
Concept and Role Forgetting in ALC Ontologies

Paper Number: 423

No Institute Given

Abstract. Forgetting is a useful tool for tailoring ontologies by reducing the
number of concepts and roles, while preserving sound and complete reasoning.
Some attempts have been made to address the problem of forgetting in some rela-
tively simple description logics (DLs) such as DL-Lite and extended EL . Ontolo-
gies in those works are mostly expressed as TBoxes rather than general knowl-
edge bases (KBs). However, the issue of forgetting for general KBs in more ex-
pressive ontology languages, such as ALC and OWL DL, is largely unexplored.
In particular, the problem of characterizing and computing forgetting is still open.
In this paper, we first define semantic forgetting about concepts and roles in
ALC ontologies and show several important properties of forgetting in this set-
ting. Unlike the case of DL-Lite, the result of forgetting in anALC ontology may
not exist in general, which makes the problem of how to compute forgetting in
ALC more challenging. As a result, we tackle the non-existence of the result of
forgetting in ALC ontologies by first investigating forgetting in concept descrip-
tions and then defining and studying a series of approximations to the result of
forgetting inALC ontologies. We show that forgetting inALC ontologies can be
approximated through computing forgetting for concept descriptions. Our algo-
rithms can be embedded into an ontology editor to enhance its ability to manage
and apply (large) ontologies.

Keywords: Forgetting, description logics, update, nonmonotonic reasoning.

1 Introduction

There are more and more semantically annotated data available in the Web. For ex-
ample, so far there are about 5 billion linked data1 available online. Accordingly, the
Web is rapidly emerging as a large scale platform for publishing and sharing formalised
knowledge models [?]. As more ontologies become available for annotating data on the
Web and as the populated ontologies become larger and more comprehensive, it be-
comes more crucial for the Semantic Web [4] to construct and manage ontologies. Ex-
amples of large ontologies include the Systematised Nomenclature of Medicine Clinical
Terms (SNOMED CT) containing 380K concepts, GALEN, the Foundational Model of
Anatomy (FMA), the National Cancer Institute (NCI) Thesaurus containing over 60K
axioms, and the OBO Foundry containing about 80 biomedical ontologies.

While it is expensive to construct large ontologies, much higher costs of mainte-
nance would also occur for hosting and running a large and comprehensive ontology

1 http://linkeddata.org/

than a trimmed-down version of that ontology. Tools to reduce an ontology to one that
better fits certain needs can greatly aid and encourage reusing existing ontologies. How-
ever, as the tool evaluation study in [5] shows, existing tools, such as Protégé [27], NeOn
[28] and TopBraid [29], are far from satisfactory.

In several areas of ontology management, the ontology engineers face tasks of ob-
taining a small ontology from an existing (large) ontology by hiding/forgetting some
irrelevant concepts and roles while still preserving certain forms of reasoning. These ar-
eas include ontology extraction, ontology summary, ontology integration, and ontology
evolving. Let us consider two scenarios in ontology extraction and ontology summary,
respectively.
Ontology extraction: To reduce the high cost of building ontologies by hand, it has
been the focus of some research to construct ontologies automatically. One promising
approach to constructing new ontologies is to search and reuse ontologies that already
exist on the Web. In many cases, large ontologies need to be tailored first and only
relevant parts are reused. Consider a scenario discussed in [9]: suppose we want to
design an ontology Pets describing properties of domestic animals such as cats and
dogs. Rather than starting from scratch we would first search the Web and try to find
similar ontologies that can be reused. Suppose that we found a large ontology Animals
on the Web describing domestic animals as well as wild animals such as lions and tigers.
In this case we can forget about those terms of animals in the ontology Animal that are
not considered as pets and obtain a smaller portion of Animal.
Ontology summary: Compared to ontology extraction, existing tools are even more lim-
ited in providing support for navigating and making sense of the ontologies. As argued
in [1, 18], a key problem faced by an ontology engineer is so-called ontology summary.
When considering the reuse of a large ontology, it is important to obtain a view of
the ontology in making decisions about the suitability of the ontology in question for
the current ontology engineering development project. In general, a process of ontol-
ogy summary consists of two stages: The first stage is to identify the key concepts in
the large ontology. There have been some algorithms for accomplishing this task [1,
18]. After a set of key concepts are found, the next stage in ontology summary is to
hide/forget the concepts that are not key concepts.

