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Abstract. Nested logic programs and epistemic logic programs are two impor-
tant extensions of answer set programming. However, the relationship between
these two formalisms is rarely explored. In this paper we first introduce the epis-
temic HT-logic, and then propose a more general extension of logic programs
callednested epistemic logic programEhe semantics of this extension - named
equilibrium views- is defined on the basis of the epistemic HT-logic. We prove
that equilibrium view semantics extends both the answer sets of nested logic pro-
grams and the world views of epistemic logic programs. Therefore, our work
establishes a unifying framework for both nested logic programs and epistemic
logic programs. Furthermore, we also provide a characterization of the strong
equivalence of two nested epistemic logic programs.

1 Introduction

Answer set programmin@ASP) [6] was developed in the late of 1990s and has been
widely recognized as a promising tool for effective knowledge representation and declar-
ative problem solving [1]. ASP is based on #meswer set semanticg logic programs
introduced by Gelfond and Lifschitz [4, 5]. The formal systems for ASP may have dif-
ferent features such as default negation, explicit negation, disjunction and preference.
Normal, general, extended and disjunctive logic programs are among the major ASP
formalisms.

As many researchers (including [3, 8]) have noticed, the languages of logic pro-
gramming are still insufficient in representing commonsense knowledge. Recently an-
swer set semantics has been extended to nested logic programs [8], in which arbitrarily
nested formulas are allowed. On the other hand, ASP is also expanded to epistemic
logic programs by Gelfond [3], where belief operators can be explicitly presented so
that incomplete information may be correctly represented in the extent of multiple be-
lief sets. The semantics of epistemic logic programs is defined as the collection of its
world views which are generalizations of the answer sets for logic programs without
nested expressions.

Having examined the syntax and semantics of nested logic programs and epistemic
logic programs, people may observe an important fact: Although the world view seman-
tics of epistemic logic programs generalizes the answer set semantics for disjunctive
(extended) logic programs, it, however, cannot be used as the semantics for the epis-
temic logic programs with nested expressions containing belief operators. Hence, the
following two problems remain open:



1. Astwo extensions of ASP, can nested logic programs and epistemic logic programs
be unified in one common language?

2. Can nested expressions of formulas with belief operators be allowed in both the
head and body of rules in an epistemic logic program?

We observe that existing nonmonotonic epistemic logics, such as [9], do not provide
direct solutions to the above problems. As it will be illustrated in the following, since
the world view semantics is defined based on a transformation from epistemic logic
programs to disjunctive logic programs by eliminating the belief operators in the body
of rules, it is not feasible to simply allow belief operators to occur in the head of rules in
an epistemic logic program. Hence, it seems to be inevitable to develop a new approach
to solve these problems instead of seeking for a straightforward extension of Gelfond’s
world view semantics.

This paper aims to solve these problems in a unified manner. In particular, we first
introduce a new logic calledpistemic equilibrium HT-logicThis logic is a natural
integration of the equilibrium HT-logic [10, 11] and modal logic. Based on this logic,
we then specify a more general extension of logic programs cabsted epistemic
logic programs (NELPs)The semantics of this extension - nameglilibrium views
- is defined on the basis of the epistemic HT-logic. We prove that equilibrium view
semantics extends both the answer sets of nested logic programs and the world views
of epistemic logic programs. Therefore, our work establishes a unifying framework for
both nested logic programs and epistemic logic programs. Furthermore, we also provide
a characterization of the strong equivalence of two nested epistemic logic programs.The
main results of this paper are summarized as follows:

1. Equilibrium view semantics extends the answer set semantics of nested logic pro-
grams;

2. Equilibrium view semantics extends the world view semantics of epistemic logic
programs;

3. Two nested epistemic logic programs are strong equivalent if and only if they are
equivalent in the epistemic HT-logic.

The rest of this paper is organized as follows. Section 2 proposes a new logic called
epistemic HT logic and defines its semantics. Section 3 presents a new logic program-
ming language (i.e. nested epistemic logic programs) which extends both the nested
logic programs and epistemic logic programs. Section 4 proves two major results to
show that the equilibrium view semantics generalizes both the answer set semantics
for nested logic programs and the world view semantics for epistemic logic programs.
Section 5 further proves a result about the strong equivalence of nested epistemic logic
programs. Section 6 discusses how to add the second negation into the new class of
programs. Finally, section 7 concludes the paper with some discussions.

