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Tree Definition

Each node has at most
one predecessor

Parent
Many Successors

Children
Siblings

nodes sharing the same
parent (eg, D2 and D3)

D1

D2 D3
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Tree Definition (2)

Topmost Node
root

Childred, children of
children, . . .

Descendants
Successors

⇒ All nodes are successors
of root

D1

D2 D3

D4
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Tree Definition (3)

Leaf Nodes
nodes without
successors

→ D3 and D4

Frontier
set of all leaf nodes

D1

D2 D3

D4
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Tree Definition (4)

Interior Nodes
nodes with at least one
successor

→ D1 and D2

Ancestors
immediate or indirect
predecessors

→ D1 is an ancestor of D2,
D3, and D4

D1

D2 D3

D4
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Tree Definition (5)

Levels are numbered
from 0
→ level 0 is always the root

This tree has 3 Levels
Level 0: D1
Level 1: D2 and D3
Level 2: D4

D1 Lev.0

D2 D3 Lev.1

D4 Lev.2
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Binary Trees

Binary Trees
→ allow at most two

children per node
Generic Trees

allow any number of
children per node

D1

D2 D3

D4
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Generic Trees

Order of the Tree
maximum number of
children allowed for any
given node

→ e.g. Order 3

D1

D2 D3 D4

D5
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Tree Applications

Parsing Languages
Computer Languages, Mathematical Formulae
Natural Languages

Searchable Data Structures
Databases (e.g., B-Trees)
Heaps and Balanced Trees

Sorting and organising Data
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Parsers

Read in Expressions
→ (2 + 3) ∗ 5

Check Syntactical Correctness
is everything where it should be?

Create Parse Tree
evaluator checks semantic meaning and processes the
data in the Tree to produce meaningful output
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Binary Expressions

Stored in Binary Trees
→ 3 + 5

Numbers
leaf nodes

Operators
interior nodes

Operands
contained in a subtree of
the expression

+

3 5
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Example Expression

3 ∗ 4 + 5

+

∗ 5

3 4
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Operator Precedence

3 ∗ (4 + 5)

The higher the
precedence, the lower in
the tree

→ overridden by
parentheses

∗

3 +

4 5
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Operator Precedence (2)

3 + 4 + 5

if operators have equal
precedence, the ones on
the left appear lower in the
tree when parsed from left
to right!

+

+ 5

3 4
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Evaluating an Expression Tree

Begin at the root Node
If a number, return it, otherwise
Run the operator with the results of

evaluating its left and right subtrees, and
return this value

René Hexel Hierarchical Collections: Trees



Trees
Expressions and Grammar Parsing

Search Trees

Evaluating Example

3 ∗ (4 + 5)

Evaluation starts at the top
∗ is an operator

⇒ evaluate left and right
subtrees first!

3 is a number
⇒ return 3

+ is an operator
⇒ evaluate left and right
subtrees first!

4 is a number
⇒ return 4

5 is a number
⇒ return 5

add subtree results
⇒ return 4 + 5 = 9

multiply subtree results
⇒ return 3 ∗ 9 = 27

∗

3 +

4 5

9

27
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Evaluation Pseudocode

Pseudo code for tree evaluation
evaluate(node)
{

if node is a number
return number;

else
{

left = evaluate(node.left);
right = evaluate(node.right);
return compute(node, left, right);

}
}
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Binary Tree Traversals

Preorder
→ visit node, then go left, then go right

Inorder
→ go left, then visit node then go right

Postorder: Depth First
→ go left, then go right, then visit node

Breadth First
→ level 0, then level 1, then level 2, etc.
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Equivalence between Traversal and Notation

Preorder, Inorder, and Postorder
→ correspond with Prefix, Infix, and Postfix notations of an

expression
Infix: 3 + 5
Prefix = Polish notation (PN): +(3,5)
Postfix = reverse Polish notation (RPN): 3 5 +

⇒ use the same generic recursive algorithm!
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Prefix Pseudocode

Prefix Evaluation
String prefix(node)
{

if (node == NULL)
return "";

else
return node +

prefix(node.left) +
prefix(node.right);

}
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Infix Pseudocode

Infix Evaluation
String infix(node)
{

if (node == NULL)
return "";

else
return infix(node.left) +

node +
infix(node.right);

}
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Postfix Pseudocode

Postfix Evaluation
String postfix(node)
{

if (node == NULL)
return "";

else
return postfix(node.left) +

postfix(node.right) +
node;

}
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Grammar Parsing

Infix Expressions
Expression = Term { + | - Term }
Term = Factor { * | / Factor }
Factor = number | ( Expression )

Represents standard maths formulas
e.g.: 3 + 4 ∗ (5− (6/7))

can be used to create a parse tree!
→ recursive descent parsing
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Recursive Descent Parsing

Expression = Term { + | - Term }
Expression()
{
Term();
while (token == ’+’||

token == ’-’)
{

get_token();
Term();

}
}
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Recursive Descent Parsing

Term = Factor { * | / Factor }
Term()
{
Factor();
while (token == ’*’||

token == ’/’)
{

get_token();
Factor();

}
}
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Recursive Descent Parsing

Factor = number | ( Expression )
Factor() {

switch (token) {
case number: get_token(); break;
case ’(’: get_token(); Expression();

if (token != ’)’)
error("No closing ’)’");

get_token();
break;

default:
error("Error ’%s’\n", token);

