Trees
Expressions and Grammar Parsing
Search Trees

Hierarchical Collections: Trees
25011CT/7421ICTNathan

René Hexel

School of Information and Communication Technology
Griffith University

Semester 1, 2012

René Hexel Hierarchical Collections: Trees

Outline

0 Trees

e Expressions and Grammar Parsing

e Search Trees

René Hexel Hierarchical Collections: Trees

Trees

Hierarchical Collections

@ Tree definition
@ Types of Trees

@ Binary Expressions

@ expression trees
e tree traversals: pre-, in-, postorder

@ Examples

e generating Postfix
@ parsing

René Hexel Hierarchical Collections: Trees

Trees

Tree Definition

@ Each node has at most

one predecessor
o Parent

@ Many Successors
o Children

@ Siblings
@ nodes sharing the same

parent (eg, Do and Dj)

René Hexel Hierarchical Collections: Trees

Trees

Tree Definition (2)

@ Topmost Node
@ root
@ Childred, children of
children, ...
e Descendants
@ Successors
= All nodes are successors
of root

René Hexel

Hierarchical Collections: Trees

Trees

Tree Definition (3)

@ Leaf Nodes

@ nodes without
successors
— Dz and Dy

@ Frontier
o set of all leaf nodes

René Hexel

Hierarchical Collections: Trees

Trees

Tree Definition (4)

@ Interior Nodes

@ nodes with at least one
successor
— Dy and D>

Dy

@ Ancestors D>

e immediate or indirect
predecessors
— Dy is an ancestor of D5,
D3, and D,

René Hexel Hierarchical Collections: Trees

Trees

Tree Definition (5)

@ Levels are numbered
from O

— level 0 is always the root
@ This tree has 3 Levels

o Level 0: D,
e Level 1: D, and Ds
o Level 2: D,

René Hexel

D;

Hierarchical Collections: Trees

Lev.0

Lev.1

Lev.2

Trees

Binary Trees

@ Binary Trees

— allow at most two
children per node

@ Generic Trees

e allow any number of
children per node

René Hexel

D;

Hierarchical Collections: Trees

Trees

Generic Trees

@ Order of the Tree
e maximum number of
children allowed for any
given node
— e.g. Order 3

René Hexel

D;

Hierarchical Collections: Trees

Trees

Tree Applications

@ Parsing Languages

o Computer Languages, Mathematical Formulae
e Natural Languages

@ Searchable Data Structures

e Databases (e.g., B-Trees)
e Heaps and Balanced Trees

@ Sorting and organising Data

René Hexel Hierarchical Collections: Trees

Expressions and Grammar Parsing

Parsers

@ Read in Expressions
— (2+3)*5
@ Check Syntactical Correctness
e is everything where it should be?
@ Create Parse Tree

e evaluator checks semantic meaning and processes the
data in the Tree to produce meaningful output

René Hexel Hierarchical Collections: Trees

Expressions and Grammar Parsing

Binary Expressions

@ Stored in Binary Trees
— 345

@ Numbers
o leaf nodes

@ Operators
e interior nodes

@ Operands

@ contained in a subtree of
the expression

René Hexel

Hierarchical Collections: Trees

Trees
Expressions and Grammar Parsing
Search Trees

Example Expression

3x4+5 *

René Hexel Hierarchical Collections: Trees

Expressions and Grammar Parsing

Operator Precedence

3% (4+5)

@ The higherthe
precedence, the lowerin
the tree

e — overridden by
parentheses

René Hexel

Hierarchical Collections: Trees

Expressions and Grammar Parsing

Operator Precedence (2)

3+4+5

@ if operators have equal
precedence, the ones on +
the left appear lower in the
tree when parsed from left
to right!

René Hexel Hierarchical Collections: Trees

Expressions and Grammar Parsing

Evaluating an Expression Tree

@ Begin at the root Node

@ |f a number, return it, otherwise
@ Run the operator with the results of

e evaluating its left and right subtrees, and
e return this value

René Hexel Hierarchical Collections: Trees

Expressions and Grammar Parsing

Evaluating Example

3%x(4+5)

Evaluation starts at the top
* IS an operator

o = evaluate left and right
subtrees first!

3 is a number
e = return 3
@ + is an operator

e = evaluate left and right
subtrees first!

4 is a number
e = return 4
5is a number
e = return5

René Hexel

27

4

Hierarchical Collections: Trees

Expressions and Grammar Parsing

Evaluation Pseudocode

Pseudo code for tree evaluation

evaluate (node)

{

if node is a number
return number;

else

{
left = evaluate (node.left);
right = evaluate (node.right);
return compute (node, left, right);

René Hexel Hierarchical Collections: Trees

Expressions and Grammar Parsing

Binary Tree Traversals

@ Preorder

— visit node, then go left, then go right
@ Inorder

— go left, then visit node then go right
@ Postorder: Depth First

— go left, then go right, then visit node
@ Breadth First

— level 0, then level 1, then level 2, etc.

