
Introduction to Multitasking
Tasks

Concurrency and Synchronisation

Multitasking
2501ICT/7421ICTNathan

René Hexel

School of Information and Communication Technology
Griffith University

Semester 1, 2012

René Hexel Multitasking



Introduction to Multitasking
Tasks

Concurrency and Synchronisation

Outline

1 Introduction to Multitasking
Overview
Multitasking Introduction

2 Tasks
Task Models
Processes and Threads

3 Concurrency and Synchronisation
Concurrency
Task Synchronisation

René Hexel Multitasking



Introduction to Multitasking
Tasks

Concurrency and Synchronisation

Overview
Multitasking Introduction

Overview

Multitasking Basics
Process/Thread Life Cycle
Creating and Starting Threads
Creating and Starting Processes
Concurrency
Semaphores

René Hexel Multitasking



Introduction to Multitasking
Tasks

Concurrency and Synchronisation

Overview
Multitasking Introduction

Processes

Running Program: a Process
when started, there is just one Process
Sequential Program

start
sequence of statements (Instructions)
program counter (Instruction Counter)
end

Spawning a new Process
Do more than one thing at a time

René Hexel Multitasking



Introduction to Multitasking
Tasks

Concurrency and Synchronisation

Overview
Multitasking Introduction

Multitasking

Run more than one Process
multiple processors (Multiprocessing)
single processor (Timesharing)

Non-Preemptive Multitasking
Process does not get interrupted
Yields Processor when waiting (e.g. File I/O)

Preemptive Multitasking
Process loses CPU after using up its Slice of Time
(Time-Slicing)

René Hexel Multitasking



Introduction to Multitasking
Tasks

Concurrency and Synchronisation

Overview
Multitasking Introduction

Non-Preemptive Multitasking

+ Easier to implement in an OS
− Processes must yield CPU

Cooperative Multitasking
what happens if a Process doesn’t cooperate?

it uses all CPU, no other Process can run
whole system can hang

OS Examples
Windows <= 3.x, MacOS <= 9.x
Some embedded systems

René Hexel Multitasking



Introduction to Multitasking
Tasks

Concurrency and Synchronisation

Overview
Multitasking Introduction

Preemptive Multitasking

− More Complex
requires Time Slice Controller
access to shared resources: Synchronisation

+ Allows “simultaneous” Processes
appear to be all running at the same time

OS Examples
Windows >= 95, MacOS X, Linux, BSD, Unix
Modern embedded Systems

René Hexel Multitasking



Introduction to Multitasking
Tasks

Concurrency and Synchronisation

Overview
Multitasking Introduction

Why Multitasking?

Run multiple programs at a time
appear to be running simultaneously

Run multiple Threads/Processes within the same program
do a number of things concurrently

→ Browser: scroll pages during download
→ Multimedia: play sound and video at the same time

René Hexel Multitasking



Introduction to Multitasking
Tasks

Concurrency and Synchronisation

Overview
Multitasking Introduction

Processes

Modern Operating Systems offer Memory Protection
Separate (writable) Data Space for each Process

+ One Program cannot overwrite other Processes’ Memory
+ If one Program crashes, other Programs and the Operating

System can continue
− Process (Context) Switching Overhead (MMU)
− Difficult to Share Data among Processes

René Hexel Multitasking



Introduction to Multitasking
Tasks

Concurrency and Synchronisation

Overview
Multitasking Introduction

Solutions

Data Sharing
Shared Memory
Message Queues
Pipes
Sockets (“networked Pipes”)
Using Threads instead of Processes

Context Switch Overhead
Threads (lightweight Processes)

René Hexel Multitasking



Introduction to Multitasking
Tasks

Concurrency and Synchronisation

Overview
Multitasking Introduction

Threads

Common Memory
→ among all Threads belonging to a Process

context switching is quick
A Thread can overwrite other Threads’ memory

easy data sharing
unwanted side-effects (inconsistency, memory corruption)

René Hexel Multitasking



Introduction to Multitasking
Tasks

Concurrency and Synchronisation

Overview
Multitasking Introduction

Tasks

Threads
can usually be switched quicker than Processes
do not have memory protection
intrinsically shared data

Processes
have more context-switching overhead
are usually protected from one another
require explicitly shared memory

René Hexel Multitasking



Introduction to Multitasking
Tasks

Concurrency and Synchronisation

Task Models
Processes and Threads

Task States

Two State Task Model

Stopped Runningenter exit

dispatch

pause

René Hexel Multitasking



Introduction to Multitasking
Tasks

Concurrency and Synchronisation

Task Models
Processes and Threads

Two State Model Problems

A Task is not always ready
it could be blocked while waiting for . . .
→ . . . user input, a hardware device, data from another

Process, etc.