}
}
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Binary Search Tree

“Sorted Array” stored in a
tree

left to right order
e.g. A B C

A

B C
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Binary Tree Search

1 Start at the root node n
searching for an object s

2 if s == n then we are finished
3 if s < n then n := left child
4 if s > n then n := right child
5 repeat from step 2 until finished

. . . either s has been found

. . . a leaf node has been reached, but s has not been found
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Recursive Pseudocode

Recursive Pseudocode
search(s, node)
{

if node == nil
return nil; // not in tree

else if s == node->content
return node; // found

else if s < node->content
return search(s, node->left);

else // s > node
return search(s, node->right);

}
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Search Tree Complexity

Depends on the Balance of the Tree
Unbalanced Tree:

O(n)
Balanced Tree

O(log n)
equivalent to Binary Search in Sorted Array
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Balanced Trees

Balanced Tree
Difference in height of both subtrees of any node in the tree
is either 0 or 1

Unbalanced Tree:
Difference of subtree heights > 1

Perfectly Balanced Tree
Balanced Tree with leaves only on one or two levels
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Creating a Search Tree

1 Incrementally
Sort in a new Node n

2 Search if n already exists
Finished if n exists (do nothing)
Otherwise add n as the left or right child of the last node
searched (depending on whether n was smaller or bigger
than the last node)

3 Produces an ad-hoc Search Tree
Not guaranteed to be balanced!
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Balancing a Complete Tree

1 Write out the Search Tree in sorted order
e.g. in alphabetical order

→ write to sorted array/list
→ write to file

2 Read back the sorted data, creating a Balanced Tree
Recursively create Left Children, Root, then Right Children
for each subtree
Creates a perfectly balanced tree!
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Balancing ReadTree Algorithm

Balancing ReadTree Algorithm
BTNode *readTree(BufferedReader *file, int n)
{

if (n <= 0) return nil;

BTNode *node = [BTNode new];
[node setLeft: readTree(file, n/2)];
[node setValue: [file readLine]];
[node setRight: readTree(file,

(n-1)/2)];

return node;
}
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Self-Balancing Trees

Problem: writing out and reading back
→ takes time
→ requires space

Read back the sorted data, creating a Balanced Tree
Sorted data are available in 3 places (original tree, file/array,
and final, balanced tree)

Alternative: keep the tree balanced
insertion operation needs to check if tree is still balanced
re-balance if adding a node breaks balance
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Red-Black Tree

1 Every node is either red or black
2 The root node is black
3 All leaves are black

leaves are dummy empty nodes at the end of the tree
4 Both children of red nodes are black
5 All paths from any given node to its descendant leaves

contain the same number of black nodes
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Red-Black Tree Definitions

Grandparent
the parent of the parent node

Uncle
the “other child” of the grandparent, i.e.

if (parent == grandparent.left)
uncle = grandparent.right)

else // if (parent != grandparent.left)
uncle = grandparent.left)

Both children of red nodes are black
All paths from any given node to its descendant leaves
contain the same number of black nodes
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Red-Black Tree Insertion

Add node as in a binary search tree
→ default colour is red

Case 1: new node n is root
→ repaint as black

Case 2: parent p of n is black
⇒ everything is fine!
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Red-Black Tree Insertion

Case 3: both parent and uncle are red
→ repaint parent and uncle as black
→ repaint grandparent as red (property 5)

may now violate property 2 (root is black) or property 4 (both
children of red nodes are black)
⇒ therefore recursively restart with case 1 on the
grandparent
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Red-Black Tree Insertion

Case 4: parent p of new node n is red, uncle u is black
grandparent g
if n == p.right && p == g.left
→ perform left rotation to switch roles of n and p

if n == p.left && p == g.right
→ perform right rotation to switch roles of n and p

→ continue with Case 5!
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Red-Black Tree Insertion

Case 5: parent p of new node n is red, uncle u is black
switch the colours of p and grandparent g
if n == p.left && p == g.left
→ perform right rotation on g

if n == p.right && p == g.right
→ perform left rotation on g

⇒ Terminal manoeuvre, no further repaint needed!
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Strings in Search Trees

Storing long strings in binary search trees can be
inefficient

Requires full string (key) comparisons for every node
→ O(n log n) search complexity if average string length

approximates the number of nodes n
Trie

Retrieval of keys while traversing a search tree
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Tries

trees that store the
individual characters of the
key strings
common prefixes share the
same path through the
search tree, e.g.

on
off
often

o

f n

f ten
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Trie Efficiency

Time and Space efficiency
→ large number of long words

Efficient for spell checking
→ common prefixes determine tree height

English words do not share long common prefixes
5-7 node visits, regardless of whether 10,000 or 100,000
words are stored!
compare with 13 = log2 10000 or 17 = log2 100000 node
visits for optimal binary search trees!
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Trie Challenges

Prefix detection
how to distinguish words such as “are” and “area”

→ requires a separate end of word mark
Efficient search requires O(1) character search in nodes
→ requires (array) space for each node, indexed by char

26+1 pointers for A-Z (plus end of word mark)
127+1 pointers for ASCII
65536 pointers for UTF-16
4294967296 pointers for UTF-32 (full Unicode)

Suffixes are different node types
→ makes trie handling code more complex

René Hexel Hierarchical Collections: Trees


	Trees
	Expressions and Grammar Parsing
	Search Trees