René Hexel Hierarchical Collections: Trees

Expressions and Grammar Parsing

Equivalence between Traversal and Notation

@ Preorder, Inorder, and Postorder
— correspond with Prefix, Infix, and Postfix notations of an

expression
@ Infix: 3 + 5
@ Prefix = Polish notation (PN): +(3,5)
@ Postfix = reverse Polish notation (RPN): 35 +

= use the same generic recursive algorithm!

René Hexel Hierarchical Collections: Trees

Expressions and Grammar Parsing

Prefix Pseudocode

Prefix Evaluation

String prefix(node)
{
if (node == NULL)
return "";
else
return node +
prefix (node.left) +
prefix (node.right);
}

René Hexel Hierarchical Collections: Trees

Expressions and Grammar Parsing

Infix Pseudocode

Infix Evaluation

String infix (node)
{
if (node == NULL)
return "";
else
return infix (node.left) +
node +
infix (node.right);
}

René Hexel Hierarchical Collections: Trees

Expressions and Grammar Parsing

Postfix Pseudocode

Postfix Evaluation

String postfix (node)
{
if (node == NULL)
return "";
else
return postfix (node.left) +
postfix (node.right) +
node;
}

René Hexel Hierarchical Collections: Trees

Expressions and Grammar Parsing

Grammar Parsing

Infix Expressions

Expression = Term { + | - Term }
Term = Factor { * | / Factor }
Factor = number | (Expression)

@ Represents standard maths formulas
@ eg.:3+4x(5—(6/7))
@ can be used to create a parse tree!
— recursive descent parsing

René Hexel Hierarchical Collections: Trees

Expressions and Grammar Parsing

Recursive Descent Parsing

Expression = Term { + | - Term }

Expression ()
{
Term () ;
while (token == 7+’ ||
token == ’"-")
{
get_token() ;
Term () ;
}
}

René Hexel Hierarchical Collections: Trees

Expressions and Grammar Parsing

Recursive Descent Parsing

Term = Factor { * | / Factor }

Term ()
{
Factor () ;
while (token == "’ |
token == " /")
{

get_token() ;
Factor () ;

René Hexel Hierarchical Collections: Trees

Expressions and Grammar Parsing

Recursive Descent Parsing

Factor = number | (Expression)

Factor () {
switch (token) {
case number: get_token(); break;
case '’ (’: get_token (); Expression();
if (token !'= 7)")
error ("No closing ")’ ");
get_token () ;
break;

default:

error ("Error ’'%s’\n", token);

René Hexel Hierarchical Collections: Trees

Search Trees

Binary Search Tree

@ “Sorted Array” stored in a
tree

o left to right order
eeg.ABC

René Hexel

Hierarchical Collections: Trees

Search Trees

Binary Tree Search

0000 ©

Start at the root node n
e searching for an object s

if s == nthen we are finished
if s < nthen n := left child
if s > nthen n := right child

repeat from step 2 until finished

@ ...either s has been found
o ...aleaf node has been reached, but s has not been found

René Hexel Hierarchical Collections: Trees

Search Trees

Recursive Pseudocode

Recursive Pseudocode

search (s, node)

{

if node == nil

return nil; // not in tree
else if s == node-—>content

return node; // found

elseif s < node->content
return search (s, node->left);
else // s > node
return search (s, node->right);

René Hexel Hierarchical Collections: Trees

Search Trees

Search Tree Complexity

@ Depends on the Balance of the Tree
@ Unbalanced Tree:
e O(n)
@ Balanced Tree
e O(logn)
e equivalent to Binary Search in Sorted Array

René Hexel Hierarchical Collections: Trees

Search Trees

Balanced Trees

@ Balanced Tree

e Difference in height of both subtrees of any node in the tree
is either 0 or 1

@ Unbalanced Tree:
e Difference of subtree heights > 1
@ Perfectly Balanced Tree
e Balanced Tree with leaves only on one or two levels

René Hexel Hierarchical Collections: Trees

Search Trees

Creating a Search Tree

@ Incrementally
e Sortin a new Node n
© Search if n already exists

e Finished if n exists (do nothing)

o Otherwise add n as the left or right child of the last node
searched (depending on whether n was smaller or bigger
than the last node)

© Produces an ad-hoc Search Tree
e Not guaranteed to be balanced!

