Blockchain deconstructed

Fritz Henglein University of Copenhagen henglein@diku.dk

2nd Symposium on Distributed Ledger Technology Gold Coast, Australia

UNIVERSITY OF COPENHAGEN

Fritz Henglein

Professor of Programming Languages and Systems

University of Copenhagen

Head of Research Deon Digital AG

Areas of interest

- Programming language technology
- Theoretical computer science

(algorithms, semantics, logic)

- Blockchain technology ۰
- Contract management .
- Financial technology
- Enterprise systems .

Related background

- European Blockchain Consortium (ebcc.eu)
- Steering committee chair, Innovation network for Finance IT (CFIR.dk)
- Principal investigator, Functional technology for high-performance architectures (FUTHARK)

Academic background and affiliations

IBM Research | Zurich

What is a blockchain/DL system?

What is a blockchain/DL system?

Any peer-to-peer decentralized system

- storing a single, consistent tamper-proof record of events
- admitting only appending of new events
- enforcing a fixed on user-defined protocol (contract) for appending new events
- Guaranteeing unique ownership of resources (no double spending)
- with no trusted or privileged parties
- based on **cryptographic** principles

What is a blockchain/DL system?

A computer system characterized by

- organizational and technical **decentralization**;
- tamper-proof recording of events and their evidence; and
- guaranteed resource preservation and credit limit enforcement

Organizational and technical decentralization

- **Technical** decentralization: A distributed peer-topeer system
- Organizational decentralization: No single or select group of organizations controls/has privileged rights to system compared to others
- **Governance policy** for regulating membership, functionality, conflict resolution, etc.
 - Group of organizations operating and using system can be open and self-authenticating (nonpermissioned, "distributed ledger technology") or closed and externally authenticated (permissioned, "blockchain").

REA accounting model (extended information and contracts)

- **R**esource (= asset): Money, licenses, physical objects (trucks),...
- Information: Data, invoices,...
- Agent: Person, company, institution, autonomous device,...
- Contract: Specification of obligations, permissions and prohibitions
- Event:
 - Atomic event:
 - A transfers R to B
 - A transforms R to R'
 - A informs B of I
 - ...
 - Complex event: Set of events that satisfies a given (sub)contract

Tamper-proof recording of events and their evidence

- Event recording: Events are recorded
- Tamper-proof: They cannot subsequently be altered or deleted
- Evidence
 - for atomic events: signature, plus supporting evidence of event having happened (pictures, receipts, DNA samples, GPS data,)
 - for complex events: (mathematical) proof that a set of events is a correct execution of a contract

Digital Twin via physical evidence framework

Guaranteed resource preservation and credit limit enforcement

- **Resource preservation**: Transfers keep the sum of all resources invariant:
 - A transfers 50 ETH to B: The sum of all ETH is the same. Atomically, after event A has 50 ETH less; B has 50 ETH more.
 - We allow negative numbers
- **Credit limit enforcement**: A transfer is only *valid* and *effected* if the credit limits of each agent are respected. For above transfer:
 - If A owns 60 ETH and has credit limit 0: Valid.
 - If A owns 30 ETH and has credit limit 0: Invalid.
 - If A owns 30 ETH and has credit limit 20: Valid.
- No-double-spend guarantee = all agents have credit limit 0.

Use cases for adaptive credit limits

- **Full-reserve monetary system**: One agent (the central bank) has no credit limit (or dynamic credit limit according to some governance regime), all others have credit limit 0.
- Fractional-reserve monetary system: A designated set of agents ("banks") have a dynamic credit limit, all other have credit limit 0.
- Demand-driven production of physical assets: A car manufacturer has no credit limit (they produce cars on demand), all others have credit limit 0.

Commutativity theorem, part 1

- **Theorem:** If every agent has an infinite credit limit, then all resource transfers are valid and can be executed in arbitrary order. (Each order results in the same state of ownership.)
- **Corollary**: Contract execution involving *k* agents requires only consensus by the *k* agents on which events have happened.
- Note, usually k=2. The Internet with TLS (with tamper-proof recording of message sending) is a permissioned blockchain/DL system if there are no credit limits!

Commutative theorem, part 2

- If some agents have finite credit limits, outside validation of their resource transfers is required.
 - Point-to-point communication between the two agents only is *insufficient*.
 - *Some* information about resource transfers must be "leaked" to other nodes for validation.

Canonical distributed ledger architecture (functional view)

Canonical distributed ledger architecture (distributed systems view)

Conclusions and open problems

- No consensus on globally total order of events is *necessary*
 - Current blockchain/DL systems solve an unnecessarily hard problem (transaction order consensus)
- Not even consensus on partial order of events is strictly *necessary*.
- Consensus on resource transfers needs to ensure that the *set* of all eventually validated resource transfers respects all credit limits.
- *Specialized* consensus protocols for resource transfers are conceivable and needed for scalability:
 - Hierarchical clearing and settlement (hierarchical "sharding" by partititioning of agents)
 - Time- and resource-sensitive validation (bigger transfers require more time)
 - Insurance (appyling transaction fees to covering losses due to overdrafts detected too late)

Thank you!