
Journal of Intelligent Information Systems, 16, 229–253, 2001
c© 2001 Kluwer Academic Publishers. Manufactured in The Netherlands.

An Extension to GCWA and Query Evaluation
for Disjunctive Deductive Databases

KEWEN WANG∗ kewen@haiti.cs.uni-potsdam.de
Department of Computer Science and Technology, Tsinghua University, Beijing 100084, People’s Republic
of China; Institut für Informatik, Universität Potsdam, Germany

LIZHU ZHOU
Department of Computer Science and Technology, Tsinghua University, Beijing 100084, People’s
Republic of China

Received April 21, 2001; Accepted May 8, 2001

Abstract. We present a simple and intuitive extension GCWAG of the generalized closed world assumption
(GCWA) from positive disjunctive deductive databases to general disjunctive deductive databases (with default
negation). This semantics is defined in terms of unfounded sets and possesses an argumentation-theoretic char-
acterization. We also provide a top-down procedure for GCWAG , which is sound and complete with respect to
GCWAG . We investigate two query evaluation methods for GCWAG : database partition, and database splitting.
The basic idea of these methods is to divide the original deductive database into several smaller sub-databases
and the query evaluation in the original database is transformed into the problem of query evaluation in smaller
or simplified components. We prove that these two methods of query evaluation are all sound with respect to
GCWAG .

Keywords: disjunctive deductive databases, closed world assumption, semantics, query evaluation, argu-
mentation

1. Introduction

In general, negative information is not explicitly represented in databases and thus a
meta-rule is often employed to derive negative information from deductive databases.
The advantage of this approach is that deductive databases can be liberated from ex-
cessive amounts of explicit negative information and as close to natural discourse as
possible. Reiter’s (1978) closed world assumption (CWA) provides such an excellent
mechanism for non-disjunctive deductive databases. It is well-known that many advanced
applications of deductive databases require the efficient representation and reasoning of
incomplete information in the form of disjunctions in the data, e.g., diagnostic reason-
ing, legal reasoning and reasoning in spatial databases. As first observed by Reiter in
his original CWA paper (Reiter, 1978), however, CWA becomes inconsistent for disjunc-
tive databases and, thus, Minker (1982) proposed the generalized closed world assumption
(GCWA) for inferring negative information in positive disjunctive deductive databases. This

∗To whom all correspondence should be addressed.



230 WANG AND ZHOU

rule has now become one of the most important nonmonotonic mechanisms in deductive
databases.

On the other hand, argumentation constitutes a major component of human’s intelligence,
such as defending one’s opinion, persuading and dialogue. It is also widely used in fields
of artificial intelligence, including legal reasoning (Prakken and Sartor, 1996), diagnostic
reasoning, cooperation and negotiation of multi-agents (Karacapilidi and Papadias, 1998;
Kraus et al., 1998). Intuitively, the idea of argumentation is that a hypothesis (or explanation)
is acceptable if it can be argued successfully against attacking arguments. Argumentation
has recently proved to be a unifying mechanism for most of the existing nonmonotonic
formalisms (Bondarenko et al., 1997; Dung, 1995; Kakas, 1998; Wang, 2000; Wang and
Chen, 1998). In this approach, negative default literals are taken as assumptions and thus
each nonmonotonic theory can be translated into an argumentation-theoretic framework.
This approach provides an elegant way of deciding acceptable assumptions for given non-
monotonic theories (Bondarenko et al., 1997). The relation of argumentation to the stable
semantics and the well-founded semantics is well-understood (Dung, 1995; Kakas, 1998;
You et al., 2000). As we have noticed, both GCWA and argumentation can be used to
nonmonotonically infer negative default literals though they are distinct mechanism and
have quite different intuition behind them. What is the relationship between GCWA and
argumentative reasoning? How can argumentation be performed with GCWA? These are
not only interesting theoretical problems but they are also important for applications of
databases and knowledge-based systems. For example, suppose that we have the following
two rules:

R1: If one eats less food than necessary, he may feel hungry or be anorectic.
R2: If one has not enough food, he has to eat less food than necessary.

These two rules can be expressed as a disjunctive database consisting of two rules:

Hungry ∨ Anorectic ← EatLess

EatLess ← ∼EnoughFood

If we have observed that one is hungry, the intuitive explanation for this observation is
that he has not enough food to eat and is not anorectic. Since the GCWA has already been
implemented, one possible and promising way of computing this kind of explanations in
deductive database systems is to employ the GCWA. However, we found that the problem
of performing argumentation with GCWA in (disjunctive) deductive databases are rarely
explored. The deep relation of GCWA to argumentation is also unclear.

Another interesting problem is how to extend GCWA to general disjunctive databases
(with default negation). It is proven that default negation can greatly enhance the express-
ing power of deductive databases. For example, normally, if one is not dead then he can
walk. This rule is expressed in deductive databases as walking ←∼dead. But its contra-
positive version is not true in general, and thus this rule can not be replaced simply by
the rule walking ∨ dead. However, Minker’s GCWA is defined only for positive disjunctive
databases (without default negation) although argumentation is generally used to derive as-
sumptions in nonmonotonic theories with default negation. Thus, it is an interesting problem



EXTENSION TO GCWA AND QUERY EVALUATION 231

to investigate whether argumentation can be employed to define a suitable generalization
of GCWA. Although a number of proposals have been suggested to extend GCWA for dis-
junctive databases with default negation, for instance, GCWA¬ (Sakama and Inoue, 1993),
SCWA (Minker and Rajasekar, 1990), D-WFS (Brass and Dix, 1999) and the static seman-
tics (Przymusinski, 1995). As far as we know, these extensions of GCWA are not designed
to compute acceptable hypotheses, in particular, not to perform argumentation.

In this paper, by employing the notion of unfounded sets, we first present a simple and
intuitive extension GCWAG of the generalized closed world assumption (GCWA) from
positive disjunctive deductive databases to general disjunctive deductive databases (with
default negation). This definition allows a natural iterative procedure for GCWAG and the
computation of this semantics requires O(n2) satisfiability tests on the underlying first order
theory. For instance, the satisfiability for non-disjunctive Datalog (i.e., without function
symbols) is polynomial-time. This result shows an attractive feature of our semantics since it
implies that there may exist wider range applications for which reasoning with GCWAG can
be practical. The suitability of our semantics is also justified by many illustrating examples.
We prove that GCWAG possesses an argumentation-theoretic characterization. This fact is
meaningful in several senses since (1) it establishes a close relationship between GCWA
and argumentation; (2) it convinces the suitability of our semantics from a view point of
commonsense reasoning; (3) it implies that some forms of argumentation (e.g., dialogue-like
argumentation) can be performed in a disjunctive database system that implements GCWA.
We also provide a resolution-like procedure for GCWAG , which is sound and complete with
respect to GCWAG . We investigate two query evaluation methods for GCWAG : database
partition, and database splitting. The basic idea of these methods is to divide the original
deductive database into several smaller sub-databases and the query evaluation in the whole
databases is transformed into the problem of query evaluation in smaller or simplified
components. We prove that these two methods of query evaluation are all sound with
respect to GCWAG .

