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Abstract. Nested logic programs and epistemic logic programs are two impor-
tant extensions of answer set programming. However, the relationship between
these two formalisms is rarely explored. In this paper we first introduce the epis-
temic HT-logic, and then propose a more general extension of logic programs
callednested epistemic logic programs. The semantics of this extension - named
equilibrium views- is defined on the basis of the epistemic HT-logic. We prove
that equilibrium view semantics extends both the answer sets of nested logic pro-
grams and the world views of epistemic logic programs. Therefore, our work
establishes a unifying framework for both nested logic programs and epistemic
logic programs. Furthermore, we also provide a characterization of the strong
equivalence of two nested epistemic logic programs.

1 Introduction

Answer set programming(ASP) [6] was developed in the late of 1990s and has been
widely recognized as a promising tool for effective knowledge representation and declar-
ative problem solving [1]. ASP is based on theanswer set semanticsof logic programs
introduced by Gelfond and Lifschitz [4, 5]. The formal systems for ASP may have dif-
ferent features such as default negation, explicit negation, disjunction and preference.
Normal, general, extended and disjunctive logic programs are among the major ASP
formalisms.

As many researchers (including [3, 8]) have noticed, the languages of logic pro-
gramming are still insufficient in representing commonsense knowledge. Recently an-
swer set semantics has been extended to nested logic programs [8], in which arbitrarily
nested formulas are allowed. On the other hand, ASP is also expanded to epistemic
logic programs by Gelfond [3], where belief operators can be explicitly presented so
that incomplete information may be correctly represented in the extent of multiple be-
lief sets. The semantics of epistemic logic programs is defined as the collection of its
world views, which are generalizations of the answer sets for logic programs without
nested expressions.

Having examined the syntax and semantics of nested logic programs and epistemic
logic programs, people may observe an important fact: Although the world view seman-
tics of epistemic logic programs generalizes the answer set semantics for disjunctive
(extended) logic programs, it, however, cannot be used as the semantics for the epis-
temic logic programs with nested expressions containing belief operators. Hence, the
following two problems remain open:



1. As two extensions of ASP, can nested logic programs and epistemic logic programs
be unified in one common language?

2. Can nested expressions of formulas with belief operators be allowed in both the
head and body of rules in an epistemic logic program?

We observe that existing nonmonotonic epistemic logics, such as [9], do not provide
direct solutions to the above problems. As it will be illustrated in the following, since
the world view semantics is defined based on a transformation from epistemic logic
programs to disjunctive logic programs by eliminating the belief operators in the body
of rules, it is not feasible to simply allow belief operators to occur in the head of rules in
an epistemic logic program. Hence, it seems to be inevitable to develop a new approach
to solve these problems instead of seeking for a straightforward extension of Gelfond’s
world view semantics.

This paper aims to solve these problems in a unified manner. In particular, we first
introduce a new logic calledepistemic equilibrium HT-logic. This logic is a natural
integration of the equilibrium HT-logic [10, 11] and modal logic. Based on this logic,
we then specify a more general extension of logic programs callednested epistemic
logic programs (NELPs). The semantics of this extension - namedequilibrium views
- is defined on the basis of the epistemic HT-logic. We prove that equilibrium view
semantics extends both the answer sets of nested logic programs and the world views
of epistemic logic programs. Therefore, our work establishes a unifying framework for
both nested logic programs and epistemic logic programs. Furthermore, we also provide
a characterization of the strong equivalence of two nested epistemic logic programs.The
main results of this paper are summarized as follows:

1. Equilibrium view semantics extends the answer set semantics of nested logic pro-
grams;

2. Equilibrium view semantics extends the world view semantics of epistemic logic
programs;

3. Two nested epistemic logic programs are strong equivalent if and only if they are
equivalent in the epistemic HT-logic.