2 Epistemic HT-Logic and Equilibrium Models

2.1 Syntax and Semantics

The language of our epistemic HT-logic will be the modal language which extends
the classical propositional language by means of two belief operatcaad M. We



consider classical propositional formulas built from propositional atoms artidplece
connectivel (“false”) using the binary connectives A and—. We useT for L «— L,
and—F for F — 1 whereF is a formula. Modal formulas are obtained by addition of
the following clauses to the usual inductive definition of propositional formulas:

— If Fis aformula, therK F' is a formula;
— If Fis aformula, then\/ F is a formula.

KF is read as “F is known to be true” and F' is read as “F may be believed to be
true”. If a is an atom in the classical propositional logic, then an objective literal is
eithera or —a, and bothK'b and Mb are calledsubjective literalsfor any objective
literal b. Similarly, F' is asubjective formulaf F' contains at least one belief operator.
An epistemic theoris a (finite) set of formulas in the language of epistemic HT-logic.

The HT-logic (i.e. the logic of here-and-there) is also known as “the logic of present
and future”, which is basically a three-valued logic. Pearce first used this logic to char-
acterize the answer set semantics of logic programs [11]. More recently, Lifschitz,
Pearce and Valverde characterize the strong equivalence of logic programs through the
HT-logic [7]. In the following we extend the semantics of the HT logic to the epistemic
HT-logic. So in our logic, we will have two tensef (andT’) and two belief operators
(K andF).

Let A be a collection of sets of (ground) atoms. Apistemic HT-interpretatiors
defined as an ordered tugld, 77, I7) wherel | I are sets of atoms with C 17
If 717 = IT, we say(A, I IT) is total. Notice that we do not require” € A or
IT € A.

For any epistemic HT-interpretatioqd, 17, I7), any tense € {H,T}, and any
formula F', we define wherf A, 17, IT ) satisfiesF’, denoted asA, 17,17, t) = F,
as follows:

— forany atomF, (A, I7 17 t) = Fif F € I'.

—(ATH I ) B L

— (A TH IT 1) = KFif (A, JH,JT,t) = Forall JH, JT € Awith JH C J7.

- (A T2 1T t) E MFif (A,J7,J7,t) = F for some pairJ?,JT € A with
JHECJT,

(A TH T ) = FAGIH (AT, I7,1) = Fand(A, I7,17,1) = G.

—(AEIT ) = FV G (AT, T, 1) = For (A IH,17,t) = G.

— (A IR IT t) = F — G if, for every tense’ with t < ¢/, (A, IH,IT ') £ F or
(A TH IT ) = G.

— (A TH IT ) = —Fif (ATH T t) = F — 1

It is easy to see that if” does not contain any belief operatofsi, I/, 17 t) |=
F is irrelevant to the collectiond; if F' is a subjective literal (eitheka or Ma),
(A, T 17 t) = Fisirrelevant tol andI”. For example, takel = {{a, b}, {a,c}}
and then(A, I7 IT  t) = Ka for any sets of atoms andI? with 17 C 7.
Epistemic HT-logic has the following basic properties which will be used in subse-
quent sections.

Lemma 1. For any epistemic HT-interpretatiopd, I, IT), if (A, I, IT H) |= F,
then(A, I, 17 T) = F.



The intuition behind this lemma is obvious: If a statement is true “here”, then it is also
true “there”. This property is guaranteed by the conditiéhC 17

Finally, we say that an epistemic HT-interpretatiof, I, I7) satisfiesa formula
F,denoted A, I 17 = F,if (A, T IT H) = F.

A modelof an epistemic theory is an epistemic HT-interpretatiqed, 17, 1) by
which every formula inZ is satisfied.

2.2 Epistemic Equilibrium Logic

Pearce’s equilibrium logic is a kind of minimal model reasoning based on the HT-logic
and its semantics is defined as the set of the equilibrium models [11]. An interesting
result about the equilibrium logic is that it provides a characterization of the answer sets
for nested logic programs [7]. In this subsection, we generalize the notion of equilibrium
models to our epistemic HT-logic and the resulting logic is cadlpidtemic equilibrium

logic.