The rest of this paper is arranged as follows. We shall first define a generalization GCWAG

of GCWA to general disjunctive deductive databases in Section 2. In particular, a fixpoint
definition for GCWAG is given. We also illustrate the suitability of our semantics by some
examples. In Section 3, an approach of performing argumentation with GCWAG is presented
by providing an argumentation-theoretic interpretation for GCWAG . Section 4 shows that
GCWAG is really a natural extension of the GCWA. In Section 5, we provide a top-down
procedure for GCWAG and prove that this procedure is sound and complete with respect to
our GCWAG . In Section 6, we investigate a method database partition of query evaluation
for disjunctive databases with default negation by dividing the original disjunctive database
into several irrelevant sub-databases (i.e., these databases share no common atoms), which
was studied previously for only positive deductive databases by Fernandez (1994), and
we prove this method is sound with respect to GCWAG . However, this method is not
always effective since, in some extreme cases, the original disjunctive database can not be
divided into smaller irrelevant components. Thus, in Section 7, another method of query
evaluation called database splitting is introduced. The database splitting is still to divide
the original disjunctive database into smaller sub-databases but does not require these sub-
databases completely irrelevant. In practical applications, these two methods can be used



232 WANG AND ZHOU

alternatively. In Section 8, we compare our approach to other related work. Section 9 is the
concluding remarks. Due to the limitation of space, proofs of the theorems are not included
in this paper. They are contained in the full version of this paper.

2. GCWAG: An Extension of GCWA

In this section, we first briefly review most of the basic notions used throughout this paper
and then define GCWAG for general disjunctive databases.

2.1. Basic definitions and notation

A comprehensive treatment of disjunctive deductive databases (logic programming) is given
in Lobo et al. (1992), to which the reader is referred for unexplained concepts. We assume the
existence of an arbitrary, but fixed propositional language, generated from selected propo-
sitional symbols (atoms). An expression with variables is understood as an abbreviation for
the set of its all grounded instances.

A general disjunctive deductive database (simply, disjunctive database) P is defined as
a set of disjunctive rules of the form:

p1 ∨ · · · ∨ pr ← pr+1, . . . , pm, ∼pm+1, . . . ,∼pn.

Here, n ≥ m ≥ r > 0 and pi ’s are atoms for i = 1, . . . , n. ∨ and ∼ denote non-classical
disjunction and default negation, respectively.

If n = m, the above rule is said to be positive. P is a positive disjunctive database if each
rule of P is positive.

The informal meaning of the above rule is that “if pr+1, . . . , pm are true and pm+1, . . . , pn

are all not provable, then one of p1, . . . , pr is true”. For example, male(greg) ∨ female
(greg)← animal(greg), ∼ ab(greg) means, informally, that if greg is an animal and it is not
provable that greg is abnormal, then greg is either male or female.

For a disjunctive rule C : p1 ∨ · · · ∨ pr ← pr+1, . . . , pm, ∼pm+1, . . . ,∼pn , h(C) =
{p1, . . . , pr }, pos(C) = {pr+1, . . . , pm}, neg(C) = {pm+1, . . . , pn}, atoms(C) = h(C) ∪
pos(C) ∪ neg(C). We also write p ∈ h(C) to denote that p appears in h(C).

BP is the Herbrand base of P (the set of all atoms in P for propositional P). If I ⊆ BP ,
then ∼I = {∼q | q ∈ I }.

A negative default literal (simply, negative literal) is of form ∼p where p ∈ BP and is
also called an assumption of P . A hypothesis � of P is a set of its assumptions. The set of
all hypotheses of P is written as H(P).

A positive (negative) disjunction is a disjunction of atoms (negative literals) in P . A pure
disjunction is either a positive or negative disjunction. For a disjunctive database P , its
semantics is defined by model states. In this paper, a model state M is a pair 〈M+; M−〉
where M+ and M− are set of positive disjunctions and set of negative disjunctions, respec-
tively. For brevity, we assume that M contains all implications of disjunctions in it. For
instance, let M = 〈{p}; {∼q ∨ ∼w}〉, then p ∨ q and ∼p ∨ ∼q ∨ ∼w are also assumed to
be in M .



EXTENSION TO GCWA AND QUERY EVALUATION 233

The body of rule C is true in M , denoted M |= body(C), if pos(C) ⊆ M+ and ∼ neg(C)

⊆ M−. Otherwise, we say the body of rule C is false in M .

2.2. Closed world assumption and unfounded sets

The notion of unfounded sets provides the first definition of the well-founded model (Van
Gelder et al., 1988) and, more importantly, it constitutes a powerful and intuitive tool for
defining semantics for deductive databases (logic programs). This notion has also been
generalized to characterize stable semantics for disjunctive logic programs in Leone et al.
(1997); Eiter et al. (1997). We will define the semantics GCWAG for general disjunctive
databases in terms of unfounded sets and give examples to illustrate our semantics.

The following definition is a generalization of the unfounded sets defined in Leone
et al. (1997). The major difference is that we now consider model states rather than only
interpretations.

Definition 2.1. Let M be a model state of disjunctive database P , a set X of ground atoms
is an unfounded set for P w.r.t M if, for each p ∈ X and each rule C ∈ P such that p ∈ h(C),
at least one of the following conditions holds:

1. the body of C is false in M ;
2. X ∩ pos(C) �= ∅, that is, some body atom belongs to X ;
3. if M |= body(C), then an atom in (h(C) − X) ∈ M where h(C) − X

is the disjunction obtained by deleting all atoms appearing in X from h(C).

Example 2.1. Let P consist of the following disjunctive rules:

p ∨ v ← q
q ← ∼v

u ∨ u′ ∨ p ←
u ∨ u′ ← v

v ←

Then {p, q} is an unfounded set of P w.r.t. M = 〈{v, u ∨ u′}; {∅}〉.

The greatest unfounded set of P w.r.t. a model state M is denoted UP(M) if it exists.
Intuitively, unfounded set specifies negative information derived from P . The following

operator TP(M), which is actually the immediate consequence of P under M , defines how
to derive positive information from P .

Definition 2.2. Let P be a disjunctive database, the operator TP is defined as, for any
model state M ,

TP(M) = {a1 ∨ · · · ∨ ar | there is a rule C ∈ P :

a1 ∨ · · · ∨ ar ∨ ar+1 ∨ · · · ∨ as ← body(C)such that

S |= body(C) and ∼ar+1, . . . ,∼as ∈ M}.



234 WANG AND ZHOU

Notice that TP(M) is a set of positive disjunctions rather than just a set of atoms.

Definition 2.3. Let P be a disjunctive database, the operator WP is defined as, for any
model state M ,

WP(M) = TP(M) ∪ ∼UP(M).

Given a disjunctive database P , we can define a sequence of model states {Wk}k≥0 where
W0 = ∅ and Wk = WP(Wk−1) for k > 0.

Parallel to Proposition 5.6 in Leone et al. (1997), we can prove that {Wk}k≥0 is monotonic
and its limit is the least fixpoint of WP .

Definition 2.4. For any disjunctive deductive database P , its GCWAG-semantics is defined
by the least fixpoint lf p(WP) of WP .

The generalized closed world assumption of P is the set of all negative disjunctions in
lf p(WP) and, written as GCWAG(P).

Notice that the GCWAG-semantics of P is determined by GCWAG(P) because the set
of positive disjunctions derived from the GCWAG-semantics of P is GCWAG(P)+ =⋃

i≥0 T i
P(GCWAG(P)).

Consider again Example 2.1, we have that the GCWAG-semantics is the model state
〈{v, u ∨ u′}; {∼p, ∼q}〉 and GCWAG(P) = {∼p, ∼q}. Notice that u and u′ are unknown.

To see this, observe that

W0 = ∅,

W1 = WP(W0) = TP(W0) ∪ ∼UP(W0) = {v} ∪ ∅ = {v},
W2 = WP(W1) = TP(W1) ∪ ∼UP(W1) = {v, u ∨ u′} ∪ {∼q} = {v, u ∨ u′, ∼q},
W3 = WP(W2) = TP(W2) ∪ ∼UP(W2) = {v, u ∨ u′} ∪ {∼p, ∼q}

= {v, u ∨ u′, ∼p, ∼q}
W4 = W3.