When the Task is ready . . .
→ the CPU could be fully utilised by another Task

Management Overhead
New and Exit states

René Hexel Multitasking



Introduction to Multitasking
Tasks

Concurrency and Synchronisation

Task Models
Processes and Threads

Five State Model

Five State Task Model

NewNew

Ready

admit

Ready

admit

Running

dispatch

Running

dispatch

Blocked

wait

Blocked

wait
resumeresume

timeout or yieldtimeout or yield

Exit
release

Exit
release

René Hexel Multitasking



Introduction to Multitasking
Tasks

Concurrency and Synchronisation

Task Models
Processes and Threads

Scheduling

The Scheduler enqueues Tasks
Ready Queue contains all scheduled Tasks
different algorithms determine priority
→ FCFS, Round Robin, Fair Share, Shortest Process Next

(SPN), Shortest Remaining Time (SRT), . . .

The Dispatcher
runs the first Task on the Ready Queue
as long as tasks and CPUs are available
Timeout or Yield returns CPU to the Dispatcher

René Hexel Multitasking



Introduction to Multitasking
Tasks

Concurrency and Synchronisation

Task Models
Processes and Threads

Processes in C

fork()
creates a new Child Process
Parent and Child execute exactly the same Code
→ the return value of fork() is used to distinguish between

Parent (old Process) and Child (new Process)

wait()
waits for Child to exit
collects the Child’s status
needs to be called by Parent at the end

René Hexel Multitasking



Introduction to Multitasking
Tasks

Concurrency and Synchronisation

Task Models
Processes and Threads

Forking a new Process

Example (prints parent child or child parent)
#include <unistd.h> // required for fork()
#include <sys/wait.h> // required for wait()
#include <stdio.h> // required for perror()
#include <stdlib.h> // required for exit()

int main(int argc, char *argv[]) // standard main() function
{

int status = EXIT_SUCCESS; // child process exit status
pid_t pid = fork(); // fork child process

switch (pid) // check fork() return value
{

case -1: // an error occurred
perror("fork"); // print an error message
status=EXIT_FAILURE; // exit with failure status

break;
case 0: // this is the child process

printf("child\n"); // execute child code
break;
default: // parent process, pid = child ID

printf("parent\n"); // execute parent code
wait(&status); // wait for child to exit

}
return status; // return the child status

}

René Hexel Multitasking



Introduction to Multitasking
Tasks

Concurrency and Synchronisation

Task Models
Processes and Threads

Child Processes

Get a unique Process ID (pid)
Inherit from their Parent Process . . .
→ all variables and open files

Run in a separate, protected memory area
Often used to run external program
→ exec() system calls in C, Objective-C, or C++
→ NSTask class in Objective-C

René Hexel Multitasking



Introduction to Multitasking
Tasks

Concurrency and Synchronisation

Task Models
Processes and Threads

NSTask example

Example (list the current directory using ls)
#import <Foundation/Foundation.h>

int main(int argc, char *argv[])
{

NSAutoreleasePool *pool = [NSAutoreleasePool new];
NSString *cmd = @"/bin/ls"; // "ls" command
NSArray *args = [NSArray arrayWithObjects: @"-als", nil]; // -als args

NSTask *task = [NSTask launchedTaskWithLaunchPath: cmd // run command
arguments: args]; // with arguments

/*
* "ls -als" now runs in the background, so we can do something else

* in the meantime, then wait until the external task has exited

*/
[task waitUntilExit]; // wait for ls

int status = [task terminationStatus]; // get exit value
printf("Task returned %d\n", status); // and print

