
OpenBSD Filesystem Howto
$Revision: 1.13 $

Sebastien Bombal
Laurent Corbes
$Date: 2004/03/07 15:48:42 $.

Copyright c© 1991-2004 Laurent Corbes and Sebastien Bombal
Permission is granted to make and distribute verbatim copies of this manual provided the
copyright notice and this permission notice are preserved on all copies.
Permission is granted to copy and distribute modified versions of this manual under the con-
ditions for verbatim copying, provided that the entire resulting derived work is distributed
under the terms of a permission notice identical to this one.
Permission is granted to copy and distribute translations of this manual into another lan-
guage, under the above conditions for modified versions, except that this permission notice
may be stated in a translation approved by the Free Software Foundation.
$Id: filesystem-howto.texi,v 1.13 2004/03/07 15:48:42 caf Exp $

i

Table of Contents

1 Introduction . 1
1.1 Introducing OpenBSD . 1
1.2 Credits . 1

2 Internal filesystem structures 2
2.1 OpenBSD vfs interface . 2

3 Implementation . 5
3.1 lower layer structures . 5
3.2 lower layer code . 9
3.3 vfs interface integration . 11

4 Conclusion . 14

Chapter 1: Introduction 1

1 Introduction

This howto is designed to be a guide for helping someone who wanted to integrate or design
a new filesystem into OpenBSD. It is based on personal experiences in the OpenBSD kernel
development. Because it is not done by the OpenBSD team. This document may contains
errors and future code of OpenBSD may differ from the one presented. This work is based
over a 3.4 version from November 2003.

Before reading this Howto you must at least have the minimum knowledge about a filesys-
tem, what it intend to do, . . . This will normally be the case because if you read this Howto
you certainly want to introduce the support for a new filesystem in OpenBSD.

If you have any questions about this document feel free to email us, Laurent Corbes
<caf@glot.net> and Sebastien Bombal <acide@bombal.org>.

The master copy of this document is located at http://glot.net/openbsd-filesystem-howto/.

1.1 Introducing OpenBSD

The OpenBSD project produces a FREE, multi-platform 4.4BSD-based UNIX-like operat-
ing system. Our efforts emphasize portability, standardization, correctness, proactive secu-
rity and integrated cryptography. OpenBSD supports binary emulation of most programs
from SVR4 (Solaris), FreeBSD, Linux, BSD/OS, SunOS and HP-UX.

OpenBSD is a server oriented Os intend to high security level users. With is own great
fire-walling tool, pf as a very reliable Os gateway. It is also great for running untrusted
programs like user cgis in a web server. It contains stack protection features that make the
gain of privileges using buffer overflows very difficult.

1.2 Credits

All these people helped us (directly or not) to produce this howto.
• OpenBSD team
• EPITA SRS 2003 specialisation students
• Marc Espie <espie@openbsd.org>

http://glot.net/openbsd-filesystem-howto/
http://www.openbsd.org/
http://www.openbsd.org/security.html
http://www.openbsd.org/security.html
http://www.openbsd.org/crypto.html
http://www.openbsd.org/faq/pf/
http://www.srs.epita.net/

Chapter 2: Internal filesystem structures 2

2 Internal filesystem structures

This chapter will describe the internal structures you must know if you plan to add a new
filesystem into OpenBSD kernel. As you know OpenBSD is based upon netBSD now. The
filesystem interface has not yet evolved since netBSD fork so it can be considered very old.
The interface is an implementation of the vfs interface definition. If you don’t know vfs and
others filesystems interfaces we recommend that you read Toward a Compatible Filesystem
Interface that explain how this interface was designed and why. It’s a documentation done
by Berkeley BSD team comparing Unix filesystem interfaces and explaining why they used
vfs into 4.4BSD.

2.1 OpenBSD vfs interface

The goal of vfs is to have a very clear separation between an independent filesystem and -
dependent data structures and operations. This is done by using two layers, an independent
filesystem one and an independent one. Surprising ! When adding a new filesystem in a
vfs interface we simply needed to do the lower layer, the filesystem dependent routines.
This low level code is then plugged into the vfs upper layer. The advantage is that in the
lower layer you only need to code basic filesystem operations (check filesystem superbloc
informations, write a file, read a file, ...). All the very complicated functions, in particular
namei and lookup, does not needed to be rewrite.