Similar to Theorem 5.11 in Leone et al. (1997), we can prove that GCWAG generalizes
the well-founded model for non-disjunctive deductive databases (Van Gelder et al., 1988).

Theorem 2.1. Let P be a non-disjunctive database and WFM(P) be the well-founded
model of P. Then

GCWAG(P) = WFM(P).

Notice that, for database P ′ = {p ∨ q ∨ u ←; u ← v}, GCWAG(P ′) = {∼v}. Thus,
rule p ∨q ←∼ u is not equivalent to the rule p ∨q ∨u ←. That is, a suitable semantics for
deductive databases should be able to distinguish these two rules. The next example adapted



EXTENSION TO GCWA AND QUERY EVALUATION 235

from (Wang and Chen, 1998) shows the difference of GCWAG from GDWFS (Baral et al.,
1990).

Consider a variant of Poole’s broken-hand example (1989).

Example 2.2 (You et al., 2000). Suppose that we know either the left hand is broken or
the right hand is broken, and in general, a hand is usable if not broken. We also know the
left hand being usable leads to the use of it that results in moving a block; and the use of
the right hand leads to moving the table. The given information is incomplete as we do not
know which hand is broken and which is not (perhaps both could have been broken).

lhBroken ∨ rhBroken ←
lhUsable ← ∼lhBroken
rhUsable ← ∼rhBroken

moveBlock ← lhUsable
moveTable ← rhUsable

Now suppose we observe that the block is moved from its original location (and suppose
we cannot see any operations): moveBlock ←. This database is denoted as P and then,

GCWAG(P) = {∼lhBroken, ∼moveTable, ∼rhUsable}.

Then GCWAG explains our observation and predicts that it is the right hand that is broken
since both moveBlock and rhBroken are derivable from GCWAG(P).

The relation of our semantics to other approaches will be further explained in Section 8.

3. Argumentation-based interpretation of GCWAG

In this section, we shall provide a way of performing argumentative reasoning with GCWAG

by defining an argumentative interpretation for GCWAG .
A deductive database often contains incomplete information and thus, many conclusions

are made on assumption. Different hypotheses are available but some of them most probably
be conflict. The main task of argumentative reasoning is to specify the set of acceptable
hotheses based upon the attack relation among hypotheses. In many forms of argumentative
reasoning, an acceptable hypothesis is often obtained by the following simple and intuitive
principle:

A hypothesis is acceptable if it can attack any hypothesis that attacks it.

In the following, we will formulate this principle in the setting of disjunctive databases.
For this, we need to define the inference relation �P as follows. Roughly speaking, �P is
the classical resolution augmented by a special resolution rule for default negation:

�P ≡ SLI-resolution ∪ NR.



236 WANG AND ZHOU

The SLI-resolution (Linear Resolution with Selection function for Indefinite clauses)
was developed by Minker and Zanon (1982), Lobo et al. (1992). Hayes (1971) also presents
an inference system similar to SLI-resolution. It should be noted that these forms of
SLI-resolution are designed only for positive disjunctive databases (i.e., without default
negation). Given a disjunctive database P with default negation and a hypothesis �,
we can easily generalize the SLI-resolution in Lobo et al. (1992) to the following rule
for P:

SLI:

 ← a, �1, ∼�2

a ∨ 
′ ← �′
1, ∼�′

2


 ∨ 
′ ← �1, �
′
1, ∼�2, ∼�′

2

The resolution rule NR consists of two rules:

NR1:

 ← �1, ∼�2, ∼q
∼q


 ← �1, ∼�2,

NR2:
q ∨ 
 ← �1, ∼�2

∼q


 ← �1, ∼�2

NR1 is designed to resolve default literals in the body of a rule in P while NR2 is designed
to resolve default literals in the head of a rule in P .

Definition 3.1. Let � be a hypothesis of disjunctive database P . For any disjunction α

of atoms in P , � �P α if and only if the rule α ← can be derived from P ∪ � by the
resolution rules SLI, NR1 and NR2. If � �P α does not hold, it is denoted � �P α.

Consider the disjunctive database P = {p ← q; q ∨ q ′ ← ∼p′}. Let � = {∼p′, ∼q ′},
then � �P p.

Notice that, if � �P α, we can first apply only SLI-rules, then apply NR-rules. This
special order of applying database rules will not change the result of derivation.

Definition 3.2. Let P be a disjunctive database, � and �′ be two hypotheses of P . If
there exists an assumption ∼q ∈ �′ such that � �P q, then we say � attacks �′, written
� ❀P�′. In particular, � is said to be an attacker of an assumption ∼q if � ❀P{∼q}.

If � is an attacker of an assumption ∼p and there is no attacker �′ of ∼p such that
�′ ⊂ �, then we say � is a minimal attacker of ∼p.



EXTENSION TO GCWA AND QUERY EVALUATION 237

Example 3.1. Let P be the following disjunctive databases:

p ∨ q ← u, ∼v

u ← ∼w

w′ ← ∼p, ∼q

If �1 = {∼v, ∼w} and �2 = {∼p, ∼q}, then �1 ❀P �2, but �2 /❀P �1.

Definition 3.3. Let � be a hypothesis of P . An assumption ∼p is acceptable with respect
to � if � ❀P�′ for any attacker �′ of ∼p.

That is, � supports ∼p if any attacker of ∼p is attacked.
Consider again the database in Example 3.1, by Definition 3.3, ∼w′, ∼v and ∼w are

acceptable w.r.t. � = {∼v, ∼w} but ∼p and ∼q are not.
Set AP(�) = {∼p : ∼p is acceptable with respect to �}. Then AP defines an operator

from HP → HP . This operator is monotonic but not necessarily continuous. Hence, by
Tarski’s Lemma, the least fixpoint of AP is the limit AP ↑ γ of the increasing sequence of
hypotheses:

∅, AP(∅), . . . , An
P(∅), . . .

Notice that, if “attacker” is replaced by “minimal attacker” in Definition 3.2, we shall get
an equivalent definition of AP . This observation will be used in Section 5.

The following theorem relates our GCWAG to argumentation.

Theorem 3.1. Let P be a disjunctive database. Then

GCWAG(P) = AP ↑ γ,

for some ordinal γ .

This theorem implies that, in some cases, argumentation can be performed by GCWAG .
For positive disjunctive database, its GCWAG has a quite simple characterization.

Proposition 3.1. Let P be a positive disjunctive database. Then

GCWAG(P) = AP(∅).

This proposition shows that, for a positive disjunctive database, its GCWAG is just the
set of assumptions that are acceptable with respect to the trivial hypothesis ∅. This result
will also be useful in proving the results in next section.



238 WANG AND ZHOU

4. Relation to the GCWA

As noticed in previous sections, GCWA is only defined for the class of positive disjunctive
databases but GCWAG is well-defined for all disjunctive databases. The main result of this
section is to show that GCWAG is really a generalization of GCWA. Before doing this, we
first review the definition of GCWA.

Definition 4.1 (Minker, 1982) (Semantic definition of the GCWA). Let P be a positive
disjunctive database. The generalized closed world assumption (GCWA) is given by

GCWA(P) = {∼p | p ∈ BP and p is not in any minimal Herbrand model of P}.

Now we can state the main result in this section.

Theorem 4.1 (GCWAG extends GCWA). For any positive disjunctive database P, its
GCWA semantics and GCWAG coincide:

GCWAG(P) = GCWA(P).

This result is interesting because (1) GCWAG naturally extends GCWA; (2) two quite
different nonmonotonic mechanisms (the standard closed world assumption and argumen-
tation) are related. However, most of the existing extensions of the GCWA do not support
argumentation.