The rest of this paper is organized as follows. Section 2 proposes a new logic called
epistemic HT logic and defines its semantics. Section 3 presents a new logic program-
ming language (i.e. nested epistemic logic programs) which extends both the nested
logic programs and epistemic logic programs. Section 4 proves two major results to
show that the equilibrium view semantics generalizes both the answer set semantics
for nested logic programs and the world view semantics for epistemic logic programs.
Section 5 further proves a result about the strong equivalence of nested epistemic logic
programs. Section 6 discusses how to add the second negation into the new class of
programs. Finally, section 7 concludes the paper with some discussions.

2 Epistemic HT-Logic and Equilibrium Models

2.1 Syntax and Semantics

The language of our epistemic HT-logic will be the modal language which extends
the classical propositional language by means of two belief operatorsK andM . We



consider classical propositional formulas built from propositional atoms and the0-place
connective⊥ (“false”) using the binary connectives∨,∧ and→. We use> for⊥ ← ⊥,
and¬F for F → ⊥ whereF is a formula. Modal formulas are obtained by addition of
the following clauses to the usual inductive definition of propositional formulas:

– If F is a formula, thenKF is a formula;
– If F is a formula, thenMF is a formula.

KF is read as “F is known to be true” andMF is read as “F may be believed to be
true”. If a is an atom in the classical propositional logic, then an objective literal is
eithera or ¬a, and bothKb andMb are calledsubjective literalsfor any objective
literal b. Similarly, F is asubjective formulaif F contains at least one belief operator.
An epistemic theoryis a (finite) set of formulas in the language of epistemic HT-logic.

The HT-logic (i.e. the logic of here-and-there) is also known as “the logic of present
and future”, which is basically a three-valued logic. Pearce first used this logic to char-
acterize the answer set semantics of logic programs [11]. More recently, Lifschitz,
Pearce and Valverde characterize the strong equivalence of logic programs through the
HT-logic [7]. In the following we extend the semantics of the HT logic to the epistemic
HT-logic. So in our logic, we will have two tenses (H andT ) and two belief operators
(K andF ).

LetA be a collection of sets of (ground) atoms. Anepistemic HT-interpretationis
defined as an ordered tuple(A, IH , IT ) whereIH , IT are sets of atoms withIH ⊆ IT .
If IH = IT , we say(A, IH , IT ) is total. Notice that we do not requireIH ∈ A or
IT ∈ A.

For any epistemic HT-interpretation(A, IH , IT ), any tenset ∈ {H,T}, and any
formulaF , we define when(A, IH , IT , t) satisfiesF , denoted as(A, IH , IT , t) |= F ,
as follows:

– for any atomF , (A, IH , IT , t) |= F if F ∈ It.
– (A, IH , IT , t) 6|= ⊥.
– (A, IH , IT , t) |= KF if (A, JH , JT , t) |= F for all JH , JT ∈ A with JH ⊆ JT .
– (A, IH , IT , t) |= MF if (A, JH , JT , t) |= F for some pairJH , JT ∈ A with

JH ⊆ JT .
– (A, IH , IT , t) |= F ∧G if (A, IH , IT , t) |= F and(A, IH , IT , t) |= G.
– (A, IH , IT , t) |= F ∨G if (A, IH , IT , t) |= F or (A, IH , IT , t) |= G.
– (A, IH , IT , t) |= F → G if, for every tenset′ with t ≤ t′, (A, IH , IT , t′) 6|= F or

(A, IH , IT , t′) |= G.
– (A, IH , IT , t) |= ¬F if (A, IH , IT , t) |= F → ⊥

It is easy to see that ifF does not contain any belief operators,(A, IH , IT , t) |=
F is irrelevant to the collectionA; if F is a subjective literal (eitherKa or Ma),
(A, IH , IT , t) |= F is irrelevant toIH andIT . For example, takeA = {{a, b}, {a, c}}
and then(A, IH , IT , t) |= Ka for any sets of atomsIH andIT with IH ⊆ IT .

Epistemic HT-logic has the following basic properties which will be used in subse-
quent sections.

Lemma 1. For any epistemic HT-interpretation(A, IH , IT ), if (A, IH , IT ,H) |= F ,
then(A, IH , IT , T ) |= F .