The code of the upper layer is located in all the vfs * files in kern/. the important structures
definitions are in sys/namei.h and sys/vnode*.h. Just take a look at these files if you want
to know how the kernel does the abstraction needed. A Compatible Filesystem Interface will
also describes these structures that are the base of the vfs interface. The most important
thing to remember is that the upper level only manipulates vnodes (virtual inodes) instead
of inodes and blocks in the lower layer. The two layers communicates using vectors of
operations that defined each filesystem. This is the main concept of vfs.

We only needed to know how work the interface of vfs toward a filesystem. Taking a look to
sys/vnode.h, we can see a list of filesystem types. These tags are used in the vnode struct
for knowing the type of filesystem we must use in the lower layer :

/*
* Vnode tag types.
* These are for the benefit of external programs only (e.g., pstat)
* and should NEVER be inspected by the kernel.
*
* Note that v_tag is actually used to tell MFS from FFS, and EXT2FS from
* the rest, so don’t believe the above comment!
*/
enum vtagtype {

VT_NON, VT_UFS, VT_NFS, VT_MFS, VT_MSDOSFS, VT_LFS, VT_LOFS, VT_FDESC,
VT_PORTAL, VT_NULL, VT_UMAP, VT_KERNFS, VT_PROCFS, VT_AFS, VT_ISOFS,
VT_UNION, VT_ADOSFS, VT_EXT2FS, VT_NCPFS, VT_VFS, VT_XFS

http://docs.freebsd.org/44doc/papers/fsinterface.html
http://docs.freebsd.org/44doc/papers/fsinterface.html

Chapter 2: Internal filesystem structures 3

};
...
struct vnode {
...

enum vtagtype v_tag; /* type of underlying
data */

...
};

The next file is sys/malloc.h. It contains the memory type information, you must provide
a type for your new fs that will be used later :
/*
* Types of memory to be allocated
*/
#define M_FREE 0 /* should be on free list */
...
#define M_EXT2FSNODE 72 /* EXT2FS vnode private part */
...

#define INITKMEMNAMES { \
"free", /* 0 M_FREE */ \

...
"EXT2FS node", /* 72 M_EXT2FSNODE */ \

...
}

The last file for the interface is kern/vfs conf.c. That file contains the global configura-
tion of the vfs interface lower layer. The first thing is including external function definitions
After that the array of functions pointers are built for the use of the filesystem. These structs
are the vfsops (vfs operations; operations needed to initialise, mount, umount, sync, ...) and
the vnodeops (virtual inode operations; operations that access inodes of the filesystem from
the vnode given by the system like read, write, open, readlink, ...).
#ifdef FFS
#include <ufs/ufs/quota.h>
#include <ufs/ufs/inode.h>
#include <ufs/ffs/ffs_extern.h>
#endif

#ifdef EXT2FS
#include <ufs/ext2fs/ext2fs_extern.h>
#endif
...

/*
* Set up the filesystem operations for vnodes.
* The types are defined in mount.h.
*/

Chapter 2: Internal filesystem structures 4

#ifdef FFS
extern struct vfsops ffs_vfsops;
#endif
...

/*
* Set up the filesystem operations for vnodes.
*/
static struct vfsconf vfsconflist[] = {

/* Fast Filesystem */
#ifdef FFS

{ &ffs_vfsops, MOUNT_FFS, 1, 0, MNT_LOCAL, ffs_mountroot, NULL },
#endif
...
}

/*
* vfs_opv_descs enumerates the list of vnode classes, each with it’s own
* vnode operation vector. It is consulted at system boot to build operation
* vectors. It is NULL terminated.
*/
extern struct vnodeopv_desc ffs_vnodeop_opv_desc;
extern struct vnodeopv_desc ffs_specop_opv_desc;
extern struct vnodeopv_desc ffs_fifoop_opv_desc;
...
struct vnodeopv_desc *vfs_opv_descs[] = {
#ifdef FFS

&ffs_vnodeop_opv_desc,
&ffs_specop_opv_desc,

#ifdef FIFO
&ffs_fifoop_opv_desc,

#endif
#endif

As you can see the upper-lower layers interface is very clear and easy to understand. This
was one of the goals of the vfs interface and, in the case of OpenBSD, it’s a good imple-
mentation.