[pool release];

return EXIT_SUCCESS;
}

René Hexel Multitasking



Introduction to Multitasking
Tasks

Concurrency and Synchronisation

Task Models
Processes and Threads

execl() example

Example (list the current directory using ls)
#include <unistd.h> // required for fork()/execl()
#include <sys/wait.h> // required for wait()
#include <stdio.h> // required for perror()
#include <stdlib.h> // required for exit()

int main(int argc, char *argv[]) // standard main() function
{

pid_t pid; // the child process ID
int status = EXIT_SUCCESS; // child process exit status

pid = fork(); // fork child process
if (pid == -1) { // an error occurred

perror("fork"); // print an error message
status=EXIT_FAILURE; // exit with failure status

}
else if (pid == 0) { // this is the child process

status = execl("/bin/ls", "ls", "-als", NULL); // execute "ls -als"
} else { // parent process, pid = child ID

wait(&status); // wait for child to exit
printf("child returned %d\n", status); // print child status

}

return status; // return the child status
}

René Hexel Multitasking



Introduction to Multitasking
Tasks

Concurrency and Synchronisation

Task Models
Processes and Threads

Threads in C

pthread_create()
spawns a new thread
takes a function as an argument
→ new thread will call this function

pthread_exit()
exits current thread (like exit() for processes)

pthread_join()
waits for thread to exit (like wait() for processes)

René Hexel Multitasking



Introduction to Multitasking
Tasks

Concurrency and Synchronisation

Task Models
Processes and Threads

Spawning a new Thread in C

Example (spawning a thread)
#include <pthread.h> // required for threads
#include <stdio.h> // required for printf()
#include <stdlib.h> // required for exit()

void *child(void *arg) // child function
{

printf("%s\n", arg); // print argument
return "okay"; // exit status

}

int main(int argc, char *argv[]) // standard main() function
{

pthread_t tid; // child thread ID
char *arg = "child"; // argument passed to child
void *status; // child status

if (pthread_create(&tid, NULL, child, arg) != 0) { // spawn child, check error
perror("error creating child"); // print error message
return EXIT_FAILURE; // didn’t work --> exit

}
printf("parent\n"); // execute some parent process code
pthread_join(tid, &status); // wait for child
printf("child said: %s\n", status); // print child status

return EXIT_SUCCESS;
}

René Hexel Multitasking



Introduction to Multitasking
Tasks

Concurrency and Synchronisation

Task Models
Processes and Threads

Threads in Objective-C

NSThread class
allows a method (selector) on an object to be invoked on a
child thread
[NSSThread detachNewThreadSelector: sel
toTarget: t withObject: obj]

launches (detaches) new thread

+exit
class method that exits the current thread

+currentThread
returns the current thread object

René Hexel Multitasking



Introduction to Multitasking
Tasks

Concurrency and Synchronisation

Task Models
Processes and Threads

Threads in C++-11

std::thread class
allows a C++ function to be called on a child thread
std::thread my_thread(some_function);

constructor launches new thread

join()
instance method that waits for the thread

René Hexel Multitasking



Introduction to Multitasking
Tasks

Concurrency and Synchronisation

Concurrency
Task Synchronisation

Concurrency Problems

Two Tasks accessing common resources (e.g. memory)
→ no problem as long as both tasks only read

what happens if one task writes while the other task reads?
what happens if both tasks try writing?

→ Let’s look at some examples!

René Hexel Multitasking



Introduction to Multitasking
Tasks

Concurrency and Synchronisation

Concurrency
Task Synchronisation

Concurrency Example (1)

Example (two tasks modifying shared data)
int shared = 0;

void task1(void)
{

shared = 1;
}

extern int shared;

void task2(void)
{

shared = 2;
}

No concurrency problem!
shared is either 0, 1, or 2

→ Both tasks use Atomic Operations

René Hexel Multitasking



Introduction to Multitasking
Tasks

Concurrency and Synchronisation

Concurrency
Task Synchronisation

Concurrency Example (2)

Example (two tasks modifying shared data)
int shared = 0;

void task1(void)
{

shared++;
shared++;

}

extern int shared;

void task2(void)
{

shared += 2;

}

Inconsistencies can occur!
tasks can interrupt each other at critical points
Read-Modify-Write operations are not Atomic