The intuition behind this lemma is obvious: If a statement is true “here”, then it is also
true “there”. This property is guaranteed by the conditionIH ⊆ IT .

Finally, we say that an epistemic HT-interpretation(A, IH , IT ) satisfiesa formula
F , denoted(A, IH , IT ) |= F , if (A, IH , IT ,H) |= F .

A modelof an epistemic theoryE is an epistemic HT-interpretation(A, IH , IT ) by
which every formula inE is satisfied.

2.2 Epistemic Equilibrium Logic

Pearce’s equilibrium logic is a kind of minimal model reasoning based on the HT-logic
and its semantics is defined as the set of the equilibrium models [11]. An interesting
result about the equilibrium logic is that it provides a characterization of the answer sets
for nested logic programs [7]. In this subsection, we generalize the notion of equilibrium
models to our epistemic HT-logic and the resulting logic is calledepistemic equilibrium
logic.

Definition 1. An epistemic equilibrium modelof an epistemic theoryΓ is a total epis-
temic HT-interpretation(A, I, I) such that

(i) (A, I, I) is a model ofΓ .
(ii) for every proper subsetJ of I, (A, J, I) is not a model ofΓ .

Epistemic equilibrium logicis the logic whose semantics is defined through epistemic
equilibrium models. To provide a unifying characterization for the semantics of both
nested logic programs and epistemic logic programs, we need the following definition.

Definition 2. LetA be a collection of sets of atoms occurring in an epistemic theory
Π. We sayA is an equilibrium view ifA is a maximal collection that satisfies

A = {I | (A, I, I) is an equilibrium model ofΠ}.

To illustrate our definitions, let us look at the following examples.

Example 1.LetΠ1 be the epistemic theory containing only the formula{Ka∨b}. Then
both({{a}}, {a}, {a}) and({{b}}, {b}, {b}) are epistemic equilibrium models ofΠ1.
Moreover,A1 = {{a}} andA2 = {{b}} are equilibrium views ofΠ1. But A3 =
{{a}, {b}} is not an equilibrium view ofΠ1 since(A3, {a}, {a}) is not an epistemic
model ofΠ1 (note that(A3, {a}, {a}) 6|= Ka). A4 = {{a, b}} is not an equilibrium
view of Π1 either because(A4, {a, b}, {a, b}) is not an epistemic equilibrium model.

Example 2.LetΠ2 = {K(a∨b)} be an epistemic theory. Then{{a}, {b}} is the unique
equilibrium view ofΠ2. Note that although({{a}}, {a}, {a}) and({{b}}, {b}, {b}) are
epistemic equilibrium models ofΠ1, neither{{a}} nor {{b}} is an equilibrium view
of Π2 since they are not maximal.

Example 3.Let Π3 = {a,Ka → b ∨ c} be an epistemic theory. It is easy to see that
Π3 has a unique equilibrium view{{a, b}, {a, c}}.



It is worth to mentioning that differently from the standard propositional modal
logic, for instance S5, the epistemic equilibrium logic can be viewed as a kind of mini-
mal model reasoning about epistemic concepts (i.e knowledge and belief). In this way,
the equilibrium view semantics shares the same spirit of Gelfond’s world view seman-
tics. However, as will be shown next, epistemic equilibrium logic is general enough to
characterize the semantics of nested epistemic logic programs, while the world view
semantics cannot.

3 Nested Epistemic Logic Programs (NELPs)

As we will see in the next section, the epistemic HT-logic is actually a very general
extension of both nested logic programs (NLPs) and epistemic logic programs (ELPs).
To make this comparison more direct, we generalize both the syntax of NLPs and the
syntax of ELPs by introducing a class of logic programs callednested epistemic logic
programsor NELP. This language corresponds to a subset of the language of the epis-
temic HT-logic.

Theatom is understood as in propositional logic.Elementary formulasare propo-
sitional atoms and the0-place connective⊥ (“false”) and> (“true”). NELP formulas
are built from elementary formulas using negation as failure “not”, conjunction “,”,
disjunction “;”, and the two belief operatorsK andM .