However, an ontology is often represented as a logical theory, and the removal of
one term may influence other terms in the ontology. Thus, more advanced methods for
dealing with large ontologies and reusing existing ontologies are desired.

Forgetting (or, uniform interpolation) developed in logics [15, 16, 6] provides a use-
ful tool for obtaining small ontologies from a large ontology by discarding irrelevant
concepts, roles and axioms while preserving sound and complete reasoning. Informally,
forgetting is a particular form of reasoning that allows a piece of information (say, p) in
an ontology to be discarded or hidden in such a way that future reasoning on informa-
tion irrelevant to p will not be affected.

It is well-known that some ontology languages, like OWL, are built on description
logics (DLs) [3]. By an ontology we mean a knowledge base (KB) in a description logic.
A terminology box (TBox) is considered as a special form of ontology in which the
assertion box (ABox) is empty. Although most description logics are fragments of first
order logic, the forgetting introduced in [16] does not help much with description logics

for at least two reasons: First, the correspondence between DLs and FOL is useless in
investigating forgetting for DLs because the result of forgetting in a theory of the first
order logic (FOL) may be a theory in second order logic. Second, one would like to
directly perform forgetting in description logics rather than transforming an ontology
into a first order theory and then back. Indeed, some attempts have been made to address
the issue of forgetting in relatively simple DLs such as DL-Lite [20, 14] and extended
EL [12]. Moreover, ontologies in these works are mostly expressed as TBoxes rather
than general knowledge bases (KBs). Forgetting generalizes conservative extensions
[9, 7, 17] and the modularity defined in [8, 10, 13].

While a definition of forgetting for TBoxes in ALC is briefly mentioned [7], the
problem of forgetting for ontologies expressed as ALC knowledge bases is largely un-
explored. In particular, the problem of characterizing and computing forgetting is still
open.

In this paper we first define semantic forgetting for ontologies in the description
logic ALC and show several important properties of forgetting. We choose ALC to
study in this paper because it allows all boolean operations and most expressive DLs
are based on it. Unlike the case of DL-Lite, the result of forgetting about concepts and
roles in an ALC ontology may not exist. We tackle the non-existence of the result of
forgetting in ALC ontologies by first investigating forgetting in concept descriptions
and then defining and studying a series of approximations to the result of forgetting in
ALC ontologies. Based on our results, we show that forgetting in ALC ontologies can
be approximated through computing forgetting for concept descriptions. Our algorithms
can be embedded into an ontology editor to enhance its ability to manage and apply
(large) ontologies.

It is worth pointing out that our work significantly extended previous works in at
least two ways: (1) We made the first attempt to study forgetting for an expressive
description logic, instead of DL-Lite and variants of EL. (2) Ontologies in this paper
are expressed as general KBs rather than only TBoxes as in previous works. In addition,
our definitions and results hold for forgetting about both concepts and roles.

2 Description Logic ALC

In this section, we briefly recall some preliminaries ofALC , the basic description logic
which contains all boolean operators. Further details of ALC and other DLs can be
found in [3].

First, we introduce the syntax of concept descriptions for ALC . To this end, we
assume that NC is a set of concept names (or concept), NR is a set of role names (or
roles) and NI is a set of individuals.

Elementary concept descriptions consist of both concept names and role names. So
a concept name is also called atomic concept while a role name is also called atomic
role. Complex concept descriptions are built inductively as follows: A (atomic concept);
> (universal concept); ⊥ (empty concept); ¬C (negation); C uD (conjunction); C tD
(disjunction); ∀R.C (universal quantification) and ∃R.C (existential quantification).
Here, A is an (atomic) concept, C and D are concept descriptions, and R is a role.

An interpretation I of ALC is a pair (∆I , ·I) where ∆I is a non-empty set called
the domain and ·I is an interpretation function which associates each (atomic) concept
A with a subset AI of ∆I and each atomic role R with a binary relation RI ⊆ ∆I×∆I .
The function ·I can be naturally extended to complex descriptions:

>I = ∆I ⊥I = ∅
(¬C)I = ∆I − CI (C uD)I = CI ∩DI

(C tD)I = CI ∪DI

(∀R.C)I = {a ∈ ∆I : ∀b.(a, b) ∈ RI implies b ∈ CI}
(∃R.C)I = {a ∈ ∆I : ∃b.(a, b) ∈ RI and b ∈ CI}

An ALC assertional box (or ABox) is a finite set of assertions. An assertion is a
concept assertion of the form C(a) or a role assertion of the form R(a, b), where a and
b are individuals, C is a concept name, R is a role name.