Definition 1. Anepistemic equilibrium modedf an epistemic theory' is a total epis-
temic HT-interpretation{.A, I, I') such that

(i) (A,I,1I)isamodelofl".
(i) for every proper subsef of I, (A, J, I) is not a model of .

Epistemic equilibrium logigs the logic whose semantics is defined through epistemic
equilibrium models. To provide a unifying characterization for the semantics of both
nested logic programs and epistemic logic programs, we need the following definition.

Definition 2. Let.4 be a collection of sets of atoms occurring in an epistemic theory
I1. We sayA is an equilibrium view if4 is a maximal collection that satisfies

A={I|(A,1,I)is an equilibrium model of }.
To illustrate our definitions, let us look at the following examples.

Example 1.Let IT; be the epistemic theory containing only the form{iéa\/b}. Then
both({{a}},{a}, {a}) and({{b}}, {b}, {b}) are epistemic equilibrium models &f;.
Moreover, 4; = {{a}} and A, = {{b}} are equilibrium views oflI;. But A3 =
{{a}, {b}} is not an equilibrium view of [; since(As, {a},{a}) is not an epistemic
model of IT; (note that(As, {a}, {a}) & Ka). Ay = {{a,b}} is not an equilibrium
view of IT; either becauséA,, {a, b}, {a, b}) is not an epistemic equilibrium model.

Example 2.LetII; = {K(aVb)} be an epistemic theory. Thékia}, {b}} is the unique
equilibrium view ofIT,. Note that althougk{{a}}, {a}, {a}) and({{b}}, {b}, {b}) are
epistemic equilibrium models dff;, neither{{a}} nor {{b}} is an equilibrium view
of I1, since they are not maximal.

Example 3.Let IT3 = {a, Ka — bV ¢} be an epistemic theory. It is easy to see that
IT5 has a unique equilibrium vie¥{a, b}, {a, c}}.



It is worth to mentioning that differently from the standard propositional modal
logic, for instance S5, the epistemic equilibrium logic can be viewed as a kind of mini-
mal model reasoning about epistemic concepts (i.e knowledge and belief). In this way,
the equilibrium view semantics shares the same spirit of Gelfond’s world view seman-
tics. However, as will be shown next, epistemic equilibrium logic is general enough to
characterize the semantics of nested epistemic logic programs, while the world view
semantics cannot.

3 Nested Epistemic Logic Programs (NELPS)

As we will see in the next section, the epistemic HT-logic is actually a very general
extension of both nested logic programs (NLPs) and epistemic logic programs (ELPs).
To make this comparison more direct, we generalize both the syntax of NLPs and the
syntax of ELPs by introducing a class of logic programs catlested epistemic logic
programsor NELP. This language corresponds to a subset of the language of the epis-
temic HT-logic.

The atomis understood as in propositional logiElementary formulasre propo-
sitional atoms and the-place connectivel (“false”) and T (“true”). NELP formulas
are built from elementary formulas using negation as failuret”; conjunction “”,
disjunction “;”, and the two belief operatofs and M.

An NELP ruleis an expression of the form

F—G

whereF andG are NELP formulas called tHeadand thebodyof the rule. For any rule
r, its head and body are denoteehd(r) andbody(r), respectively. Anested epistemic
logic program (abbreviated NELR$ a (finite) set of NELP rules.

For our purpose, in this paper we will only consider propositional epistemic logic
programs where rules containing variables are viewed as the set of all ground rules by
replacing these variables with all constants occurring in the language.

Let us think of NELP rules as epistemic formulas by replacing event’“with
“—", every comma with A”, every semicolon “;” with disjunction V", and transform-
ing every rulehead < body into the implicationbody — head. Accordingly we can
turn every nested epistemic logic progrdfinto an epistemic theory. When no confu-
sion is caused, we will not distinguish a nested epistemic logic progfaand its cor-
responding epistemic theory. Note that the negatighcbrresponds to the negation as
failure rather than the strong negation (or classical negation) in logic programming. For
simplicity, the second negation will not be considered until in Section 6. For example,
we may usd] to denote both the NELPK a; b «— ¢, Md, note} and its corresponding
epistemic theory{c A Md A —e — Ka V b}.