Chapter 3: Implementation 5

3 Implementation

Now it’s time to do the job. We will make the minimal lower layer code needed to handle
a new filesystem. We will not code the filesystem for you but just do the templates needed
for the interface and explain what the vfs upper code expect for these functions.

3.1 lower layer structures

Let’s first explain the structures you will have to use. As you have see, you must have a
vector of vfs operations. This vector is defined in sys/mount.h. This is a bit surprising at
first because it’s clearly not the place where it would logically be found, but the definition
is used in the code of mount utilities. So I think they have put this code here for facilities
instead of sys/vfsops.h for example. The structure is as follows. Comments included are
not in the original file but here to explain when these functions are called.

/*
* Operations supported on mounted file system.
*/

struct vfsops {
// this is simply the function called when the filesystem is mount
// by the sys_mount syscall

int (*vfs_mount)(struct mount *mp, const char *path,
void *data,
struct nameidata *ndp, struct proc
*p);

// nothing to do in most cases but was designed to make the filesystem
// operational

int (*vfs_start)(struct mount *mp, int flags,
struct proc *p);

// inverse of mount, called by sys_umount
int (*vfs_unmount)(struct mount *mp, int mntflags,

struct proc *p);
// you must return the root inode of the filesystem

int (*vfs_root)(struct mount *mp, struct vnode **vpp);
// here you must do operations in relation with the quota
// make quota on, off, setting quotas, getquota, ...

int (*vfs_quotactl)(struct mount *mp, int cmds, uid_t uid,
caddr_t arg, struct proc *p);

// get the filesystem statistics
int (*vfs_statfs)(struct mount *mp, struct statfs *sbp,

struct proc *p);
// sync the filesystem, called by sys_sync
// copy the memory buffers to the storage master
// this operation must be done when halting computer

Chapter 3: Implementation 6

int (*vfs_sync)(struct mount *mp, int waitfor,
struct ucred *cred, struct proc
*p);

// look up at a dinode number and find the proper vnode
int (*vfs_vget)(struct mount *mp, ino_t ino,

struct vnode **vpp);
// file handle to vnode
// must return the vnode corresponding to the file handle

int (*vfs_fhtovp)(struct mount *mp, struct fid *fhp,
struct vnode **vpp);

// vnode pointer to file handle
// the invert

int (*vfs_vptofh)(struct vnode *vp, struct fid *fhp);
// initialisation of the filesystem
// called at boot up. you must put here global initialisations of the
// filesystem if needed.

int (*vfs_init)(struct vfsconf *);
// if you have sysctl controling the filesystem operations
// or working modes the add them here

int (*vfs_sysctl)(int *, u_int, void *, size_t *, void *,
size_t, struct proc *);

// in case of an exported filesystem (probably nfs) you check here if
// the remote user has the rights and allow the filesystem export

int (*vfs_checkexp)(struct mount *mp, struct mbuf *nam,
int *extflagsp,
struct ucred **credanonp);

// manage acls on filesystem (extended attributes)
// this function enables, starts, stops and disables extended attributes
// features of the filesystem

int (*vfs_extattrctl)(struct mount *mp, int cmd,
struct vnode *filename_vp,
int attrnamespace, const char *attrname,
struct proc *p);

};

Even if the comments are clear we will explain what happens and when these functions are
useful.

Let’s began with the beginning, vfs init() is called at boot up and is designed to be used
for global filesystem initialisations. The work done here is global to all mounted filesystem
and you must not put code related to a particular mount instance of you filesystem here.
Like in the ufs implementation you can ensure that the work is done only one time by
putting a static int and checking it’s value at the beginning. The ufs after initialise global
hash structures and call ufs quota init() that does the same job for quota subsystem.

After that the normal use of a filesystem is to mount a device. The sys mount() function
basically does 3 things; verify that the wanted mount device is a block device and that it
is not already mounted (OpenBSD does not support multiple mounts of the same device);

Chapter 3: Implementation 7

initialise per mount point structures; verify that the pointed device is a good filesystem
(reading superbloc, verify magic numbers, verify that the filesystem is clean, additional work
depending of your filesystem and assure the next operations that are a correct filesystem).
Once you have properly returned vfs upper layer code supposes that you have all the
information needed to read and write to your filesystem.

