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Background

A smart contract is a compute protocol intended to facilitate, 
verify, or enforce the negotiation or performance of a contract.

Popular platform: Ethereum.

Popular language: Solidity.

Based on the blockchain technology.

Used with the cryptocurrency token ether.



Features of Smart Contracts

• Self-executing and self-enforcing

• Decentralised control

• Reduced costs associated with contracting

• Blockchain technology solves the “double-spending” problem

• Open networks 
• Everyone can join
• Easy to attract criminals

• Immutable
• Once a smart contract is in places, it cannot be tampered
• If a smart contract has vulnerabilities, it’s hard to fix
• 50 million USD gone in the DAO attack
• Ethereum sometimes has to perform a “hard fork” to reappropriate the stolen funds 

• Possible to mix trusted code with untrusted code

https://en.wikipedia.org/wiki/Double-spending
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Improving Security: The PAT Approach
Many smart contracts don’t reveal source code
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Solidity Vulnerabilities

• Timestamp can be modified at runtime

• Transaction values can be changed last minute

• Re-entrance

• Stack overflow

• Integer overflow

• Exception handling

• Delegate calls can be used to execute new unknown code

• Sending money from contracts automatically is prone to 
vulnerabilities



Exceptions in Solidity
• Out of stack (> 1024)

• Out of Gas

• Out of (array) index

• Code not found (call to undefined external function)

• Called function throws exceptions

• New contract not finished properly during creation

• /0 (Div by zero), %0 (Modulo by zero)

• Ether paid to a function without ‘payable’

• Received ether via a public accessor function

• ‘Throw’ for any custom reason

• Shift by a negative amount

• Convert negative or too large values into enum types

• External function call to a contract with no code

• .transfer() fail



Solidity Properties in Verification

• Different versions

• Stack based – 1024 levels (top 16 accessible) – stack overflow exception

• Logical evaluations apply short circuits

• ContractAddress.send() causes the contracts fall back functions to

• Call, callcode and calldelegate break type-safety and should be avoided

• Literal division used to be truncated to integers but now isn’t

• Function calls to other contracts cannot return anything but whether they finished or 
crashed

• ‘var’ variable declaration will use the simplest type possible for the given expression

• Accessing the hash of a block more than 256 blocks before will return 0

• Exceptions don’t bubble through call(), send(), callcode() and calldelegate() but instead 
return false

• Allows inline assembly code which has different behaviours altogether



From Solidity to CSP#

function confirmPurchase()
inState(State.Created)
require(msg.value == 2 * value)
payable
{

purchaseConfirmed();
buyer = msg.sender;
state = State.Locked;

}

ConfirmPurchase(msgsender, msgvalue) = 
if(state == Created && msgvalue == 2 * value){

confirmPurchase{
purchaseConfirmed(); 
buyer = msgsender;
state = Locked;

} -> StandBy()
};

Solidity Code CSP# Code (PAT)



Verification by Model Checking

We can then verify various properties of the Solidity code in PAT
• Deadlock free
• Functional correctness

• Program reaches desired states
• Program doesn’t reach “bad” states

• Stack/integer overlow?
• Object-oriented features?

Next steps:
• Automate the translation
• Cover more properties/vulnerabilities