⇒ shared can suddenly end up with an odd value

René Hexel Multitasking



Introduction to Multitasking
Tasks

Concurrency and Synchronisation

Concurrency
Task Synchronisation

Avoiding Inconsistencies

Always use Atomic Actions
not always possible for certain operations
hard to tell if an operation is atomic
→ depends on compiler and system implementation

Protect Critical Regions
use synchronisation constructs before accessing shared
resources

→ transforms operations into atomic actions

René Hexel Multitasking



Introduction to Multitasking
Tasks

Concurrency and Synchronisation

Concurrency
Task Synchronisation

Mutual Exclusion, Attempt #1

Example (turn-based mutual exclusion)
int turn = 0;
int shared = 0;

void task1(void)
{

while (turn != 0)
; // do nothing

// critical section
shared++;
shared++;

turn = 1;
}

extern int turn;
extern int shared;

void task2(void)
{

while (turn != 1)
; // do nothing

// critical section
shared += 2;
// end critical section

turn = 0;
}

René Hexel Multitasking



Introduction to Multitasking
Tasks

Concurrency and Synchronisation

Concurrency
Task Synchronisation

Analysis of Attempt #1

Guarantees Mutual Exclusion
Drawbacks

tasks are forced to strictly alternate their use of the shared
resource
⇒ pace is dictated by the slower process

if one Task fails even outside the critical region, the other
Task is stuck forever
Waiting Task consumes 100% CPU time
→ Busy Waiting

René Hexel Multitasking



Introduction to Multitasking
Tasks

Concurrency and Synchronisation

Concurrency
Task Synchronisation

Attempt #2

Example (flag-based mutual exclusion)
int flag[2] = {FALSE, FALSE};
int shared = 0;

void task1(void)
{

while (flag[1])
; // do nothing

flag[0] = TRUE;
// critical section
shared++;
shared++;
flag[0] = FALSE;

}

extern int flag[2];
extern int shared;

void task2(void)
{

while (flag[0])
; // do nothing

flag[1] = TRUE;
// critical section
shared += 2;
// end critical section
flag[1] = FALSE;

}

René Hexel Multitasking



Introduction to Multitasking
Tasks

Concurrency and Synchronisation

Concurrency
Task Synchronisation

Analysis of Attempt #2

Task failing outside Critical Section
→ no longer affects the other task!

Mutual Exclusion not guaranteed:
Task 0 enters and exits while() because flag[1] is
FALSE
Task 1 enters and exits while() because flag[0] is
FALSE
both set their flags and enter critical section!
⇒ flags are set too late!

René Hexel Multitasking



Introduction to Multitasking
Tasks

Concurrency and Synchronisation

Concurrency
Task Synchronisation

Attempt #3

Example (setting flags first)
int flag[2] = {FALSE, FALSE};
int shared = 0;

void task1(void)
{

flag[0] = TRUE;
while (flag[1])

; // do nothing

// critical section
shared++;
shared++;
flag[0] = FALSE;

}

extern int flag[2];
extern int shared;

void task2(void)
{

flag[1] = TRUE;
while (flag[0])

; // do nothing

// critical section
shared += 2;
// end critical section
flag[1] = FALSE;

}

René Hexel Multitasking



Introduction to Multitasking
Tasks

Concurrency and Synchronisation

Concurrency
Task Synchronisation

Analysis of Attempt #3

Mutual Exclusion guaranteed
only one Task enters critical section at a time

Deadlock can occur:
both tasks set their flags to TRUE
both tasks enter their while() loops and wait
indefinitely for the other task to clear its flag!
no task will ever be able to do anything useful again.