An interpretation I satisfies a concept assertion C(a) if aI ∈ CI , a role assertion
R(a, b) if (aI , bI) ∈ RI . If an assertion α is satisfied by I, it is denoted I |= α. An
interpretation I is a model of an ABox A, written I |= A, if it satisfies all assertions in
A.

A inclusion axiom (simply inclusion, or axiom) is of the form C v D (C is sub-
sumed by D), where C and D are concept descriptions. The inclusion C ≡ D (C is
equivalent to D) is an abbreviation of two inclusions C v D and D v C. A terminol-
ogy box, or TBox, is a finite set of inclusions. An interpretation I satisfies an inclusion
C v D if CI ⊆ DI . I is a model of a TBox T , denoted I |= T , if I satisfies every
inclusion of T . T |= C v D if for any I, I |= T implies I |= C v D.

Formally, a knowledge base (KB) is a pair (T ,A) of a TBox T and an ABox A.
An interpretation I is a model of K if I is a model of both T and A, denoted I |= K.
If α is an axiom or an assertion, K |= α if every model of K is also a model of α. Two
KBs K and K′ are equivalent, written K ≡ K′, if they have the same models. “≡” can
be similarly defined for ABoxes and TBoxes.

The signature of a concept description C, written sig(C), is the set of all concept
and role names in C. Similarly, we can define sig(A) for an ABoxA, sig(T) for a TBox
T , and sig(K) for a KB K.

3 Forgetting in ALC Ontologies

In this section, we will first give a semantic definition of what it means to forget about
a set of variables in a ALC KB, and then discuss several interesting properties of the
forgetting operation.

As explained earlier, given an ontology K on signature S and V ⊂ S, in ontology
engineering it is often desirable to obtain a new ontology K′ on S −V such that reason-
ing tasks on S −V are still preserved in K′. As a result, K′ is weaker than K in general.
This intuition is formalized in the following definition.

Definition 3.1 (KB-forgetting). Let K be a KB in ALC and V be a set of variables. A
KB K′ over the signature sig(K)− V is a result of forgetting about V in K if

(KF1) K |= K′;

(KF2) for each concept inclusion C v D in ALC not containing any variables in V ,
K |= C v D implies K′ |= C v D;

(KF3) for each membership assertion C(a) or R(a, b) in ALC not containing any
variables in V , K |= C(a) (resp., K |= R(a, b)) implies K′ |= C(a) (resp., K′ |=
R(a, b));

To illustrate the above definition of semantic forgetting and how forgetting can
be used in ontology extraction, consider the following example of designing an
ALC ontology about flu.

Example 3.1. Suppose we have searched the Web and found an ontology about human
diseases (such a practical ontology could be very large):

Disease v ∀attacks.Human ,
Human ≡ Male t Female ,
Human u Infected v ∃shows.Symptom ,
Disease ≡ Infectious tNoninfectious ,
Influenza tHIV t TB v Infectious .

We want to construct a (smaller) ontology only about flu by reusing
the above ontology. This is done by forgetting about the undesired concepts
{Disease,Noninfectious,HIV ,TB}. As a result, the following ontology is obtained:

Influenza v Infectious ,
Infectious v ∀attacks.Human ,
Human ≡ Male t Female ,
Human u Infected v ∃shows.Symptom ,

The next example shows that the result of forgetting in an ALC ontology may not
exist in some cases.

Example 3.2. Let K = (T ,A) be an ALC KB where T = {A v B, B v C, C v
∀R.C, C v D }, and A = {B(a), R(a, b) }.

Take K1 = (T1,A1) where T1 = {A v C, C v ∀R.C, C v D } and A1 =
{C(a), R(a, b) }. Then K1 is a result of forgetting about concept B in K.