Others functions are very easy to write with the above comments most of the time. If
you don’t understand what you need to do the more complete filesystem model in OpenBSD
is ufs/ffs. In most cases it is very difficult to understand because it is a huge piece of code.
I personally prefer the ext2fs implementation.

The other type of operation is the vnops (vnode operations). All these operations are
related to vnode. The declaration of these vnops is a little bit more tricky than vfsops
because for speed it’s an association structure composed of two pointers. The operations
are described in the file vnode.h. The first structure is vnodeopv desc (vnode operation
vector description) :
/*
* This structure is used to configure the new vnodeops vector.
*/
struct vnodeopv_entry_desc {

struct vnodeop_desc *opve_op; /* which operation this is */
int (*opve_impl)(void *); /* code implementing this

operation */
};
struct vnodeopv_desc {

/* ptr to the ptr to the vector where op should go */
int (***opv_desc_vector_p)(void *);
struct vnodeopv_entry_desc *opv_desc_ops; /* null terminated

list */
};

This structure is composed of a struct that lists all the operations we can do on vnodes. The
list is an association of a vnodeop desc (that describes one type of vnode operation) and a
function pointer to the operation associated. This vector must be filled by each filesystem
and all the operation supported must be filled in.
/*
* This structure describes the vnode operation taking place.
*/
struct vnodeop_desc {

int vdesc_offset; /* offset in vector--first for
speed */

char *vdesc_name; /* a readable name for debugging */
int vdesc_flags; /* VDESC_* flags */

/*
* These ops are used by bypass routines to map and locate arguments.
* Creds and procs are not needed in bypass routines, but sometimes

Chapter 3: Implementation 8

* they are useful to (for example) to transport layers.
* Nameidata is useful because it has a cred in it.
*/
int *vdesc_vp_offsets; /* list ended by VDESC_NO_OFFSET */
int vdesc_vpp_offset; /* return vpp location */
int vdesc_cred_offset; /* cred location, if any */
int vdesc_proc_offset; /* proc location, if any */
int vdesc_componentname_offset; /* if any */
/*
* Finally, we’ve got a list of private data (about each operation)
* for each transport layer. (Support to manage this list is not
* yet part of BSD.)
*/
caddr_t *vdesc_transports;

};

All the base operations needed are already defined in vnode if.h and vnode if.c as these are
common for all the filesystem. Only the associated pointer is different depending on the
implementation. This example shows the description of the lookup operation :
int vop_lookup_vp_offsets[] = {

VOPARG_OFFSETOF(struct vop_lookup_args,a_dvp),
VDESC_NO_OFFSET

};
struct vnodeop_desc vop_lookup_desc = {

0,
"vop_lookup",
0,
vop_lookup_vp_offsets,
VOPARG_OFFSETOF(struct vop_lookup_args, a_vpp),
VDESC_NO_OFFSET,
VDESC_NO_OFFSET,
VOPARG_OFFSETOF(struct vop_lookup_args, a_cnp),
NULL,

};

As all these common operations are already defined you don’t really need to understand
how they are defined. But if you make a really new filesystem with new concepts and
vnode operations you must create the corresponding syscalls, vop , and integrate them in
upper layer vfs code. Therefore the important part of vnops declarations is the struct the
system will put to your operations. Because all the operations take a void*, it’s necessary
to get a different structure for all the functions. The following example is the corresponding
structure for lookup:
struct vop_lookup_args {

struct vnodeop_desc *a_desc;
struct vnode *a_dvp;
struct vnode **a_vpp;
struct componentname *a_cnp;

Chapter 3: Implementation 9

};

You now have all the concepts and internal structures needed to make your new filesystem
code.

The description of all vnops can be easily found in ufs,ffs code so it’s not necessary to
put it here.

3.2 lower layer code

This section will guide you through your filesystem code general structure based on the
existing filesystem. The easiest way to create good global filesystem environment is to copy
existing arrangements. Your new filesystem should probably go into the ufs/myfs/ directory
if it’s an Hard Drive filesystem.