Now based on the epistemic HT-logic introduced in Section 2, we define the seman-
tics of nested epistemic logic programs as follows.

Definition 3. Let IT be a nested epistemic logic program adde a collection of sets
of atoms. We sayl is an equilibrium viewof IT if A is an equilibrium view of the
corresponding epistemic theofy.



Example 4.Consider the nested epistemic logic progrAm

Ka; Kb «,
c+— Ka,not Mb,
d — Kb,notMa.

It is easy to see thall has two equilibrium viewg{a, c}} and{{b,d}}. Note that if
we change the first rule ii/ to bea;b <, then the modified program will only have
one equilibrium view{{a}, {b}}.

4 Epistemic Equilibrium Logic and Logic Programs

The class of NELPs contains two major classes of logic prograested logic pro-
gramsandepistemic logic programd hus NELPs generalize most classes of logic pro-
grams including normal logic programs and disjunctive logic programs. In this section
we will prove that the equilibrium view semantics of NELPs extends both the world
view semantics of epistemic logic programs and answer set semantics of nested logic
programs.

4.1 Equilibrium Views and Answer Sets of Nested Logic Programs

An NLP ruleis a special NELP rule which contains no belief operators, andsted
logic program (NLP)is a set of NLP rules. Similarly, aNLP formula is an NELP
formula containing no belief operators.

To define the answer sets of nested logic programs, we first define whey @set
atomssatisfiesan NLP formulaF, denoted a$' = F, recursively as follows:

S | Fif Fisanatomand € S,

SET,

SE1,

SE(F,G)if SE FandS G,

SE(F;GifSEForS EQG,

S EnotFif S F.

We say a nested logic prografis closedunder a set of atoms if, for every rule
r, body(r) implies head(r). Then the definition chnswer setss defined in two steps:

— Let I be a nested logic program without negation as faihok A setS of atoms
is ananswer sebf [7 if S is minimal set closed unde;

— For an arbitrary nested logic prografh, thereductI7° with respect to a se$ of
atoms is obtained by replacing every maximal occurrence of a formula of the form
notF in IT with L if S = F and withT if S |= not F. We sayS is ananswer set
of IT if S'is an answer set dff °.

As we have noted before, a nested logic program is also a nested epistemic logic
program and thus any nested logic prograintan be assigned two semantiagswer
setsandequilibrium views The following result states that these two semantics coin-
cide for nested logic programs and thus the equilibrium view semantics generalizes the
answer set semantics.



Theorem 1. Let IT be a nested logic program angl be a set of atoms. Thefiis an
answer set of 7 if and only if there exists an equilibrium view of IT (as a nested
epistemic logic program) such thate A.

Proof. (=) If S is an answer set dff, let A denote the set of minimal models &f°.
Then we haveS € A by the definition of answer sets. We need only to prove that
is an equilibrium view oflT (as a nested epistemic logic program). SidE&ontains
no belief operators,A4, S, .S) is an equilibrium model of7 in the epistemic HT-logic
if and only if (S,.S) is an equilibrium model of T in ordinary HT-logic. Again, by
Lemma 3in [7],(S,.S) is an equilibrium model ofI in ordinary HT-logic if and only if
S'is an answer set dff. Thus(A4, S, S) is an equilibrium model of! in the epistemic
HT-logic.

(<) Using the above argument, we have thdtdf, S, S) is an equilibrium model of!
in the epistemic HT-logic thef is an answer set dff .

4.2 Equilibrium Views and World Views of Epistemic Logic Programs

Epistemic logic programs were first proposed by Gelfond [3] in order to overcome dif-
ficulties in reasoning about disjunctive information through disjunctive logic programs.

It turns out that epistemic logic programs can be used as an effective formulation to rep-
resent and reason about agents’ epistemic states and hence have great potential in agent
programming. The semantics for epistemic logic programs is based on thedpaiy,

where A is a collection of sets of ground literals aidis a set inA. The truth of an

NELP formulaF in (A, S) is denoted by(A, S) = F and the falsity by( A, S) =|F,

and are defined as follows:

(A, S) | Fiff F e SwhereF is aground atom.

,S) E KFiff (A,S;) = Fforall S; € A.