René Hexel Multitasking



Introduction to Multitasking
Tasks

Concurrency and Synchronisation

Concurrency
Task Synchronisation

Attempt #4

Example (backing off)
int flag[2] = {FALSE, FALSE};
int shared = 0;

void task1(void)
{

flag[0] = TRUE;
while (flag[1]) {

flag[0] = FALSE;
// delay a bit
flag[0] = TRUE;

}
// critical section
shared++;
shared++;
flag[0] = FALSE;

}

extern int flag[2];
extern int shared;

void task2(void)
{

flag[1] = TRUE;
while (flag[0]) {

flag[1] = FALSE;
// delay a bit
flag[1] = TRUE;

}
// critical section
shared += 2;
// end critical section
flag[1] = FALSE;

}

René Hexel Multitasking



Introduction to Multitasking
Tasks

Concurrency and Synchronisation

Concurrency
Task Synchronisation

Analysis of Attempt #4

Close to a correct solution
mutual exclusion guaranteed, no Deadlock

Livelock can occur:
both tasks set their flags to TRUE
both tasks check the their task’s flag (TRUE)
both tasks release their flag and start again

→ endless loop grabbing and releasing their flag, consuming
100% of (useless) CPU time

René Hexel Multitasking



Introduction to Multitasking
Tasks

Concurrency and Synchronisation

Concurrency
Task Synchronisation

Peterson’s Algorithm

Example (backing off)
int flag[2] = {FALSE, FALSE};
int turn = 0;

void task1(void)
{

flag[0] = TRUE, turn = 1;
while (flag[1] && turn==0)

; // do nothing

// critical section
shared++;
shared++;

flag[0] = FALSE;
}

extern int flag[2];
extern int turn;

void task2(void)
{

flag[1] = TRUE, turn = 0;
while (flag[0] && turn==1)

; // do nothing

// critical section
shared += 2;
// end critical section

flag[1] = FALSE;
}

René Hexel Multitasking



Introduction to Multitasking
Tasks

Concurrency and Synchronisation

Concurrency
Task Synchronisation

Peterson’s Algorithm (2)

Correct solution
mutual Exclusion, no Dead-/Livelocks

Not a generic solution
works only for two tasks

→ still uses Busy Waiting
Solution: Hardware and/or OS-Support

atomic Test-And-Set (TAS) CPU instructions
blocking a task w/o consuming CPU time

René Hexel Multitasking



Introduction to Multitasking
Tasks

Concurrency and Synchronisation

Concurrency
Task Synchronisation

Semaphores

Simple Signalling Mechanism
synchronisation of multiple Tasks

Shared Integer Variable
usually initialised to nonnegative value
Wait() operation: P()

block task while semaphore ≤ 0, decrement value
Signal() operation: V()

increment value, unblock task(s) on waiting queue

René Hexel Multitasking



Introduction to Multitasking
Tasks

Concurrency and Synchronisation

Concurrency
Task Synchronisation

Semaphore Algorithm

Semaphore Operations
int semaphore = 1;

P()
{

while (semaphore <= 0)
BLOCK;

semaphore--;
}

extern int semaphore;

V()
{

semaphore++;

WAKEUP;
}

P() and V() cannot be interrupted!
BLOCK enqueues a Task on the waiting queue
WAKEUP removes the first Task from the waiting queue

René Hexel Multitasking



Introduction to Multitasking
Tasks

Concurrency and Synchronisation

Concurrency
Task Synchronisation

Semaphore Advantages

→ Flexibility!
Multiple tasks

more than two tasks can be synchronised
If initialised to an n > 1

n tasks can enter critical region!
If initialised to an n < 1

−n + 1 V() operations are required before first task can
enter critical region!

René Hexel Multitasking



Introduction to Multitasking
Tasks

Concurrency and Synchronisation

Concurrency
Task Synchronisation

Semaphores in C

Create and initialise a Semaphore
sem_open()

→ sem_t *s = sem_open("mysemaphore", O_CREAT,
0600, 1);

P()
sem_wait()

V()
sem_post()

René Hexel Multitasking



Introduction to Multitasking
Tasks

Concurrency and Synchronisation

Concurrency
Task Synchronisation

Task Synchronisation

Semaphores
means for protecting critical regions
flexible method, handling more than one task

NSLock Objective-C class
simple binary semaphore (0 and 1 values only)

→ always initialised to 1
-lock

P() operation (set semaphore to 0)
-unlock

V() operation (set semaphore to 1)
→ needs to be called by the task that called lock
→ lock must have been called before unlock

René Hexel Multitasking


	Introduction to Multitasking
	Overview
	Multitasking Introduction

	Tasks
	Task Models
	Processes and Threads

	Concurrency and Synchronisation
	Concurrency
	Task Synchronisation


