
Trees
Expressions and Grammar Parsing

Search Trees

Hierarchical Collections: Trees
2501ICT/7421ICTNathan

René Hexel

School of Information and Communication Technology
Griffith University

Semester 1, 2012

René Hexel Hierarchical Collections: Trees

Trees
Expressions and Grammar Parsing

Search Trees

Outline

1 Trees

2 Expressions and Grammar Parsing

3 Search Trees

René Hexel Hierarchical Collections: Trees

Trees
Expressions and Grammar Parsing

Search Trees

Hierarchical Collections

Tree definition
Types of Trees
Binary Expressions

expression trees
tree traversals: pre-, in-, postorder

Examples
generating Postfix
parsing

René Hexel Hierarchical Collections: Trees

Trees
Expressions and Grammar Parsing

Search Trees

Tree Definition

Each node has at most
one predecessor

Parent
Many Successors

Children
Siblings

nodes sharing the same
parent (eg, D2 and D3)

D1

D2 D3

René Hexel Hierarchical Collections: Trees

Trees
Expressions and Grammar Parsing

Search Trees

Tree Definition (2)

Topmost Node
root

Childred, children of
children, . . .

Descendants
Successors

⇒ All nodes are successors
of root

D1

D2 D3

D4

René Hexel Hierarchical Collections: Trees

Trees
Expressions and Grammar Parsing

Search Trees

Tree Definition (3)

Leaf Nodes
nodes without
successors

→ D3 and D4

Frontier
set of all leaf nodes

D1

D2 D3

D4

René Hexel Hierarchical Collections: Trees

Trees
Expressions and Grammar Parsing

Search Trees

Tree Definition (4)

Interior Nodes
nodes with at least one
successor

→ D1 and D2

Ancestors
immediate or indirect
predecessors

→ D1 is an ancestor of D2,
D3, and D4

D1

D2 D3

D4

René Hexel Hierarchical Collections: Trees

Trees
Expressions and Grammar Parsing

Search Trees

Tree Definition (5)

Levels are numbered
from 0
→ level 0 is always the root

This tree has 3 Levels
Level 0: D1
Level 1: D2 and D3
Level 2: D4

D1 Lev.0

D2 D3 Lev.1

D4 Lev.2

René Hexel Hierarchical Collections: Trees

Trees
Expressions and Grammar Parsing

Search Trees

Binary Trees

Binary Trees
→ allow at most two

children per node
Generic Trees

allow any number of
children per node

D1

D2 D3

D4

René Hexel Hierarchical Collections: Trees

Trees
Expressions and Grammar Parsing

Search Trees

Generic Trees

Order of the Tree
maximum number of
children allowed for any
given node

→ e.g. Order 3

D1

D2 D3 D4

D5

René Hexel Hierarchical Collections: Trees

Trees
Expressions and Grammar Parsing

Search Trees

Tree Applications

Parsing Languages
Computer Languages, Mathematical Formulae
Natural Languages

Searchable Data Structures
Databases (e.g., B-Trees)
Heaps and Balanced Trees

Sorting and organising Data

René Hexel Hierarchical Collections: Trees

Trees
Expressions and Grammar Parsing

Search Trees

Parsers

Read in Expressions
→ (2 + 3) ∗ 5

Check Syntactical Correctness
is everything where it should be?

Create Parse Tree
evaluator checks semantic meaning and processes the
data in the Tree to produce meaningful output

René Hexel Hierarchical Collections: Trees

Trees
Expressions and Grammar Parsing

Search Trees

Binary Expressions

Stored in Binary Trees
→ 3 + 5

Numbers
leaf nodes

Operators
interior nodes

Operands
contained in a subtree of
the expression

+

3 5

René Hexel Hierarchical Collections: Trees

Trees
Expressions and Grammar Parsing

Search Trees

Example Expression

3 ∗ 4 + 5

+

∗ 5

3 4

René Hexel Hierarchical Collections: Trees

Trees
Expressions and Grammar Parsing

Search Trees

Operator Precedence

3 ∗ (4 + 5)

The higher the
precedence, the lower in
the tree

→ overridden by
parentheses

∗

3 +

4 5

René Hexel Hierarchical Collections: Trees

Trees
Expressions and Grammar Parsing

Search Trees

Operator Precedence (2)

3 + 4 + 5

if operators have equal
precedence, the ones on
the left appear lower in the
tree when parsed from left
to right!