S) E MFiff (A,S;) = F for someS; € A.
S)E (F,G)iff (A,S) E Fand(A4,S) E G.
S)):( )Iﬁ (A7S)|:ﬁ(ﬁF’ﬁG)'

S) E ﬂF iff (A,S)=|F.

S) =|F iff =F € S whereF is a ground atom.
S)=|KFiff (A,S) |~ KF.

S)=|MFiff (A,S)}E MF.

S) =|(F,G) iff (A,S)=|For(A4,S)=G.
S) =|(F; G) iff A S) =|F and(A4, S) =|G.
epistemic logic prograror ELP is a finite set of ELP rules of the form:

By Foy-o o Fy — Gr, oo, Gy not Gy g1, -+ -, not G, 1)

HereF}, - - -, F) are (objective) formula&y;+, - - -, G,,, are (objective) formulae or sub-
jective formulaes, an@,, 11, - - -, G,, are (objective) formulae.

Note that ELP also allows nested expressions but in a restricted form.

For an epistemic logic prograifi, its semantics is given by itsorld viewwhich is
defined in the following steps:



Step 1Let IT be an epistemic logic program containing neither belief operdtoasnd
M nor negation as failuneot A setS of ground literals is called belief seof I7 iff S'is

a minimal set of satisfying conditions: (i) for each rulg; Fy;---; F, — G1,---, G
from I such thatS = (G1,---,Gy) we haveS = (Fi; Fy;---; Fy); and (i) if S
contains a pair of complementary literals, th&rnis the setLit of all literals (called
inconsistent belief set).

Step 2 Let IT be an epistemic logic program not containing modal operatdmsnd
M andS be a set of ground literals in the language/bf By I7s we denote the result
of (i) removing from 7 all the rules containing formulas of the fornwt G such that
S = G and (i) removing from the rules if/ all other occurrences of formulas of the
formnotG. S is abelief seof II iff S is a belief set of I 5.

Step 3 Finally, let IT be an arbitrary epistemic logic program asda collection of
sets of ground literals in its language. B, we denote the epistemic logic program
obtained fromII by (i) removing fromII all rules containing formulas of the form
G such thatG is subjective andd (= G, and (ii) removing from rules idT all other
occurrences of subjective formulasis abelief sebof 17 iff S is a belief set of/1 4.

Example 5.The following epistemic logic prograt :

a «—
b;c —
d+— Ka
e «— Mb

has a unique world vieW{a, b, d, e}, {a, ¢, d, e}}.

Observe that the world view of the above progréfris also the equilibrium view
of I1. This is not surprising because we will show that, for any epistemic logic program
11, Ais a world view ofIT if and only if A is an equilibrium view ofi1.

The negation- in epistemic program actually corresponds to the strong negation
in extended logic program. In the rest of this section our discussion is temporarily re-
stricted to epistemic programs that do not contairin Section 6, we will see that the
results here are all valid for arbitrary epistemic programs.

We first introduce some notations. By viewing an epistemic logic progfams
an epistemic theory in epistemic HT-logi€4, J,I) = II means that each rule is
satisfied in the epistemic HT-interpretati@d, J, I). Under the world view semantics,
on the other hand, we say that a rule of the formi¢19atisfiedn a pair(.A4, S) if the
fact (A4, 95) E (G1,-,Gn), (A,8) £ G, -, (A S) = G, implies (A4, S) E
Fy;--+; Fy. (A, S) = II means that each rule éf is satisfied in(A, S). If IT does not
contain any belief operators, we simply u$é= I7 to denote( A, S) = IT (recall that
the truth values of objective formulas are irrelevantdto

Lemma 2. Let (A, I7 IT) be an epistemic HT-interpretation and an epistemic
logic program without containing negation as failured4, J, I) = II if and only if
(A, J) E II.

Lemma 3. Let IT be an epistemic logic program and4, J, I) be an epistemic HT-
interpretation. Ther{ A, J,I) = IT ifand only if J = (I14);. Here(I14); is obtained
through Step 3 and Step 2 in the definition of the world views.



Proof. (=) Suppos€ A, J, I) = II, we want to show/ |= (I14);.