We can also prove that GCWAG possesses some other major properties of GCWA: consis-
tency and stability. The first property guarantees that no direct contradiction will be drived
while the second one denotes that any negative information added by the GCWAG will not
change the positive information that can be derived from the database.

Theorem 4.2. The following two items hold:

1. (Consistency) Let P be a disjunctive database. Then GCWAG(P) is consistent in the
sense that there exists no assumption ∼q ∈ GCWAG(P) such that GCWAG(P) �P q.

2. (Stability) Let P be a positive disjunctive database. Then for any disjunction 
 of atoms
in P, ∅ �P 
 if and only if GCWAG(P) �P 
.

It should be pointed out that GCWAG is no longer stable for disjunctive databases with
default negation. This is natural and desired for disjunctive databases with default negation
since the default negation can not be characterized only by the semantics of the standard
logic. For example, if P = {q ∨ s ← ∼p}, then GCWAG = {∼p}. ∅ �P q ∨ s does not
hold while GCWAG �P q ∨ s.

Thus, the results in this section convince that GCWAG really provides a suitable extension
for GCWA.



EXTENSION TO GCWA AND QUERY EVALUATION 239

5. Computation of GCWAG

In this section, we shall provide a top-down procedure for GCWAG and, prove this procedure
is sound and complete. From now on, we assume that P is a finite propositional database.

For simplicity, we also express a (disjunctive) database rule C in P as the form of


 ← �1, ∼�2,

where 
 is a disjunction of atoms, �1 an unordered sequence of finite atoms denoting a
conjunction of atoms, and ∼�2 = {∼q : q ∈ �2} denoting a conjunction of negative
literals.

A goal G is of the form: ← l1, . . . , lr , ∼a1, . . . ,∼an , where each li is an atom a or its
negation ¬a for i = 1, . . . , r and, ai s are atoms. To distinguish from default literals, we
shall say that l is a classic literal if l = a or l = ¬a.

A goal is negative if it is of the form ← ¬a1, . . . ,¬ar , ∼ar+1, . . . ,∼an where each ai

is an atom and r ≤ n.
In our resolution-like procedure, given database rule C : 
 ← �1, ∼�2, we transform

C to the goal gt (C) : ← ¬
, �1, ∼�2 and call it the goal transformation of C . Since our
resolution is to resolve literals in both heads and bodies of database rules, this transformation
allows a unifying and simple approach.

The special goal ← is called an empty goal. The empty goal ← is also written as the
familiar symbol ✷. The non-empty goal of form ← ¬
, ∼� is said to be a negative goal.

Given a disjunctive database P , set gt (P) = {gt (C) : C ∈ P}. The traditional goal reso-
lution can be generalized to gt (P) as follows.

Goal Resolution (GR): If G: ← l, ¬
, �1, ∼�2 and G ′ :← l ′, ¬
′, �′
1, ∼�′

2 are two
goals such that classic literals l and l ′ are complementary, then the GR-resolvant of G with
G ′ on selected literal l is the goal ← ¬
, ¬
′, �1, �

′
1, ∼�2, ∼�′

2.
GR is actually a variant of the SLI-rule defined in Section 2.

Definition 5.1. An SLIN-derivation from G in gt (P) is a sequence of goals:

G0, G1, . . . , Gn,

where G0 = G and, for i = 0, . . . , n − 1, Gi+1 is obtained from one of the following two
steps:

1. Gi+1 is the GR-resolvant of Gi with a goal in gt (P) ∪ {G0, . . . , Gi } on selected literal,
or

2. If Gi is the goal: ← ¬
(i), �
(i)
1 , ∼p, ∼�

(i)
2 such that there exists a success positive tree

T +
p for the goal ← p. Then Gi+1 is the goal ← ¬
(i), �

(i)
1 , ∼�

(i)
2 .

An SLIN-refutation for G is an SLIN-derivation: G0, G1, . . . , Gn such that G0 = G and
Gn = ✷.

Let P be a disjunctive database and G a goal. A positive tree T +
G for G is defined as

follows:



240 WANG AND ZHOU

1. The root of T +
G is G.

2. For each node G ′: ← ¬
′, p, �′
1, ∼�′

2, and each goal Gi in gt (P), if G ′
i is the GR-

resolvant of G ′ with Gi on p and G ′
i is different from all nodes in the branch of G ′, then

G ′ has a child G ′
i .

We distinguish three types of leaves in a positive tree (there may be other leaves):

1. Empty leaves which are labeled by the empty rule.
2. Dead leaves which contain atoms that cannot be resolved with any goal in gt (P) by

GR-rule.
3. Failure leaves which are goals of the form ← ¬p1, . . . ,¬pn, ∼pn+1, . . . ,∼pm (m ≥ n)

such that, for some i (1 ≤ i ≤ n), ← pi has an SLIN-refutation in gt (P).

The intuition behind the empty leaves and dead leaves is not hard to see. For instance,
in the positive tree for a goal G: ← p, each branch represents a possible set of necessary
conditions for the atom p. Whether a leaf is dead or failure, one can not make it true (a
dead leaf means that at least one atom in the premises for p can not be proven; a failure
leaf means that it is not a dead leaf and at least one negative literal in the premises for p
is false). Note that, in addition to the three classes of leaves defined above, there may exist
other leaves in a positive tree. That is, a negative leaf may not be a failure leaf. For example,
if P is the deductive database {q ← ∼q}, then the positive tree T +

P of the goal ← q is as
follows. Notice that the selected literals will be underlined.

Thus, the goal ← ∼q is a negative leaf of T +
P but it is not a failure leaf.

T +
G is success if T +

G contains only two types of leaves: dead leaves and failure leaves.

Our SLIN-resolution consists of SLIN-derivations and positive trees.

If the goal G is of form ← p, its positive tree T +
G is also written as T +(p).

We now illustrate our SLIN-resolution by some examples.

Example 5.1. First consider a positive disjunctive database P1 as follows:

p ∨ q ←
v ← p, q
p ←

Then the rules of P1 can be transformed into the set gt (P1) of goals:

R1: ← ¬p, ¬q
R2: ← ¬v, p, q
R3: ← ¬p



EXTENSION TO GCWA AND QUERY EVALUATION 241

Since the goal ← p has the obvious SLIN-refutation ← p; ✷, the goal ← q has a success,
positive tree T +(q):

← v has the following success, positive tree T +(v):

It can also be verified that GCWAG(P1) = {∼q, ∼v} and GCWAG(P1)
+ = {p}.

Now we consider a disjunctive database that contains default negation.

Example 5.2. Let P2 consist of the following rules:

a ∨ b ← c, ∼d
b ← ∼ e, ∼c

e ∨ f ← h
a ∨ f ← c

gt (P2) is as follows:

R1: ← ¬a, ¬b, c, ∼d
R2: ← ¬b, ∼e, ∼c
R3: ← ¬e, ¬ f, h
R4: ← ¬a, ¬ f, c

The sequence of goals G0 = ← b, G1 = ← ∼e, ∼c, G2 = ← ∼c, G3 = ← is an SLIN-
refutation for the goal ← b, since both ← e and ← c have success positive trees. In fact,
the positive tree of the goal ← c is itself and the positive tree of the goal ← e is as follows



242 WANG AND ZHOU

(these two trees have only dead leaves):

The goal ← a has the following success positive tree T +(a) since its two leaves ←
¬b, c, ∼d and ← ¬ f, c are all dead:

It is not hard to see that ∼a ∈ GCWAG(P2) and GCWAG(P2) �P2 b.

In general, we have the following soundness and completeness theorem.