An NELP ruleis an expression of the form

F ← G

whereF andG are NELP formulas called theheadand thebodyof the rule. For any rule
r, its head and body are denotedhead(r) andbody(r), respectively. Anested epistemic
logic program (abbreviated NELP)is a (finite) set of NELP rules.

For our purpose, in this paper we will only consider propositional epistemic logic
programs where rules containing variables are viewed as the set of all ground rules by
replacing these variables with all constants occurring in the language.

Let us think of NELP rules as epistemic formulas by replacing every “not” with
“¬”, every comma with “∧”, every semicolon “;” with disjunction “∨”, and transform-
ing every rulehead ← body into the implicationbody → head. Accordingly we can
turn every nested epistemic logic programΠ into an epistemic theory. When no confu-
sion is caused, we will not distinguish a nested epistemic logic programΠ and its cor-
responding epistemic theory. Note that the negation “¬” corresponds to the negation as
failure rather than the strong negation (or classical negation) in logic programming. For
simplicity, the second negation will not be considered until in Section 6. For example,
we may useΠ to denote both the NELP{Ka; b← c,Md, note} and its corresponding
epistemic theory{c ∧Md ∧ ¬e→ Ka ∨ b}.

Now based on the epistemic HT-logic introduced in Section 2, we define the seman-
tics of nested epistemic logic programs as follows.

Definition 3. LetΠ be a nested epistemic logic program andA be a collection of sets
of atoms. We sayA is an equilibrium viewof Π if A is an equilibrium view of the
corresponding epistemic theoryΠ.



Example 4.Consider the nested epistemic logic programΠ:

Ka;Kb←,
c← Ka, notMb,
d← Kb, notMa.

It is easy to see thatΠ has two equilibrium views{{a, c}} and{{b, d}}. Note that if
we change the first rule inΠ to bea; b ←, then the modified program will only have
one equilibrium view{{a}, {b}}.

4 Epistemic Equilibrium Logic and Logic Programs

The class of NELPs contains two major classes of logic programs:nested logic pro-
gramsandepistemic logic programs. Thus NELPs generalize most classes of logic pro-
grams including normal logic programs and disjunctive logic programs. In this section
we will prove that the equilibrium view semantics of NELPs extends both the world
view semantics of epistemic logic programs and answer set semantics of nested logic
programs.

4.1 Equilibrium Views and Answer Sets of Nested Logic Programs

An NLP rule is a special NELP rule which contains no belief operators, and anested
logic program (NLP)is a set of NLP rules. Similarly, anNLP formula is an NELP
formula containing no belief operators.

To define the answer sets of nested logic programs, we first define when a setS of
atomssatisfiesan NLP formulaF , denoted asS |= F , recursively as follows:

S |= F if F is an atom andF ∈ S,
S |= >,
S |= ⊥,
S |= (F,G) if S |= F andS |= G,
S |= (F ;G) if S |= F or S |= G,
S |= notF if S 6|= F .
We say a nested logic programΠ is closedunder a set of atomsS if, for every rule

r, body(r) implieshead(r). Then the definition ofanswer setsis defined in two steps:

– Let Π be a nested logic program without negation as failurenot. A setS of atoms
is ananswer setof Π if S is minimal set closed underS;

– For an arbitrary nested logic programΠ, thereductΠS with respect to a setS of
atoms is obtained by replacing every maximal occurrence of a formula of the form
notF in Π with ⊥ if S |= F and with> if S |= notF . We sayS is ananswer set
of Π if S is an answer set ofΠS .

As we have noted before, a nested logic program is also a nested epistemic logic
program and thus any nested logic programΠ can be assigned two semantics:answer
setsandequilibrium views. The following result states that these two semantics coin-
cide for nested logic programs and thus the equilibrium view semantics generalizes the
answer set semantics.