If R € II, we can assume that is of the form (1). IfR satisfies(A,I) = G, for
everyi withr +1 < i <mand(A, I) |~ G, for everyi withm + 1 < j <n, we use
(R 4) to denote the reduction & with respecttod andl: Fy;---; F, — G1,--+,G,.
In general (R 4); may be undefined. Note théfl 4); = {(R4)r | R € IT}.

For any rule of((I1.4)1), it must be of the forn{R 4); for some ruleR € I1. So we
need only to prove thaf = (R4); for R € II.

By the definition of the program reduction, we have the following two facts:

1. (A I)EG;forr+1<i<mand
2. (A D) EG form+1<i<n.

Suppose/ = body((R4)r)), we want to show/ |= head((R4)r). Thatis,J |=
(Fy;---; Fy). Since the body of R 4) is now the conjunction of7y, - - -, andG,., we
haveJ = G; foralliwith1 <i <r.

We prove that A, J, I) = body(R) by considering three different cases:

Case 1.SinceJ | G; for1 < i < r, thenG; € J and thug A4, J,I,t) = G, for any
te{H,T}.

Case2.If r +1 < i < m, thenG;, is a subjective literal and it is of form either
KO or MO} for some objective literaD;. If G; = KO;, by (A,I) = G, for
r+1<i<m,(AI) E KO,. ThismeangA,I') = O; forall I' € A, which
implies (A, I7,I7,t) = O, for all setsJ, JT of atoms withJ? C JT. Thus
(A, J,1,t) = KO; or (A, J,I,t) = G;forr+1 < i < m. Similarly, we also
have(A, J,I,t) E G;forr+1<i<mif G; = MO;.

Case 3.1f (A,I) £ G;form +1 < i < n, thenG; € I. SinceG;, is objective and
JCI, (A JI) G

Combining Cases 1-3, we havel, J,I) = body(R). By (A, J,I) = R, we have
(A, J,I) E head(R). By head(R) = head((R4)r) andthugA, J,I) = head((Ra)1).

(«<=) Suppose/ = (I1.4);, we show( A, J, I) = II by considering the following three
cases:
For any ruleR € II, assumeR is of form (1),

Case 1.If (A, I) I~ G, for somei with r + 1 < i < m, thenG; & I and thusa; ¢ J.
This implies(A, J,I) |~ G;. Inthis case(A, J, I) ¥~ body(R). So(A, J,I) = R.

Case 2.1f (A,I) = G, for somei with m 4+ 1 < i < n, thenG, € I. This implies
(A, J.I,T) = G;. Inthis case(A, J, I) |~ body(R). So(A, J,I) = R.

Case 3.If neither Case 1 nor Case 2,thed, J, 1) = Gro1 A -+ AGpA =Grg1 A
-+ A G, and thug R 4); is well defined.
If (A, J,I) EGiA-- NGy, thend =Gy A---AG,. SinceJ = (R4);, we have
J = head((RA)r). Thatis,J = head(R).

Lemma4. Let IT be an ELP and( A4, J,I) be a epistemic HT-interpretation. Then
(A, I,1)is an equilibrium model ofI if and only ifI is a belief set of 1 4);.
The above lemma, obtained directly from Lemma 3, implies the following result.

Theorem 2. Let IT be an epistemic logic program and be a collection of sets of
atoms. Themd is a world view ofII if and only if A is an equilibrium view of .



5 Strong Equivalence of Nested Epistemic Logic Programs

Recently, researchers have addressed the problem of characterizing the strong equiv-
alence of logic programs under the answer sets. In particular, the result in [7] shows
that the strong equivalence of nested logic programs can be characterized in term of
the equivalence of formulas in monotonic logic (the HT-logic). Here we are interested
in extending this result to NELPs under the equilibrium view semantics. We say two
NELPs II; and I, areequivalentf they have the same equilibrium views. A NELP
11, is said to bestrong equivalento another NELHT; if, for every NELPIT, 11, U IT
andIl, U IT are equivalent. It is well-known that equivalence of two programs does not
implies their strong equivalence in general (see [2, 8, 7] for more examples of strongly
equivalent programs).

Similarly, two theoriesl7; and 1, in the epistemic HT-logic iquivalentf they
have the same set of models.