Theorem 5.1 (Soundness and Completeness of SLIN-resolution). Let P be a disjunctive
database and p ∈ BP (i.e., p is an atom in P).

1. ∼p ∈ GCWAG(P) if and only if there exists a success positive tree for the goal G: ← p.
2. GCWAG(P) �P p if and only if there exists an SLIN-refutation for the goal G: ← p.

For SLIN-resolution, the disjunctive database with default negation can be preprocessed
by the fixpoint transformation Lf t introduced in Wang and Chen (1998). Lft transforms
each disjunctive deductive database P into a negative database Lf t(P) (i.e., without atoms
in bodies of the rules of P). Moreover, we can prove that GCWAG(P) = GCWAG(Lf t(P))

Notice that the query evaluation under SLIN-resolution procedure for negative database is
an easy task since the Goal Resolution will never be used in this case. According to the
above theorem, we can first transform the given deductive database P into the negative
database Lf t(P) and then use SLIN-resolution to answer query against Lf t(P). For the
limitation of space, we will not go into details here.

6. Evaluating query by partition

Although disjunctive deductive databases greatly enhance the expressive ability of ordi-
nary deductive databases, it is well-known that query evaluation in disjunctive deductive
databases is in general computationally hard. When a database is large, given a query Q,
it is often the case that most of the rules in the database are irrelevant to Q and thus, the
query evaluation of Q can be restricted to the sub-database consisting of those rules that are
relevant to Q. Two sets of rules are irrelevant if they have no common atoms. Otherwise,
they are relevant. In this and the next sections, we will provide some intuitive ways to
simplify the computation of GCWAG .



EXTENSION TO GCWA AND QUERY EVALUATION 243

Database partitioning means that a relatively large database P is divided into a collection
of sub-databases or clusters (Fernandez, 1994; Yahya and Minker, 1994). This method can
simplify the query answering process by transforming the query evaluation in the original
database into that in a cluster. Since the storage requirements for the clausal representation
of a database is the same as that for all of its components, database partitioning is economical
for simplifying query evaluation in large disjunctive databases.

Most of the definitions in this section are generalizations of their counterparts for positive
disjunctive databases in Fernandez (1994) and Yahya and Minker (1994).

Definition 6.1. A subset S of a disjunctive database P is a cluster of P if C ∈ S for any
rule C in P such that atoms(C) ∩ atoms(S) �= ∅, where atoms(E) is the set of all atoms
appearing in an expression E .

A cluster S is minimal if there is no cluster S′ such that S′ ⊂ S.

Informally, a cluster of P is a maximal collection of rules in P that are relevant.
For any disjunctive database P , we associate a graph G(P) whose nodes are rules of

P and whose edges are the set {〈C1, C2〉 : atoms(C1) ∩ atoms(C2) �= ∅}. Then a minimal
cluster S of P just corresponds to a maximal connected subgraph of G(P) and, a cluster S
corresponds to a union of some maximal connected subgraph of G(P). Thus, the task of
constructing a cluster or minimal cluster for disjunctive database P is reduced to that of
finding maximal connected subgraphs of G(P).

Definition 6.2. Let P1, P2, . . . , Pn be clusters of disjunctive database P . The collection
P = {P1, P2, . . . , Pn} is a partition of P if the following two conditions are satisfied:

1. Pi ∩ Pj = ∅ for any i �= j , 1 ≤ i, j ≤ n;
2. P = P1 ∪ P2 · · · ∪ Pn .

We do not require that Pi is minimal in the above definition.

Example 6.1. Let P consist of the following rules:

C1: p ∨ q ← ∼u
C2: u ← v, ∼p
C3: w ← ∼w

It is trivial that P itself is a cluster. Two nontrivial clusters of P are P1 = {C1, C2} and
P2 = {C3}. P1 and P2 are also minimal clusters. Moreover, P = {P1, P2} is partition of P .

Theorem 6.1. Let P = {P1, P2, . . . , Pn} be a partition of disjunctive database P. Then,

for any atom p ∈ BP ,

1. ∼p ∈ GCWAG(P) if and only if ∼p ∈ GCWAG(Pi ) for all i = 1, . . . , n.
2. GCWAG(P) �P p if and only if GCWAG(Pi ) �P p for some i, 1 ≤ i ≤ n.



244 WANG AND ZHOU

This theorem translates the task of answering query Q in disjunctive database P into
that of answering query Q in components if a partition of P is given. If p ∈ BPi0

, then
∼p ∈ GCWAG(Pj ) for any j �= i0. That is, the truth or falsity of p in P can be decided in
Pi0 . Therefore, we have the following useful corollary.

Corollary 6.1. Let P = {P1, P2, . . . , Pn} be a partition of disjunctive database P and p
be an atom that appears in Pi0 . Then p is true (or false) in P if and only if p is true (or
false) in Pi0 .

Example 6.2. Consider the disjunctive database P in Example 6.1. For query Q = ∼ u,
we have ∼u ∈ GCWAG(P) since ∼u ∈ GCWAG(P1).

Notice that this example also shows that the partition method is not applicable to query
answering of the stable semantics (Przymusinski, 1991) for disjunctive databases. For in-
stance, in Example 6.1, ∼v is true in P1 under the stable semantics but the stable semantics
of P is undefined since P has no stable model.

Given a database partition, the sizes of its components are often smaller than the original
database and thus, query answering in a component is more efficient than in the entire
database. Query evaluation by database partition makes it possible for us to use the same
reasoning but to limit the total search effort. Ordering of partition components also provides
us some possible ways of optimizing query answering, for example, we can carry out query
evaluation by first starting with those partition components that have better chances of
producing answer fast. Further, such ordering of partition components can be based on their
sizes, the results of previous evaluations or any other relevant parameters. In particular, in
some cases, the components of a database partition are significantly smaller than the entire
database and therefore, the method of partitioning databases for query evaluation will be
more powerful.

The partition technique also makes some kind of parallel query answering possible since
the separate query evaluations in clusters can be performed in parallel. In the worst cases,
the entire database has only one cluster, that is, the database has no non-trivial partition.
Thus, the partition technique will not work for these databases. In the next section, we shall
provide another method of query evaluation for disjunctive databases.

7. Evaluating query by splitting

As pointed out at the end of Section 6, a major drawback of query evaluation by database
partition is that it may not work well when in cases the sizes of components of a partition
are large. The main reason is that the notion of partitioning is a little strong (it requires
that there be no connection between two clusters. In many applications, most of the rules
in databases are relevant and thus, we cannot expect the databases always possess such
partitions. In this section, we present another method of query evaluation by weakening
the requirement in the definition of clusters. Similar to the database partition technique, we
shall also divide a given database into smaller components but among these components
there may exist some kind of dependent relations. For any two such components P1 and P2,



EXTENSION TO GCWA AND QUERY EVALUATION 245

we allow one component to depend upon another but they cannot depend upon each other.
This method can be used to design a query database in a hierarchical fashion.

Example 7.1. We consider a variant of the example in Eiter et al. (1997) that expresses
the 3-colorability of a graph:

R1: Red(x) ∨ Green(x) ∨ Blue(x) ←
R2: Notcolored ← E(x, y), Red(x), Red(y)

R3: Notcolored ← E(x, y), Green(x), Green(y)

R4: Notcolored ← E(x, y), Blue(x), Blue(y)

R5: Colored ← ∼Notcolored

For this database, we may take P1 as either {R1} or {R1, R2, R3, R4}.