The first important file is myfs extern.h. It’s the file that will be included in the vfs
interface so it must contains all the definitions of vfsops, vnops, and others global declara-
tions. These declarations must be inner BEGIN DECLS and END DECLS macros. It
must also contain the declaration as extern of the vnops pointer types. example :
__BEGIN_DECLS

/* myfs_vfsops.c */
int myfs_mountroot(void);
int myfs_mount(struct mount *, const char *, void *,

struct nameidata *, struct proc *);
int myfs_reload(struct mount *, struct ucred *, struct proc *);
...
/* myfs_vnops.c */
int myfs_create(void *);
int myfs_mknod(void *);
int myfs_open(void *);
...
__END_DECLS

extern int (**myfs_vnodeop_p)(void *);

Next comes the vfsops implementation. Most of the time, this is done in myfs vfsops.c but
if you have vfsops that needs a lot of code you can put it into another file like myfs quota.c
for quota subsystem for example. The first thing to do, is to build the vfsops vector
corresponding to what functions you want to call for each corresponding operation. Take
care to add the function you want at the right place otherwise it will never be called at the
correct moment.
// vfs interface operations
struct vfsops myfs_vfsops = {

myfs_mount,
myfs_start,
myfs_unmount,

Chapter 3: Implementation 10

myfs_root,
myfs_quotactl,
myfs_statfs,
myfs_sync,
myfs_vget,
myfs_fhtovp,
myfs_vptofh,
myfs_init,
myfs_sysctl,
myfs_check_export,
vfs_stdextattrctl

};

Once you have the implementation of each vfs operations. There’s no particular problem for
these function once you respect the functions declarations you have done using the correct
structs in parameters. Be careful that the current kernel code is written in K&R C so the
parameters are not written as usual :
int
myfs_foo(arg, bar)

struct vfs_arg* arg;
int bar;

{
...

If you don’t want to implement a particular vfs operation that is not necessary, don’t
hesitate to return an EOPNOTSUPP error so the error will be reported to the user. If on
the other hand, the system want you to make a silly thing that will corrupt your filesystem
simply do a kernel panic. Even if it’s not smart, this way you will not have a corrupted
filesystem and you will be able to easily see the debugging of the kernel and what happened.
This way, if you think it’s a kernel bug, you will be able to contact OpenBSD core team
that will help you finding and debugging the problem.

The last part is the vnops. The work is usually done in myfs vnops.c. Unlike the vfsops
part, we will begin by the implementation of the operations. All the functions have the
same signature (int func (void *)) so be careful to cast the void * to the corresponding
struct before using it. If you don’t do that the kernel will remind you to do it. The above
example is the standard coding style in the OpenBSD kernel. Take care to use ap-> and
not v-> in future treatments.
int
myfs_foo(v)

void *v;
{

struct vop_foo_args /* {
struct vnode *a_dvp;
int a;

} */ *ap = v;

Chapter 3: Implementation 11

printf (‘‘arg->a=%i’’, ap->a);
...

I recommend that you simply make empty functions that always return EOPNOTSUPP
and print “hello myfs foo” for the moment. This way you will have a trace of what is done
each time and you will be able to make the vnops vector quickly. It is done in two steps,
the first step is to make the operations vector, while the second has the operation, vector
and the double pointer needed to have a complete description.
/* Global vfs vnode operations for myfs. */
int (**myfs_vnodeop_p)(void *);
struct vnodeopv_entry_desc myfs_vnodeop_entries[] = {

{ &vop_default_desc, vn_default_error },
{ &vop_lookup_desc, myfs_lookup }, /* lookup */
{ &vop_create_desc, myfs_create }, /* create */
{ &vop_mknod_desc, myfs_mknod }, /* mknod */
{ &vop_open_desc, myfs_open }, /* open */
{ &vop_close_desc, myfs_close }, /* close */
{ &vop_access_desc, myfs_access }, /* access */
{ &vop_getattr_desc, myfs_getattr }, /* getattr */
{ &vop_setattr_desc, myfs_setattr }, /* setattr */
{ &vop_read_desc, myfs_read }, /* read */
{ &vop_write_desc, myfs_write }, /* write */

...
{ NULL, NULL }

};
struct vnodeopv_desc myfs_vnodeop_opv_desc =

{ &myfs_vnodeop_p, myfs_vnodeop_entries };

This is the myfs vnodeop opv desc that will be used by the vfs interface. For vnops
if you do not want to support an operation you simply do not need to include it in the
available entries. The vfs will only call entries put in the descs vector. Otherwise it will
return a EINVALL error.

