queue

René Hexel Multitasking

Concurrency

Concurrency and Synchronisation e on==to]

Semaphore Advantages

— Flexibility!
@ Multiple tasks
e more than two tasks can be synchronised
@ [finitialisedtoann > 1
e ntasks can enter critical region!
@ Ifinitialisedtoann < 1

e —n+ 1V () operations are required before first task can
enter critical region!

René Hexel Multitasking

Concurrency

Concurrency and Synchronisation e on==to]

Semaphores in C

@ Create and initialise a Semaphore
@ sem_open ()
— sem_t *s = sem_open ("mysemaphore", O_CREAT,
0600, 1);

sem_wait ()

sem_post ()

René Hexel Multitasking

Concurrency

Concurrency and Synchronisation e on==to]

Task Synchronisation

@ Semaphores

e means for protecting critical regions

o flexible method, handling more than one task
@ NSLock Objective-C class

e simple binary semaphore (0 and 1 values only)

— always initialised to 1
@ —lock

@ P () operation (set semaphore to 0)
@ —unlock

@ V() operation (set semaphore to 1)
— needs to be called by the task that called 1ock
— lock must have been called before unlock

René Hexel Multitasking

	Introduction to Multitasking
	Overview
	Multitasking Introduction

	Tasks
	Task Models
	Processes and Threads

	Concurrency and Synchronisation
	Concurrency
	Task Synchronisation