This idea is not quite a new one in deductive databases and logic programming since this
is just the idea of defining the stratified logic programs (Apt et al., 1988). It is also exploited
by Przymusinski (1988) to define the locally stratified programs, by Schlipf (1992) to define
the notion of stratified pairs, by Dix (1992) to define “relevance” and “modularity” of logic
programs. Lifschitz and Turner (1994) also use this idea to study the computation of answer
sets of a logic program. More recently, Eiter et al. (1997) consider the problem of using
this method to evaluate disjunctive Datalog under the stable semantics. To distinguish this
method from database partition in the last section, we name the method of dividing databases
in this section as database splitting. This terminology “splitting” is borrowed from Lifschitz
and Turner (1994). In a certain sense, these discussions are all concerned with only two-
valued models. However, our GCWAG is essentially a three-valued semantics and thus, the
situation becomes a little different and difficult as we shall see later on. The next definition
formulates the idea above in the setting of disjunctive databases.

Definition 7.1. A sub-database S of a disjunctive database P is a splitting sub-database
of P if C ∈ S for any rule C of P such that h(C) ∩ atoms(S) �= ∅. Here we abuse h(C) to
denote atoms(h(C)) for simplicity.

The condition in Definition 7.1 guarantees that the answering for query in the Herbrand
base BS depends upon only the rules in S. The splitting sub-database S corresponds to the
bottom stratification in stratified logic program and the minus set T = P − S is just an upper
stratification.

The existence of a splitting set also relates to the notion of modularity of programs. As
shown in the example above, following the guess and check paradigm, we can first design
a basic module P1 that generates a set of possible solution candidates, and a module P2

that takes the output of P1 (the possible solutions) and eliminates from them those which
violate the given criteria.

In the example above, both {R1} or {R1, R2, R3, R4} are splitting sub-databases of the
disjunctive database.

For a 2-valued semantics, the splitting technique is relatively simple: given a splitting set
S of a deductive database P , we can first evaluate S (say, we have a model M0 for S) and then



246 WANG AND ZHOU

we shall obtain models of P by evaluating only a simpler database P ′ = (P − S) ∪ {p ←:
p ∈ M0}.

Example 7.2. Let P be the deductive database:

R1: p ← u
R2: q ← ∼u
R3: v ← ∼u

Then S = {R3} is a splitting sub-database of P and M0 = {v} is a stable model of S. Then
P ′ = {R1; R2; v ←} and P ′ has the stable model M = {q, v}.

However, our semantics GCWAG is essentially 3-valued and we are concerned with only
inferring negative information, the situation becomes a little different in defining the partner
of P ′ above.

Let P S denote the disjunctive database simplified from P by the following three steps:

1. delete all rules in P whose bodies contain at least one atom p such that∼p ∈ GCWAG(S);
2. for any remaining rule, delete all atoms in the head whose complement literals are in

GCWAG(S), delete all negative literals in the body that are in GCWAG(S);
3. delete all rules that have empty heads in the rules obtained by step 2.

Notice that P S is similar to the GL-transformation (Gelfond and Lifschitz, 1988), but
heads of the rules are further simplified here. If S is a splitting sub-database of disjunctive
database P , then S is regarded as a disjunctive database on BS and P S as a disjunctive
database on BP−atoms(GCWAG(S)).

Theorem 7.1. Let S be a splitting sub-database of disjunctive database P and P S is
defined as above. Then

GCWAG(P) = GCWAG(S) ∪ GCWAG(P S).

This theorem suggests another method of optimizing query evaluation in some disjunctive
databases: Given a splitting sub-database S of P , if a query is in S, we need only answer
it against S; if a query is not in S and S is evaluated in advance, then the query answering
can be performed in a simplified database P S .

Example 7.3. Let P be the deductive database:

R1: p ∨ q ←
R2: p ←
R3: w ← ∼v

R4: v ← ∼p



EXTENSION TO GCWA AND QUERY EVALUATION 247

S = {R1, R2} is a splitting sub-database of P and GCWAG(S) = {∼q}. Then P S is the
following disjunctive database:

p ←
w ← ∼v

v ← ∼p

We have that GCWAG(P S) = {∼v}. Therefore, GCWAG(P) = {∼q, ∼v}.

The problem of constructing a splitting sub-database for a disjunctive database P can
also be reduced to that of finding certain subgraph of a graph associated with P . Given a
disjunctive database P , we associate a directed graph DG(P), whose nodes are all rules of
P and whose edges are the set {〈C1, C2〉 : h(C1) ∩ atoms(C2) �= ∅}.

Let S be a sub-database of disjunctive database P and C1 ∈ P − S. If there is a rule
C2 in S such that the ordered pair 〈C1, C2〉 is an edge of DG(P), then we say that C1 is
an unfounded node of DG(S). From Definition 7.1, we have the following graph-based
characterization for splitting sub-databases.

Proposition 7.1. Let P be a disjunctive database and S a sub-database of P. Then S is
a splitting sub-database of P if and only if the subgraph DG(S) has no unfounded nodes
in DG(P).

In general, more than one splitting sub-databases for a disjunctive database can be con-
structed, and thus we can generalize Theorem 7.1 to monotone sequences of splitting sub-
databases.

Definition 7.2. A splitting sequence of a disjunctive database P is a sequence of splitting
sub-databases of P : P1, P2, . . . , Pn such that Pi ⊂ Pi+1 for i = 1, . . . , n − 1.

Notice that Pi is also a splitting sub-database of Pi+1 in Definition 7.2
By Theorem 7.1, it is an easy induction on the length of the splitting sequence to prove

the following theorem.

Theorem 7.2. Let P1, P2, . . . , Pn be splitting sequence of a disjunctive database P. Set
Pn+1 = P and P0 = ∅. Then

GCWAG(P) =
n+1⋃

i=1

GCWAG
(
P Pi−1

i

)
.

Therefore, if we have a splitting sequence for disjunctive database P , then the evaluation
of P can be performed on smaller sub-databases sequentially. In general, this method seems
not so efficient as the method of partitioning databases and also can not be carried out in
parallel. However, it can be applied to a wider class of disjunctive databases than database
partition.



248 WANG AND ZHOU

8. Comparison to related work

The GCWA is initially introduced only for positive disjunctive databases (without default
negation). It can, in fact, be seen as a form of skeptical reasoning and is in particular
interesting to the community of (deductive) databases. Extensions of GCWA often fall into
three main categories:

1. Extensions that are only interested in deriving negative information: This is a major
feature of GCWA and our GCWAG can be suitably put in this category. Some other related
approaches in this category include SCWAS (Rajasekar and Minker, 1990) for stratified dis-
junctive databases, and GCWA¬ (Sakama and Inoue, 1993). Based upon the stable semantics
(Gelfond and Lifschitz, 1988; Przymusinski, 1991), Sakama and Inoue (1993) provide a
closed word reasoning form GCWA¬ for general disjunctive databases and GCWA¬ extends
the GCWA. Unfortunately, this form of non-monotonic reasoning bears the same drawback
as the stable semantics: GCWA¬ for some deductive databases may be undefined. We con-
sider the Barber’s Paradox example in You et al., (2000), which is a modification of the
deductive database in Dung (1995).

Example 8.1.

shave(bob, x) ← ∼ shave(x, x)

payCash(y, x) ∨ payByCredit(y, x) ← shave(x, y)

accepted(x, y) ← payCash(x, y)

accepted(x, y) ← payByCredit(x, y)

The first rule of this database says that bob shaves those who do not shave themselves; the
second rule says that y may pay x by cash or credit; the last two rules says that either way
of paying is accepted.

We further assume that greg is the mayor (another person different from bob). Then
GCWA¬ is undefined for this disjunctive database since it has no stable models in this
case. However, under the GCWAG , we can infer ∼shave(greg, greg), shave(bob, greg and
accepted(greg, bob).