René Hexel Hierarchical Collections: Trees

Search Trees

Balancing a Complete Tree

@ Write out the Search Tree in sorted order
@ e.g. in alphabetical order
— write to sorted array/list
— write to file
© Read back the sorted data, creating a Balanced Tree
e Recursively create Left Children, Root, then Right Children
for each subtree
o Creates a perfectly balanced tree!

René Hexel Hierarchical Collections: Trees

Search Trees

Balancing ReadTree Algorithm

Balancing ReadTree Algorithm

BTNode *readTree (BufferedReader xfile, intn)
{

if (n <= 0) return nil;

BTNode *node = [BTNode hew];
[node setlLeft: readTree(file, n/2)1]1;
node setValue: [file readLine]];

[
[node setRight: readTree (file,
]

4

(n-1)/2)

return node;

René Hexel Hierarchical Collections: Trees

Search Trees

Self-Balancing Trees

@ Problem: writing out and reading back

— takes time
— requires space
o Read back the sorted data, creating a Balanced Tree

@ Sorted data are available in 3 places (original tree, file/array,
and final, balanced tree)

@ Alternative: keep the tree balanced

@ insertion operation needs to check if tree is still balanced
e re-balance if adding a node breaks balance

René Hexel Hierarchical Collections: Trees

Search Trees

Red-Black Tree

@ Every node is either red or black

© The root node is black
© All leaves are black
e leaves are dummy empty nodes at the end of the tree

@ Both children of red nodes are black

© All paths from any given node to its descendant leaves
contain the same number of black nodes

René Hexel Hierarchical Collections: Trees

Search Trees

Red-Black Tree Definitions

@ Grandparent
e the parent of the parent node
@ Uncle
e the “other child” of the grandparent, i.e.

@ if (parent == grandparent.left)

uncle = grandparent.right)
@ else //if (parent = grandparent.left)

uncle = grandparent.left)

@ Both children of red nodes are black

@ All paths from any given node to its descendant leaves
contain the same number of black nodes

René Hexel Hierarchical Collections: Trees

Search Trees

Red-Black Tree Insertion

@ Add node as in a binary search tree
— default colour is red

@ Case 1: new node nis root
— repaint as black

@ Case 2: parent p of nis black
= everything is fine!

René Hexel Hierarchical Collections: Trees

Search Trees

Red-Black Tree Insertion

@ Case 3: both parent and uncle are red
— repaint parent and uncle as black
— repaint grandparent as red (property 5)
@ may now violate property 2 (root is black) or property 4 (both
children of red nodes are black)
= therefore recursively restart with case 1 on the
grandparent

René Hexel Hierarchical Collections: Trees

Search Trees

Red-Black Tree Insertion

@ Case 4: parent p of new node nis red, uncle u is black
e grandparent g

@ if n == p.right && p == g.left
— perform left rotation to switch roles of nand p
@ if n == p.left && p == g.right

— perform right rotation to switch roles of nand p
— continue with Case 5!

René Hexel Hierarchical Collections: Trees

Search Trees

Red-Black Tree Insertion

@ Case 5: parent p of new node n s red, uncle u is black
e switch the colours of p and grandparent g

@ if n == p.left && p == g.left
— perform right rotation on g
@ if n == p.right && p == g.right

— perform left rotation on g
= Terminal manoeuvre, no further repaint needed!

René Hexel Hierarchical Collections: Trees

Search Trees

Strings in Search Trees

@ Storing long strings in binary search trees can be
inefficient

e Requires full string (key) comparisons for every node
— O(nlog n) search complexity if average string length
approximates the number of nodes n

@ Trie
o Retrieval of keys while traversing a search tree

René Hexel Hierarchical Collections: Trees

Search Trees

Tries

@ trees that store the
individual characters of the
key strings

@ common prefixes share the
same path through the
search tree, e.g.

@ On
o off
e often

René Hexel

ten

Hierarchical Collections: Trees

Search Trees

Trie Efficiency

@ Time and Space efficiency
— large number of long words
@ Efficient for spell checking

— common prefixes determine tree height
e English words do not share long common prefixes
@ 5-7 node visits, regardless of whether 10,000 or 100,000
words are stored!
@ compare with 13 = log, 10000 or 17 = log, 100000 node
visits for optimal binary search trees!

René Hexel Hierarchical Collections: Trees

Search Trees

Trie Challenges

@ Prefix detection
e how to distinguish words such as “are” and “area”
— requires a separate end of word mark
@ Efficient search requires O(1) character search in nodes
— requires (array) space for each node, indexed by char

26+1 pointers for A-Z (plus end of word mark)
127+1 pointers for ASCII

65536 pointers for UTF-16

4294967296 pointers for UTF-32 (full Unicode)

@ Suffixes are different node types
— makes trie handling code more complex

René Hexel Hierarchical Collections: Trees

	Trees
	Expressions and Grammar Parsing
	Search Trees