Theorem 1. Let Π be a nested logic program andS be a set of atoms. ThenS is an
answer set ofΠ if and only if there exists an equilibrium viewA of Π (as a nested
epistemic logic program) such thatS ∈ A.

Proof. (⇒) If S is an answer set ofΠ, letA denote the set of minimal models ofΠS .
Then we haveS ∈ A by the definition of answer sets. We need only to prove thatA
is an equilibrium view ofΠ (as a nested epistemic logic program). SinceΠ contains
no belief operators,(A, S, S) is an equilibrium model ofΠ in the epistemic HT-logic
if and only if (S, S) is an equilibrium model ofΠ in ordinary HT-logic. Again, by
Lemma 3 in [7],(S, S) is an equilibrium model ofΠ in ordinary HT-logic if and only if
S is an answer set ofΠ. Thus(A, S, S) is an equilibrium model ofΠ in the epistemic
HT-logic.
(⇐) Using the above argument, we have that if(A, S, S) is an equilibrium model ofΠ
in the epistemic HT-logic thenS is an answer set ofΠ.

4.2 Equilibrium Views and World Views of Epistemic Logic Programs

Epistemic logic programs were first proposed by Gelfond [3] in order to overcome dif-
ficulties in reasoning about disjunctive information through disjunctive logic programs.
It turns out that epistemic logic programs can be used as an effective formulation to rep-
resent and reason about agents’ epistemic states and hence have great potential in agent
programming. The semantics for epistemic logic programs is based on the pair(A, S),
whereA is a collection of sets of ground literals andS is a set inA. The truth of an
NELP formulaF in (A, S) is denoted by(A, S) |= F and the falsity by(A, S) =|F ,
and are defined as follows:
(A, S) |= F iff F ∈ S whereF is a ground atom.
(A, S) |= KF iff (A, Si) |= F for all Si ∈ A.
(A, S) |= MF iff (A, Si) |= F for someSi ∈ A.
(A, S) |= (F,G) iff (A, S) |= F and(A, S) |= G.
(A, S) |= (F ;G) iff (A, S) |= ¬(¬F,¬G).
(A, S) |= ¬F iff (A, S) =|F .
(A, S) =|F iff ¬F ∈ S whereF is a ground atom.
(A, S) =|KF iff (A, S) 6|= KF .
(A, S) =|MF iff (A, S) 6|= MF .
(A, S) =|(F,G) iff (A, S) =|F or (A, S) =|G.
(A, S) =|(F ;G) iff (A, S) =|F and(A, S) =|G.
An epistemic logic programor ELP is a finite set of ELP rules of the form:

F1;F2; · · · ;Fk ← G1, · · · , Gm, notGm+1, · · · , notGn. (1)

HereF1, · · · , Fk are (objective) formulae,G1, · · · , Gm are (objective) formulae or sub-
jective formulaes, andGm+1, · · · , Gn are (objective) formulae.

Note that ELP also allows nested expressions but in a restricted form.
For an epistemic logic programΠ, its semantics is given by itsworld viewwhich is

defined in the following steps:



Step 1. Let Π be an epistemic logic program containing neither belief operatorsK and
M nor negation as failurenot. A setS of ground literals is called abelief setof Π iff S is
a minimal set of satisfying conditions: (i) for each ruleF1;F2; · · · ;Fk ← G1, · · · , Gm

from Π such thatS |= (G1, · · · , Gm) we haveS |= (F1;F2; · · · ;Ft); and (ii) if S
contains a pair of complementary literals, thenS is the setLit of all literals (called
inconsistent belief set).
Step 2. Let Π be an epistemic logic program not containing modal operatorsK and
M andS be a set of ground literals in the language ofΠ. By ΠS we denote the result
of (i) removing fromΠ all the rules containing formulas of the formnotG such that
S |= G and (ii) removing from the rules inΠ all other occurrences of formulas of the
form notG. S is abelief setof Π iff S is a belief set ofΠS .
Step 3. Finally, let Π be an arbitrary epistemic logic program andA a collection of
sets of ground literals in its language. ByΠA we denote the epistemic logic program
obtained fromΠ by (i) removing fromΠ all rules containing formulas of the form
G such thatG is subjective andA 6|= G, and (ii) removing from rules inΠ all other
occurrences of subjective formulas.S is abelief setof Π iff S is a belief set ofΠA.