However, there does not exist a result of forgetting about {B,C} in K. To under-
stand this, we note that the result of forgetting about {B,C} in K should include the
following inclusions:

A v D, A v ∀R.D, A v ∀R.∀R.D, ... , and
D(a), (∀R.D)(a), (∀R.∀R.D)(a), ... , and
R(a, b), D(b), (∀R.D)(b), (∀R.∀R.D)(b), ...

Thus, there is no finite ALC KB which is equivalent to the above infinite set of
inclusions.

If the result of forgetting about V in K is expressible as an ALC KB, we say V is
forgettable from K.

In the rest of this section, we present some desirable properties of forgetting in KBs
for ALC .

Proposition 3.1. Let K be a KB in ALC and V a set of variables. If both K′ and K′′ in
ALC are results of forgetting about V in K, then K′ ≡ K′′.

This proposition says that the result of forgetting in ALC is unique up to KB equiv-
alence. Given this result, we write forget(K,V) to denote any result of forgetting about
V in K in ALC . In particular, forget(K,V) = K′ means that K′ is a result of forgetting
about V in K.

In fact, forgetting in TBoxes is independent of ABoxes as the next result shows.

Proposition 3.2. Let T be an ALC TBox and V a set of variables. Then, for
any ALC ABox A, T ′ is the TBox of forget((T ,A),V) iff T ′ is the TBox of
forget((T , ∅),V).

For simplicity, we write forget(T ,V) for forget((T , ∅),V) and call it the result of
TBox-forgetting about V in T .

The following result, which generalizes Proposition 3.1, shows that forgetting pre-
serves implication and equivalence relations between KBs.

Proposition 3.3. Let K1,K2 be two KBs in ALC and V a set of variables. Then

– K1 |= K2 implies forget(K1,V) |= forget(K2,V);
– K1 ≡ K2 implies forget(K1,V) ≡ forget(K2,V).

However, the converse of Proposition 3.3 is not true in general. Consider K and K1

in Example 3.2, it is obvious that forget(K, {B}) ≡ forget(K1, {B}). However, K and
K1 are not equivalent.

Consistency and query answering are two major reasoning tasks in description log-
ics. It is a key requirement for a reasonable definition of forgetting to preserve these
two reasoning forms.

Proposition 3.4. Let K be a KB in ALC and V a set of variables. Then

1. K is consistent iff forget(K,V) is consistent;
2. for any inclusion or assertion α not containing variables in V , K |= α iff

forget(K,V) |= α.

The next result shows that the forgetting operation can be divided into steps, with a
part of the signature forgotten in each step.

Proposition 3.5. LetK be a KB inALC and V1,V2 two sets of variables. Then we have

forget(K,V1 ∪ V2) ≡ forget(forget(K,V1),V2).

To compute the result of forgetting about V in K, it is equivalent to forget the vari-
ables in V one by one.

4 Forgetting in ALC Concept Descriptions

Forgetting in a concept description has been investigated under the name of uniform
interpolation in [19]. In this section, we reformulate the definition of the forgetting
about concept and role names in ALC concept descriptions (briefly, c-forgetting) and
introduce some results that will be used in the next section. From the view point of
ontology management, the issue of forgetting in concept descriptions is less important
than that for KBs and TBoxes. However, we will show later that c-forgetting can be
used to provide an approximation algorithm for KB-forgetting in ALC , as well as its
theoretical importance.

Intuitively, the result C ′ of forgetting about a set of variables from a concept de-
scription C should be weaker than C but as close to C as possible. For example, after
the concept Male is forgotten from a concept description for “Male Australian stu-
dent” Australians u Students u Male , then we should obtain a concept description
Australians u Students for “Australian student”. More specifically, C ′ should be a
concept description that defines a minimal concept description among all concept de-
scriptions that subsumes C and is syntactically irrelevant to V (i.e. variables in V do not
appear in the concept description).

Definition 4.1 (c-forgetting). Let C be a concept description in ALC and V a set
of variables. A concept description C ′ on the signature sig(C) − V is a result of c-
forgetting about V in C if the following conditions are satisfied:

(CF1) |= C v C ′.
(CF2) For every ALC concept description C ′′ with sig(C ′′) ∩ V = ∅, |= C v C ′′

implies |= C ′ v C ′′.