+

+ 5

3 4

René Hexel Hierarchical Collections: Trees

Trees
Expressions and Grammar Parsing

Search Trees

Evaluating an Expression Tree

Begin at the root Node
If a number, return it, otherwise
Run the operator with the results of

evaluating its left and right subtrees, and
return this value

René Hexel Hierarchical Collections: Trees

Trees
Expressions and Grammar Parsing

Search Trees

Evaluating Example

3 ∗ (4 + 5)

Evaluation starts at the top
∗ is an operator

⇒ evaluate left and right
subtrees first!

3 is a number
⇒ return 3

+ is an operator
⇒ evaluate left and right
subtrees first!

4 is a number
⇒ return 4

5 is a number
⇒ return 5

add subtree results
⇒ return 4 + 5 = 9

multiply subtree results
⇒ return 3 ∗ 9 = 27

∗

3 +

4 5

9

27

René Hexel Hierarchical Collections: Trees

Trees
Expressions and Grammar Parsing

Search Trees

Evaluation Pseudocode

Pseudo code for tree evaluation
evaluate(node)
{

if node is a number
return number;

else
{

left = evaluate(node.left);
right = evaluate(node.right);
return compute(node, left, right);

}
}

René Hexel Hierarchical Collections: Trees

Trees
Expressions and Grammar Parsing

Search Trees

Binary Tree Traversals

Preorder
→ visit node, then go left, then go right

Inorder
→ go left, then visit node then go right

Postorder: Depth First
→ go left, then go right, then visit node

Breadth First
→ level 0, then level 1, then level 2, etc.

René Hexel Hierarchical Collections: Trees

Trees
Expressions and Grammar Parsing

Search Trees

Equivalence between Traversal and Notation

Preorder, Inorder, and Postorder
→ correspond with Prefix, Infix, and Postfix notations of an

expression
Infix: 3 + 5
Prefix = Polish notation (PN): +(3,5)
Postfix = reverse Polish notation (RPN): 3 5 +

⇒ use the same generic recursive algorithm!

René Hexel Hierarchical Collections: Trees

Trees
Expressions and Grammar Parsing

Search Trees

Prefix Pseudocode

Prefix Evaluation
String prefix(node)
{

if (node == NULL)
return "";

else
return node +

prefix(node.left) +
prefix(node.right);

}

René Hexel Hierarchical Collections: Trees

Trees
Expressions and Grammar Parsing

Search Trees

Infix Pseudocode

Infix Evaluation
String infix(node)
{

if (node == NULL)
return "";

else
return infix(node.left) +

node +
infix(node.right);

}

René Hexel Hierarchical Collections: Trees

Trees
Expressions and Grammar Parsing

Search Trees

Postfix Pseudocode

Postfix Evaluation
String postfix(node)
{

if (node == NULL)
return "";

else
return postfix(node.left) +

postfix(node.right) +
node;

}

René Hexel Hierarchical Collections: Trees

Trees
Expressions and Grammar Parsing

Search Trees

Grammar Parsing

Infix Expressions
Expression = Term { + | - Term }
Term = Factor { * | / Factor }
Factor = number | (Expression)

Represents standard maths formulas
e.g.: 3 + 4 ∗ (5− (6/7))

can be used to create a parse tree!
→ recursive descent parsing

René Hexel Hierarchical Collections: Trees

Trees
Expressions and Grammar Parsing

Search Trees

Recursive Descent Parsing

Expression = Term { + | - Term }
Expression()
{
Term();
while (token == ’+’||

token == ’-’)
{

get_token();
Term();