Example 5.The following epistemic logic programΠ:

a←
b; c←
d← Ka
e←Mb

has a unique world view{{a, b, d, e}, {a, c, d, e}}.

Observe that the world view of the above programΠ is also the equilibrium view
of Π. This is not surprising because we will show that, for any epistemic logic program
Π,A is a world view ofΠ if and only ifA is an equilibrium view ofΠ.

The negation¬ in epistemic program actually corresponds to the strong negation
in extended logic program. In the rest of this section our discussion is temporarily re-
stricted to epistemic programs that do not contain¬. In Section 6, we will see that the
results here are all valid for arbitrary epistemic programs.

We first introduce some notations. By viewing an epistemic logic programΠ as
an epistemic theory in epistemic HT-logic,(A, J, I) |= Π means that each rule is
satisfied in the epistemic HT-interpretation(A, J, I). Under the world view semantics,
on the other hand, we say that a rule of the form (1)is satisfiedin a pair(A, S) if the
fact (A, S) |= (G1, · · · , Gm), (A, S) 6|= Gm+1, · · · , (A, S) 6|= Gn implies (A, S) |=
F1; · · · ;Fk. (A, S) |= Π means that each rule ofΠ is satisfied in(A, S). If Π does not
contain any belief operators, we simply useS |= Π to denote(A, S) |= Π (recall that
the truth values of objective formulas are irrelevant toA.

Lemma 2. Let (A, IH , IT ) be an epistemic HT-interpretation andΠ an epistemic
logic program without containing negation as failure.(A, J, I) |= Π if and only if
(A, J) |= Π.

Lemma 3. Let Π be an epistemic logic program and(A, J, I) be an epistemic HT-
interpretation. Then(A, J, I) |= Π if and only ifJ |= (ΠA)I . Here(ΠA)I is obtained
through Step 3 and Step 2 in the definition of the world views.



Proof. (⇒) Suppose(A, J, I) |= Π, we want to showJ |= (ΠA)I .
If R ∈ Π, we can assume thatR is of the form (1). IfR satisfies(A, I) |= Gi for

everyi with r + 1 ≤ i ≤ m and(A, I) 6|= Gj for everyi with m + 1 ≤ j ≤ n, we use
(RA)I to denote the reduction ofR with respect toA andI: F1; · · · ;Fk ← G1, · · · , Gr.
In general,(RA)I may be undefined. Note that(ΠA)I = {(RA)I | R ∈ Π}.

For any rule of((ΠA)I), it must be of the form(RA)I for some ruleR ∈ Π. So we
need only to prove thatJ |= (RA)I for R ∈ Π.

By the definition of the program reduction, we have the following two facts:

1. (A, I) |= Gi for r + 1 ≤ i ≤ m and
2. (A, I) 6|= Gi for m + 1 ≤ i ≤ n.

SupposeJ |= body((RA)I)), we want to showJ |= head((RA)I). That is,J |=
(F1; · · · ;Fk). Since the body of(RA)I is now the conjunction ofG1, · · · , andGr, we
haveJ |= Gi for all i with 1 ≤ i ≤ r.

We prove that(A, J, I) |= body(R) by considering three different cases:

Case 1.SinceJ |= Gi for 1 ≤ i ≤ r, thenGi ∈ J and thus(A, J, I, t) |= Gi for any
t ∈ {H,T}.

Case 2. If r + 1 ≤ i ≤ m, thenGi is a subjective literal and it is of form either
KO′

i or MO′
i for some objective literalOi. If Gi = KOi, by (A, I) |= Gi for

r + 1 ≤ i ≤ m, (A, I) |= KOi. This means(A, I ′) |= Oi for all I ′ ∈ A, which
implies (A, IH , IT , t) |= Oi for all setsJH , JT of atoms withJH ⊆ JT . Thus
(A, J, I, t) |= KOi or (A, J, I, t) |= Gi for r + 1 ≤ i ≤ m. Similarly, we also
have(A, J, I, t) |= Gi for r + 1 ≤ i ≤ m if Gi = MOi.