2. Extensions that are interested in deriving both negative and positive information, but
not interested in deriving sentences: Most generalizations of the well-founded semantics
(Van Gelder et al., 1988) fall into this category, such as the generalized disjunctive well-
founded semantics (GDWFS) (Baral et al., 1990), the static semantics (Przymusinski, 1995),
the stationary semantics (i. e. partial stable models) (Przymusinski, 1991), WFDS (Wang,
2000) and D-WFS (Brass and Dix, 1999). Let us consider the following example, which
has been used by many authors to show the suitability of their semantics.

Example 8.2. Assume that our database P consists of three rules:

p ∨ q ←
w ← ∼p
w ← ∼q



EXTENSION TO GCWA AND QUERY EVALUATION 249

Since GCWAG(P) = ∅, w can not be inferred from P under GCWAG . Some other ap-
proaches including D-WFS and GDWFS also do not allow w to be inferred. But under
GCWA¬, stationary semantics and static semantics, w can be derived from the above P .

As an abstract program, we cannot say whether or not w should be inferred since we can
enumerate many applications for which w should not be concluded as well as applications
for which w should be concluded. Moreover, this problem has no much relation to whether
a nonmonotonic semantics is skeptical. The real secret is the ways of interpreting the non-
classical disjunction ‘∨’. For instance, the interpretation of the disjunctions walking ∨
singing and working ∨ tired is inclusive. The interpretation of the disjunctions black ∨
white and up ∨ down is exclusive.

In general, if the interpretation of ‘∨’ is inclusive, then w should not be concluded from
the above P . Otherwise, w should be concluded.

Example 8.3. Suppose that we have an incomplete knowledge base KB containing three
rules:

(1) If one is not excellent in research, he will be fired.
(2) If one is not excellent in teaching, he will be fired.
(3) We only know the fact that John is excellent at least in one of research and teaching.

Now, we ask: will John be fired? Intuitively, the correct answer should be unknown. That
is, one can neither say that John will be fired nor say that John will not be fired, since the
knowledge at hand is not enough to make a prediction about John’s tenure status.

Let t = ExcellentInTeaching, r = ExcellentInResearch and f = Fired, then this knowl-
edge base KB can be expressed as the following disjunctive database P:

t | r ←
f ← ∼t
f ← ∼r

Under GCWAG and D-WFS, f can not be inferred from KB. Thus, GCWAG and D-WFS
are the right semantics for this application. But the stationary semantics, static semantics
and GCWA¬ are not.

GDWFS is defined through fixpoints but it seems a little complicated and less intuitive.
In particular, this semantics interprets every disjunctive database into a positive one. For
example, under GDWFS, the database P in Example 8.2 is equivalent to the positive database
P ′ = {p ∨ q ←; w ∨ p ←; w ∨ q ←}. Thus, it is not our intuition on P .

The above examples illustrate that GCWAG is different from the existing extensions of
GCWA and is the correct semantics for applications that interpret the disjunction inclusively.

Brass and Dix’s D-WFS is relatively a new one, and has a quite different intuition from
our GCWAG . D-WFS is defined through a series of abstract semantic properties and does
not intend to perform argumentation. In addition, GCWAG also infers different literals from
D-WFS as the following example shows.1



250 WANG AND ZHOU

Example 8.4. According to the ranking of an European journal, the 20 top riches are all
from four places: North America, Europe, Hong Kong and Japan. Assume that we say a
person is rich if he/she is among the 20 ones. That is, if one is not from any of the above
four places, then he/she has less money. Moreover, we know that Tom is from one of the
four places (but we do not know exactly which). This knowledge base can be expressed as
the following disjunctive deductive database P:

lessMoney(x) ← ∼eu(x), ∼na(x), ∼hk(x), ∼jp(x)

eu(Tom) ∨ na(Tom) ∨ hk(Tom) ∨ jp(Tom) ←

Intuitively, we can not say that Tom is rich or not since there are many persons in the
above four places who are not rich according to the criteria above. That is, neither less-
Money(Tom) (he is not rich) nor ∼ lessMoney(Tom) (he is rich) can be inferred from P .
It can be verified that GCWAG(P) = ∅ and thus, GCWAG(P) ��P lessMoney(Tom) and
∼lessMoney(Tom) /∈ GCWAG(P).

This is exactly our intuition on P . Under D-WFS, ∼lessMoney(Tom) is derivable from P .

Notice that some of the approaches in the first category can also be put in this category by
including the positive information they derive. For example, given any disjunctive databases
P , our GCWAG is, in fact, a generalization of the well-founded semantics.

3. Extensions that are interested in arbitrary sentences: this line has been pursued by many
researchers, such as Gelfond et al. (1989), Lifschitz (1985), and Lifschitz (1995). In these
efforts, a knowledge base consists of arbitrary formulas and different circumscription poli-
cies are applied. But Minker restricts his attention to universal theories and their Herbrand
models. Another feature of Minker’s definition is that only one minimality of models is used.
For this reason, Minker’s GCWA is more simple than the circumscription-based approaches
and may be easier to be implemented in deductive databases. But Minker’s GCWA does not
possess so strong expressive power as McCarthy’s approach. Although both McCarthy’s
circumscription (McCarthy, 1980) and Minker’s GCWA are based on minimal models, the
deep relation between their uses of minimal models are quite subtle. Approaches in this
category are less relevant to our GCWAG , so we shall not discuss them in detail. Further
discussions can be found in some previous literatures (for instance, Lifschitz, 1985, 1995).

9. Conclusion

Our aim in this paper was to understand the relation of the closed world assumption to
argumentation (abduction) in disjunctive deductive databases. To do so, we first extend
the well known GCWA to the GCWAG for general disjunctive databases (with default
negation) and a novel argumentation-based interpretation for GCWAG is provided. Some
interesting properties of GCWAG are shown and these properties convince GCWAG is really
a suitable and natural extension of GCWA. We provide a complete and sound procedure
for GCWAG . It is well known that the query evaluation of disjunctive databases is a hard
problem. We also present two methods (database partitioning and database splitting) to
optimize the process of query evaluation. In particular, these two methods can be combined



EXTENSION TO GCWA AND QUERY EVALUATION 251

in practical applications. For example, given a deductive database P , we can first partition
it into clusters and then split each cluster. This combination of partitioning and splitting
exploits the advantages of both two methods. As indicated in the previous sections, GCWAG

is a promising nonmonotonic mechanism in deductive databases for its simplicity and
expressive power. An important direction of further research is to investigate the application
of GCWAG in commonsense reasoning. As the first step, the relation of GCWAG to other
formalisms of nonmonotonic reasoning should be clarified. Recently, Peter Baumgartner
at Koblenz University worked out a prototype implementation of GCWAG in ECLIPSE
prolog, which is a restart model elimination prover (Baumgartner et al., 1997) augmented
by default negation. It is possible to design a PTTP-based prover, or, to extend the PROTEIN
prover. Thus, the efficient implementation of our semantics in disjunctive databases is also
another issue to be further explored. GCWAG is polynomial-time for the class of finite
non-disjunctive propositional databases because GCWAG coincides with the well-founded
model. There may also exist some other classes of disjunctive databases that are both
moderately expressive and possess efficient procedures. Our SLIN-resolution is designed
only for query answering of propositional disjunctive databases. Another topic to be further
pursued is how to extend this procedure to deal with query-answering at the first order level.

Acknowledgments

We would like to thank the anonymous referees for helpful comments on this paper. This
work was supported in part by the Natural Science Foundation of China (No. 69883008,
No. 69773027), the NKBRSF of China (No. G61999032704), and the German Science
Foundation (DFG) within Project “Nichtmonotone Inferenzsysteme zur Verarbeitung kon-
fligierender Regeln” under grant FOR 375/1-1, TP C.