}
}

René Hexel Hierarchical Collections: Trees

Trees
Expressions and Grammar Parsing

Search Trees

Recursive Descent Parsing

Term = Factor { * | / Factor }
Term()
{
Factor();
while (token == ’*’||

token == ’/’)
{

get_token();
Factor();

}
}

René Hexel Hierarchical Collections: Trees

Trees
Expressions and Grammar Parsing

Search Trees

Recursive Descent Parsing

Factor = number | (Expression)
Factor() {

switch (token) {
case number: get_token(); break;
case ’(’: get_token(); Expression();

if (token != ’)’)
error("No closing ’)’");

get_token();
break;

default:
error("Error ’%s’\n", token);

}
}

René Hexel Hierarchical Collections: Trees

Trees
Expressions and Grammar Parsing

Search Trees

Binary Search Tree

“Sorted Array” stored in a
tree

left to right order
e.g. A B C

A

B C

René Hexel Hierarchical Collections: Trees

Trees
Expressions and Grammar Parsing

Search Trees

Binary Tree Search

1 Start at the root node n
searching for an object s

2 if s == n then we are finished
3 if s < n then n := left child
4 if s > n then n := right child
5 repeat from step 2 until finished

. . . either s has been found

. . . a leaf node has been reached, but s has not been found

René Hexel Hierarchical Collections: Trees

Trees
Expressions and Grammar Parsing

Search Trees

Recursive Pseudocode

Recursive Pseudocode
search(s, node)
{

if node == nil
return nil; // not in tree

else if s == node->content
return node; // found

else if s < node->content
return search(s, node->left);

else // s > node
return search(s, node->right);

}

René Hexel Hierarchical Collections: Trees

Trees
Expressions and Grammar Parsing

Search Trees

Search Tree Complexity

Depends on the Balance of the Tree
Unbalanced Tree:

O(n)
Balanced Tree

O(log n)
equivalent to Binary Search in Sorted Array

René Hexel Hierarchical Collections: Trees

Trees
Expressions and Grammar Parsing

Search Trees

Balanced Trees

Balanced Tree
Difference in height of both subtrees of any node in the tree
is either 0 or 1

Unbalanced Tree:
Difference of subtree heights > 1

Perfectly Balanced Tree
Balanced Tree with leaves only on one or two levels

René Hexel Hierarchical Collections: Trees

Trees
Expressions and Grammar Parsing

Search Trees

Creating a Search Tree

1 Incrementally
Sort in a new Node n

2 Search if n already exists
Finished if n exists (do nothing)
Otherwise add n as the left or right child of the last node
searched (depending on whether n was smaller or bigger
than the last node)

3 Produces an ad-hoc Search Tree
Not guaranteed to be balanced!

René Hexel Hierarchical Collections: Trees

Trees
Expressions and Grammar Parsing

Search Trees

Balancing a Complete Tree

1 Write out the Search Tree in sorted order
e.g. in alphabetical order

→ write to sorted array/list
→ write to file

2 Read back the sorted data, creating a Balanced Tree
Recursively create Left Children, Root, then Right Children
for each subtree
Creates a perfectly balanced tree!

René Hexel Hierarchical Collections: Trees

Trees
Expressions and Grammar Parsing

Search Trees

Balancing ReadTree Algorithm

Balancing ReadTree Algorithm
BTNode *readTree(BufferedReader *file, int n)
{

if (n <= 0) return nil;

BTNode *node = [BTNode new];
[node setLeft: readTree(file, n/2)];
[node setValue: [file readLine]];
[node setRight: readTree(file,

(n-1)/2)];

return node;
}

René Hexel Hierarchical Collections: Trees

Trees
Expressions and Grammar Parsing

Search Trees

Self-Balancing Trees

Problem: writing out and reading back
→ takes time
→ requires space

Read back the sorted data, creating a Balanced Tree
Sorted data are available in 3 places (original tree, file/array,
and final, balanced tree)

Alternative: keep the tree balanced
insertion operation needs to check if tree is still balanced
re-balance if adding a node breaks balance