Case 3. If (A, I) 6|= Gi for m + 1 ≤ i ≤ n, thenGi ∈ I. SinceGi is objective and
J ⊆ I, (A, J, I) 6|= Gi.

Combining Cases 1-3, we have(A, J, I) |= body(R). By (A, J, I) |= R, we have
(A, J, I) |= head(R). By head(R) = head((RA)I) and thus(A, J, I) |= head((RA)I).

(⇐) SupposeJ |= (ΠA)I , we show(A, J, I) |= Π by considering the following three
cases:

For any ruleR ∈ Π, assumeR is of form (1),

Case 1. If (A, I) 6|= Gi for somei with r + 1 ≤ i ≤ m, thenGi 6∈ I and thusGi 6∈ J .
This implies(A, J, I) 6|= Gi. In this case,(A, J, I) 6|= body(R). So(A, J, I) |= R.

Case 2. If (A, I) |= Gi for somei with m + 1 ≤ i ≤ n, thenGi ∈ I. This implies
(A, J, I, T ) |= Gi. In this case,(A, J, I) 6|= body(R). So(A, J, I) |= R.

Case 3. If neither Case 1 nor Case 2, then(A, J, I) |= Gr+1 ∧ · · · ∧ Gm∧ ¬Gm+1 ∧
· · · ∧ ¬Gn and thus(RA)I is well defined.
If (A, J, I) |= G1 ∧ · · · ∧Gr, thenJ |= G1 ∧ · · · ∧Gr. SinceJ |= (RA)I , we have
J |= head((RA)I). That is,J |= head(R).

Lemma 4. Let Π be an ELP and(A, J, I) be a epistemic HT-interpretation. Then
(A, I, I) is an equilibrium model ofΠ if and only ifI is a belief set of(ΠA)I .

The above lemma, obtained directly from Lemma 3, implies the following result.

Theorem 2. Let Π be an epistemic logic program andA be a collection of sets of
atoms. ThenA is a world view ofΠ if and only ifA is an equilibrium view ofΠ.



5 Strong Equivalence of Nested Epistemic Logic Programs

Recently, researchers have addressed the problem of characterizing the strong equiv-
alence of logic programs under the answer sets. In particular, the result in [7] shows
that the strong equivalence of nested logic programs can be characterized in term of
the equivalence of formulas in monotonic logic (the HT-logic). Here we are interested
in extending this result to NELPs under the equilibrium view semantics. We say two
NELPsΠ1 andΠ2 areequivalentif they have the same equilibrium views. A NELP
Π1 is said to bestrong equivalentto another NELPΠ2 if, for every NELPΠ, Π1 ∪Π
andΠ2 ∪Π are equivalent. It is well-known that equivalence of two programs does not
implies their strong equivalence in general (see [2, 8, 7] for more examples of strongly
equivalent programs).

Similarly, two theoriesΠ1 andΠ2 in the epistemic HT-logic isequivalentif they
have the same set of models.

Theorem 3. For any nested epistemic logic programsΠ1 andΠ2, the following con-
ditions are equivalent:

(1) Π1 is strongly equivalent toΠ2.
(2) Π1 is equivalent toΠ2 in the epistemic HT-logic.

By Theorem 2, it is easy to prove Theorem 3 since we have the following lemma,
whose proof is similar to that of Theorem 1 in [7].

Lemma 5. For any epistemic theoriesΓ1 andΓ2, the following conditions are equiva-
lent:

(1) for every epistemic theoryΓ , Γ1∪Γ andΓ2∪Γ have the same equilibrium models.
(2) Γ1 is equivalent toΓ2 in the epistemic HT-logic.