Theorem 3. For any nested epistemic logic programg and I1», the following con-
ditions are equivalent:

(1) I1, is strongly equivalent tal,.
(2) II is equivalent td15 in the epistemic HT-logic.

By Theorem 2, it is easy to prove Theorem 3 since we have the following lemma,
whose proof is similar to that of Theorem 1 in [7].

Lemma 5. For any epistemic theoriek; and I, the following conditions are equiva-
lent:

(1) for every epistemic theoy, I, UI" andI>UI" have the same equilibrium models.
(2) I is equivalent tas in the epistemic HT-logic.

For any two objective theorieB, and s, they are equivalent in the logic of here-
and-there if and only if they are equivalent in the epistemic HT-logic. Thus, by Theo-
rem 2, the main result (Theorem 1) in [7] is a corollary of our Theorem 3:

Corollary 1. For any nested logic programd; and I1», the following conditions are
equivalent:

(1) I1, is strongly equivalent tal,.
(2) II is equivalent td'l5 in the logic of here-and-there.

By Theorem 2, the strong equivalence of epistemic logic programs under the world view
semantics can also be verified by checking the equivalence of formulas in the epistemic
HT-logic which is a monotonic logic.

Corollary 2. For any epistemic logic program&; and I1,, the following conditions
are equivalent:

(1) 11, is strongly equivalent td/.
(2) II, is equivalent td1; in the epistemic HT-logic.



6 Adding Strong Negation in NELPs

In answer set programming, the syntax of logic programs usually allows both negation
as failure and strong negation [5]. The second negation is denotedtig well-known
that this extension is very useful for representing and reasoning about incomplete infor-
mation. In this section, we show how to add the second negation in NELPs. This can be
done by an easy generalization of Section 5 in [7]. Technically, it is not hard to add the
strong negation in the syntax of logic programs.

A literal is an atoma or its strong negatioma. By allowing arbitrary literals in
place of atomsextended NELP formu)@xtended NELP rulandextended NELRan
be defined in the same way as we defined NELP formula, NELP rule and NELP. Fol-
lowing [5], the semantic of an extended NELP can be defined through a simple syntactic
translation.

Given an extended NELF, we introduce a new symbal for each atonu in I7.
Then I can be translated into a NELR’ by replacing each negative literak with
a’. Note that/I’ does not contain the strong negation. For any expredsjave usel’
to denote the expression obtained by replacing everwith o’. DenoteCons(II) =
{L <« a,d' | aisliteral in IT}. Then we sayA is an equilibrium view of/T if A’ is an
equilibrium view of II’ U Cons(IT).

For nested logic programs (with strong negatidh)a setX of literals is an answer
set of IT iff X is X’ is an answer set dff’ U Cons(IT). Therefore, Theorem 1 is also
true for nested logic programs with strong negation.

In the same way as in [5], the negatienin an epistemic logic program can be
eliminated by introducing new atoni for each atomu. Thus, Theorem 2 is also true
for epistemic logic program with strong negation.

Theorem 3 can also be generalized to extended NELPs.

Theorem 4. For any extended NELPH; and 1, the following conditions are equiv-
alent:

(1) I1, is strongly equivalent tdl.
(2) I1, U Cons(I1;) is equivalent td'l; U Cons(I13) in the epistemic HT-logic.

Proof. I, is strongly equivalent tdl,
if and only if
I1] U Cons(I1;) is strongly equivalent tél; U Cons(I12)
if and only if
IT, U Cons(117) is equivalent tdllo U Cons(Il2) in the epistemic HT-logic.

7 Conclusions

In this paper, we introduced the epistemic HT-logic and based on this logic further de-

veloped a new type of logic programs called nested epistemic logic programs (NELPSs).
We showed that the equilibrium view semantics of NELPs generalizes the answer set
semantics of nested logic programs as well as the world view semantics of epistemic
logic programs. We also characterize the strong equivalence property of NELPs in terms
of epistemic HT-logic.



Some important issues related to NELPs should be further investigated. Firstly, it is
important to understand the computational properties of NELPs in detail from both the-
oretical and practical viewpoints. Secondly, as epistemic logic programs may be viewed
as an effective formalism for representing and reasoning about agent’s dynamic epis-
temic state, e.g. [12], it would be interesting to explore how this work can be improved
by applying NELPs.
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