Note

1. The difference of GCWAG from D-WFS is pointed out by Jürgen Dix

References

Apt, K., Blair, H., and Walker, A. (1988). Towards a Theory of Declarative Knowledge. In Foundations of Deductive
Databases and Logic Programming (pp. 89–148).

Brass, S. and Dix, J. (1999). Semantics of Disjunctive Logic Programs Based on Partial Evaluation, Journal of
Logic Programming, 38(3), 167–312.

Baumgartner, P., Furbach, U., and Stolzenburg, F. (1997). Computing Answers with Model Elimination, Artificial
Intelligence, 90(1–2), 135–176.

Bondarenko, A., Dung, P. M., Kowalski, R., and Toni, F. (1997). An Abstract, Argumentation-theoretic Framework
for Default Reasoning, Artificial Intelligence, 93(1–2), 63–101.

Baral, C., Lobo, J., and Minker, J. (1990). Generalized Disjunctive Well-founded Semantics for Logic Programs:
Declarative Semantics. In Proceedings of the 5th International Symposium on Methodologies for Intelligent
Systems, Knoxville, TN (pp. 465–473).

Dix, J. (1992). Classifying Semantics of Disjunctive Logic Programs (extended abstract). In Proc. Joint Interna-
tional Conference and Symposium on Logic Programming (pp. 798–812).



252 WANG AND ZHOU

Dung, P. (1995). An Argumentation-theoretic Foundation for Logic Programming, J. Logic Programming, 24,
151–177.

Eiter, T., Leone, N., and Sacca, D. (1997). On the Partial Semantics for Disjunctive Deductive Databases, Annals
of Math. and AI., 19(1–2), 59–96.

Eiter, T., Gottlob, G., and Mannila, H. (1997). Disjunctive Datalog, ACM Transaction on Database Systems, 22(3),
364–418.

Fernandez, J. (1994). Disjunctive Deductive Databases, PhD Thesis, University of Maryland.
Gelfond, M. and Lifschitz, V. (1988). The Stable Model Semantics for Logic Programming. In R. Kowalski and

K. Bowen (Eds.), Logic Programming: Proc. of the Fifth International Conference and Symposium (pp. 1070–
1080).

Gelfond, M., Przymusinska, H., and Przymusinski, T. (1989). On the Relationship Between Circumscription and
Negation as Failure, Artificial Intelligence, 38(1), 75–94.

Hayes, P. (1971). Semantic Trees. PhD Thesis, Edinburgh University.
Kakas, A., Kowalski, R., and Toni, F. (1998). The Role of Abduction in Logic Programming. In D.M. Gabbay,

C.J. Hogger and J.A. Robinson (Eds.), Handbook of Logic in Artificial Intelligence and Logic Programming,
Vol. 5 (pp. 235–324). Oxford, UK: Oxford University Press.

Karacapilidis, N. and Papadias, D. (1998). A Computational Approach for Argumentative Discourse in Multi-agent
Decision Making Environments, AI Communications, 11(1), 21–33.

Kraus, S., Sycara, K., and Evenchik, A. (1998). Reaching Agreements through Argumentation: A logical Model
and Implementation. Artificial Intelligence, 104, 1–69.

Leone, N., Rullo, P., and Scarcello, F. (1997). Disjunctive Stable Models: Unfounded Sets, Fixpoint Semantics,
and Computation, Information and Computation, 135(2), 69–112.

Lifschitz, V. (1985). Closed-world Data bases and Circumscription, Artificial Intelligence, 27(2), 229–235.
Lifschitz, V. (1995). ECWA Made Easy, Annals of Mathematics and Artificial Intelligence, 14, 269–274.
Lobo, J., Minker, J., and Rajasekar, A. (1992). Foundations of Disjunctive Logic Programming, Cambridge, MA:

MIT Press.
Lifschitz, V. and Turner, H. (1993). Splitting a Logic Program. In Proc. of International Conference on Logic

Programming (pp. 567–585).
McCarthy, J. (1980). Circumscription—A form of Non-monotonic Reasoning, Artificial Intelligence, 13, 27–

39.
Minker, J. (1982). On Indefinite Databases and the Closed World Assumption. In LNCS 138, pp. 292–308.
Minker, J. and Rajasekar, A. (1990). A Fixpoint Semantics for Disjunctive Logic Programs, Journal of Logic

Programming, 9(1), 45–74.
Minker, J. and Zanon, G. (1982). An Extension to Linear Resolution with Selection Function, Information Pro-

cessing Letters, 14(3), 191–194.
Poole, D. (1989). What the Lottery Tells us About Default Reasoning. In Proc. of the 1st International Conference

on Principles of Knowledge Representation and Reasoning, Toronto, Canada (pp. 333–340).
Przymusinski, T. (1988). On the Declarative Semantics of Deductive Databases and Logic Programs. In Founda-

tions of Deductive Databases and Logic Programming (pp. 193–216).
Przymusinski, T. (1991). Semantic of Disjuctive Logic Programs and Deductive Databases. In C. Delobel, M. Kifer,

and Y. Masunaga (Eds.), Proceedings of the Second International Conference on Deductive and Object-Oriented
Databases (DOOD’91) (pp. 85–107). Germany: Springer Verlag.

Przymusinski, T. (1991). Stable Semantics for Disjunctive Programs, New Generation Computing, 9, 401–424.
Przymusinski, T. (1995). Static Semantics for Normal and Disjunctive Logic Programs. Annals of Mathematics

and Artificial Intelligence, 14, 323–357.
Prakken, H. and Sartor, G. (1996). Special Issue on Logical Models of Argumentation, Artificial Intelligence and

Law Journal, 4(3–4).
Rajasekar, A. and Minker, J. (1990). On Stratified Disjunctive Programs, Annals of Mathematics and Artificial

Intelligence, 1(1–4), 339–357.
Reiter, R. (1978). On the Closed World Databases. In H. Gallaire and J. Minke (Eds.), Logic and Data Bases.

(pp. 119-140). New York: Plenum Press.
Schlipf, J. (1992). Formalizing a Logic for Logic Programming, Annals of Mathematics and Artificial Intelligence,

5, 279–302.



EXTENSION TO GCWA AND QUERY EVALUATION 253

Sakama, C. and Inoue, K. (1993). Negation in Disjunctive Logic Programs. In Proceedings of the 10th International
Conference on Logic Programming (ICLP’93) (pp. 703–719). Cambridge, MA: MIT Press.

Van Gelder, A., Ross, K., and Schlipf, J. (1988). Unfounded Sets and Well-founded Semantics for General Logic
Programs. In Proceedings of the 7th ACM Symposium on Principles Of Database Systems. (pp. 221–230). Full
version in J. ACM, 38, 620–650, 1992.

Wang, K. (2000). Argumentation-based Abduction in Disjunctive Logic Programming, Journal of Logic Program-
ming, 45(1–3), 105–140.

Wang, K. and Chen, H. (1998). Abduction, Argumentation and Bi-disjunctive Logic Programs. In J. Dix, L. Pereira
and T. Przymusinski (Eds.), Logic Programming and Knowledge Representation (LNAI 1471), Proc. LPKR’97
(pp. 139–163).

Yahya, A. and Minker, J. (1994). Query Evaluation in Partitioned Disjunctive Deductive Databases, International
Journal of Intelligent and Cooperative Systems, 3(4), 385–413.

You, J., Yuan, L., and Gobel, R. (2000). Abductive Logic Programming with Disjunctive Logic Programs, Journal
of Logic Programming, 44(1–3), 101–127.