For any two objective theoriesΓ1 andΓ2, they are equivalent in the logic of here-
and-there if and only if they are equivalent in the epistemic HT-logic. Thus, by Theo-
rem 2, the main result (Theorem 1) in [7] is a corollary of our Theorem 3:

Corollary 1. For any nested logic programsΠ1 andΠ2, the following conditions are
equivalent:

(1) Π1 is strongly equivalent toΠ2.
(2) Π1 is equivalent toΠ2 in the logic of here-and-there.

By Theorem 2, the strong equivalence of epistemic logic programs under the world view
semantics can also be verified by checking the equivalence of formulas in the epistemic
HT-logic which is a monotonic logic.

Corollary 2. For any epistemic logic programsΠ1 andΠ2, the following conditions
are equivalent:

(1) Π1 is strongly equivalent toΠ2.
(2) Π1 is equivalent toΠ2 in the epistemic HT-logic.



6 Adding Strong Negation in NELPs

In answer set programming, the syntax of logic programs usually allows both negation
as failure and strong negation [5]. The second negation is denoted by¬. It is well-known
that this extension is very useful for representing and reasoning about incomplete infor-
mation. In this section, we show how to add the second negation in NELPs. This can be
done by an easy generalization of Section 5 in [7]. Technically, it is not hard to add the
strong negation in the syntax of logic programs.

A literal is an atoma or its strong negation¬a. By allowing arbitrary literals in
place of atoms,extended NELP formula, extended NELP ruleandextended NELPcan
be defined in the same way as we defined NELP formula, NELP rule and NELP. Fol-
lowing [5], the semantic of an extended NELP can be defined through a simple syntactic
translation.

Given an extended NELPΠ, we introduce a new symbola′ for each atoma in Π.
ThenΠ can be translated into a NELPΠ ′ by replacing each negative literal¬a with
a′. Note thatΠ ′ does not contain the strong negation. For any expressionE, we useE′

to denote the expression obtained by replacing every¬a with a′. DenoteCons(Π) =
{⊥ ← a, a′ | a is literal inΠ}. Then we sayA is an equilibrium view ofΠ if A′ is an
equilibrium view ofΠ ′ ∪ Cons(Π).

For nested logic programs (with strong negation)Π, a setX of literals is an answer
set ofΠ iff X is X ′ is an answer set ofΠ ′ ∪ Cons(Π). Therefore, Theorem 1 is also
true for nested logic programs with strong negation.

In the same way as in [5], the negation¬ in an epistemic logic program can be
eliminated by introducing new atoma′ for each atoma. Thus, Theorem 2 is also true
for epistemic logic program with strong negation.

Theorem 3 can also be generalized to extended NELPs.

Theorem 4. For any extended NELPsΠ1 andΠ2, the following conditions are equiv-
alent:

(1) Π1 is strongly equivalent toΠ2.
(2) Π1 ∪ Cons(Π1) is equivalent toΠ2 ∪ Cons(Π2) in the epistemic HT-logic.

Proof. Π1 is strongly equivalent toΠ2

if and only if
Π ′

1 ∪ Cons(Π1) is strongly equivalent toΠ2 ∪ Cons(Π2)
if and only if
Π1 ∪ Cons(Π1) is equivalent toΠ2 ∪ Cons(Π2) in the epistemic HT-logic.

7 Conclusions

In this paper, we introduced the epistemic HT-logic and based on this logic further de-
veloped a new type of logic programs called nested epistemic logic programs (NELPs).
We showed that the equilibrium view semantics of NELPs generalizes the answer set
semantics of nested logic programs as well as the world view semantics of epistemic
logic programs. We also characterize the strong equivalence property of NELPs in terms
of epistemic HT-logic.



Some important issues related to NELPs should be further investigated. Firstly, it is
important to understand the computational properties of NELPs in detail from both the-
oretical and practical viewpoints. Secondly, as epistemic logic programs may be viewed
as an effective formalism for representing and reasoning about agent’s dynamic epis-
temic state, e.g. [12], it would be interesting to explore how this work can be improved
by applying NELPs.
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