René Hexel Hierarchical Collections: Trees

Trees
Expressions and Grammar Parsing

Search Trees

Red-Black Tree

1 Every node is either red or black
2 The root node is black
3 All leaves are black

leaves are dummy empty nodes at the end of the tree
4 Both children of red nodes are black
5 All paths from any given node to its descendant leaves

contain the same number of black nodes

René Hexel Hierarchical Collections: Trees

Trees
Expressions and Grammar Parsing

Search Trees

Red-Black Tree Definitions

Grandparent
the parent of the parent node

Uncle
the “other child” of the grandparent, i.e.

if (parent == grandparent.left)
uncle = grandparent.right)

else // if (parent != grandparent.left)
uncle = grandparent.left)

Both children of red nodes are black
All paths from any given node to its descendant leaves
contain the same number of black nodes

René Hexel Hierarchical Collections: Trees

Trees
Expressions and Grammar Parsing

Search Trees

Red-Black Tree Insertion

Add node as in a binary search tree
→ default colour is red

Case 1: new node n is root
→ repaint as black

Case 2: parent p of n is black
⇒ everything is fine!

René Hexel Hierarchical Collections: Trees

Trees
Expressions and Grammar Parsing

Search Trees

Red-Black Tree Insertion

Case 3: both parent and uncle are red
→ repaint parent and uncle as black
→ repaint grandparent as red (property 5)

may now violate property 2 (root is black) or property 4 (both
children of red nodes are black)
⇒ therefore recursively restart with case 1 on the
grandparent

René Hexel Hierarchical Collections: Trees

Trees
Expressions and Grammar Parsing

Search Trees

Red-Black Tree Insertion

Case 4: parent p of new node n is red, uncle u is black
grandparent g
if n == p.right && p == g.left
→ perform left rotation to switch roles of n and p

if n == p.left && p == g.right
→ perform right rotation to switch roles of n and p

→ continue with Case 5!

René Hexel Hierarchical Collections: Trees

Trees
Expressions and Grammar Parsing

Search Trees

Red-Black Tree Insertion

Case 5: parent p of new node n is red, uncle u is black
switch the colours of p and grandparent g
if n == p.left && p == g.left
→ perform right rotation on g

if n == p.right && p == g.right
→ perform left rotation on g

⇒ Terminal manoeuvre, no further repaint needed!

René Hexel Hierarchical Collections: Trees

Trees
Expressions and Grammar Parsing

Search Trees

Strings in Search Trees

Storing long strings in binary search trees can be
inefficient

Requires full string (key) comparisons for every node
→ O(n log n) search complexity if average string length

approximates the number of nodes n
Trie

Retrieval of keys while traversing a search tree

René Hexel Hierarchical Collections: Trees

Trees
Expressions and Grammar Parsing

Search Trees

Tries

trees that store the
individual characters of the
key strings
common prefixes share the
same path through the
search tree, e.g.

on
off
often

o

f n

f ten

René Hexel Hierarchical Collections: Trees

Trees
Expressions and Grammar Parsing

Search Trees

Trie Efficiency

Time and Space efficiency
→ large number of long words

Efficient for spell checking
→ common prefixes determine tree height

English words do not share long common prefixes
5-7 node visits, regardless of whether 10,000 or 100,000
words are stored!
compare with 13 = log2 10000 or 17 = log2 100000 node
visits for optimal binary search trees!

René Hexel Hierarchical Collections: Trees

Trees
Expressions and Grammar Parsing

Search Trees

Trie Challenges

Prefix detection
how to distinguish words such as “are” and “area”

→ requires a separate end of word mark
Efficient search requires O(1) character search in nodes
→ requires (array) space for each node, indexed by char

26+1 pointers for A-Z (plus end of word mark)
127+1 pointers for ASCII
65536 pointers for UTF-16
4294967296 pointers for UTF-32 (full Unicode)

Suffixes are different node types
→ makes trie handling code more complex

René Hexel Hierarchical Collections: Trees

	Trees
	Expressions and Grammar Parsing
	Search Trees