3.3 vfs interface integration

We will now plug your new filesystem into the vfs kernel interface. This will be simply to
put the corresponding information in files seen at the beginning. The first step will be to
add our new vnode type into sys/vnode.h. In the vtagtype enum we will add our tag type
at the end.

enum vtagtype {

VT_NON, VT_UFS, VT_NFS, VT_MFS, VT_MSDOSFS, VT_LFS, VT_LOFS, VT_FDESC,

VT_PORTAL, VT_NULL, VT_UMAP, VT_KERNFS, VT_PROCFS, VT_AFS, VT_ISOFS,

VT_UNION, VT_ADOSFS, VT_EXT2FS, VT_NCPFS, VT_VFS, VT_XFS, VT_MYFS

};

Next sys/mount.h must be modified to be able to mount your filesystem. This is done by
adding a proper define for the filesystem. This define is important because it’s this name
that will appear to users of the filesystem. After that you must make a new mount myfs

Chapter 3: Implementation 12

program based on mount to be able to mount in user land the filesystem. This program will
simply be a wrapper around mount that specify the options supported by the filesystem
and the type of it (in our case MOUNT MYFS).
#define MOUNT_XFS "xfs" /* xfs */
#define MOUNT_MYFS "myfs" /* MYFS The future best

filesystem in the world */

The next define must be done in sys/malloc.h. It will represent the type of node to malloc
when the system or you want to malloc a myfs vnode. It’s not necessary because you can
for example, use your proper tags but it’s the easiest way to do it. You must use a value
not yet used by another filesystem. For example, 73 should be fine.
/*
* Types of memory to be allocated
*/
#define M_FREE 0 /* should be on free list */
...
#define M_MYFSNODE 73 /* myfs vnode private part */

Now the last part of the integration, the vfs interface configuration. As seeing before the vfs
configuration is done in kern/vfs conf.c. The first thing to do is to include the myfs extern.h
where you have all the definitions. Take care that all the following codes must be inner
#ifdef MYFS blocks, because you only want to compile this part of the kernel and not the
entire myfs code. Otherwise if you include this code without defining MYFS in the kernel
configuration, your kernel won’t compile because of unresolved symbols.
...
#ifdef MYFS
include <ufs/myfs/myfs_extern.h>
#endif
...

/*
* Set up the filesystem operations for vnodes.
* The types are defined in mount.h.
*/
#ifdef MYFS
extern struct vfsops myfs_vfsops;
#endif
...

/*
* Set up the filesystem operations for vnodes.
*/
static struct vfsconf vfsconflist[] = {
...

/* my filesystem */
#ifdef MYFS

Chapter 3: Implementation 13

{ &myfs_vfsops, MOUNT_MYFS, 18, 0, MNT_LOCAL, myfs_mountroot, NULL },
#endif
...
};

/*
* vfs_opv_descs enumerates the list of vnode classes, each with it’s own
* vnode operation vector. It is consulted at system boot to build operation
* vectors. It is NULL terminated.
*/

extern struct vnodeopv_desc myfs_vnodeop_opv_desc;
...
struct vnodeopv_desc *vfs_opv_descs[] = {

&sync_vnodeop_opv_desc,

#ifdef SRSFS
&srsfs_vnodeop_opv_desc,

#endif

NULL
};

This is simple. All you need to do is to insert your structures into the needed vectors.
Beware to not forget a part or the system will crash at the first access of your filesystem.
All this part is explained in the comments, this will normally not cause any problems.

Chapter 4: Conclusion 14

4 Conclusion

OK, you have survived all this horrible work. You should be able to have a working filesys-
tem structure. I hope this howto has helped you and permit to not waste time understanding
by hand the OpenBSD vfs interface. We are pretty sure that there are few mistakes so if you
find one please email us so the error will be corrected. This document doesn’t explain big
parts of the OpenBSD kernel but you should already know how to add files to be compiled.

	Introduction
	Introducing OpenBSD
	Credits

	Internal filesystem structures
	OpenBSD vfs interface

	Implementation
	lower layer structures
	lower layer code
	vfs interface integration

	Conclusion