The above (CF1) and (CF2) correspond to the conditions (2) and (3) of Theorem 8 in
[19]. A fundamental property of c-forgetting in ALC concept descriptions is that the
result of c-forgetting is unique under concept description equivalence.

Proposition 4.1. Let C be a concept description in ALC and V a set of variables. If
two concept descriptions C ′ and C ′′ in ALC are results of c-forgetting about V in C,
then |= C ′ ≡ C ′′.

As all results of c-forgetting are equivalent, we write forget(C,V) to denote an
arbitrary result of c-forgetting about V in C.

Example 4.1. Suppose the concept “Research Student” is defined by C = Student u
(MastertPhD)u∃supervised .Professor where “Master”, “PhD” and “Professor” are
all concepts; “supervised” is a role and supervised(x, y) means that x is supervised by
y. If the concept description C is used only for students, we may wish to forget about
Student : forget(C,Student) = (Master t PhD) u ∃supervised .Professor . If we do
not require that a supervisor for a research student must be a professor, then the filter
“Professor” can be forgotten: forget(C,Professor) = Student u (Master t PhD) u
∃supervised .>.

A concept description C is satisfiable if CI 6= ∅ for some interpretation I on
sig(C). C is unsatisfiable if |= C ≡ ⊥. By Definition 4.1, c-forgetting also preserves
satisfiability of concept descriptions.

Proposition 4.2. Let C be a concept description in ALC , and V be a set of variables.
Then C is satisfiable iff forget(C,V) is satisfiable.

Similar to forgetting in KB, the c-forgetting operation can be divided into steps.

Proposition 4.3. Let C be a concept description in ALC and V1,V2 two sets of vari-
ables. Then we have

|= forget(C,V1 ∪ V2) ≡ forget(forget(C,V1),V2).

Given the above result, when we want to forget about a set of variables, they can
be forgotten one by one. Also, the ordering of c-forgetting operation is irrelevant to the
result.

Corollary 4.1. Let C be a concept description in ALC and let V = {V1, . . . , Vn} be a
set of variables. Then, for any permutation (i1, i2, . . . , in) of {1, 2, . . . , n},

|= forget(forget(forget(C, Vi1), Vi2), . . .), Vin) ≡
forget(forget(forget(C, V1), V2), . . .), Vn).

The following result, which is not obvious, shows that c-forgetting distributes over
union t.

Proposition 4.4. Let C1, . . . , Cn be concept descriptions in ALC . For any set V of
variables, we have

|= forget(C1 t · · · t Cn,V) ≡ forget(C1,V) t · · · t forget(Cn,V).

However, c-forgetting for ALC does not distribute over intersection u. For example, if
the concept description C = A u ¬A, then forget(C,A) = ⊥, since |= C ≡ ⊥. But
forget(A,A) u forget(¬A,A) ≡ >.

An important reason for this is that c-forgetting does not distribute over negation.
Actrually, we have

|= ¬forget(C,V) v ¬C v forget(¬C,V).

The next result shows that c-forgetting distributes over quantifiers. Since c-forgetting
does not distribute over negation, the two statements in the following proposition do
not necessarily imply each other. The proof uses tableau reasoning for ALC and is
surprisingly complex.

Proposition 4.5. Let C be a concept description in ALC , R be a role name and V be
a set of variables. Then

– forget(∀R.C,V) = > for R ∈ V , and forget(∀R.C,V) = ∀R.forget(C,V) for
R 6∈ V;

– forget(∃R.C,V) = > for R ∈ V , and forget(∃R.C,V) = ∃R.forget(C,V). for
R 6∈ V;

These results suggest a way of computing c-forgetting about set V of variables in a
complex ALC concept description C. That is, to forget about each variable V in V one
after another, and to distribute the c-forgetting computation to subconcepts of C.

In what follows, we introduce an algorithm for computing the result of c-forgetting
through rewriting of concept descriptions (syntactic concept transformations) [19]. This
algorithm consists of two stages: (1) C is first transformed into an equivalent disjunctive
normal form (DNF), which is a disjunction of conjunctions of simple concept descrip-
tions; (2) the result of c-forgetting about V in each such simple concept description is
obtained by removing some parts of the conjunct.

Before we introduce disjunctive normal form (DNF), some notation and definitions
are in order. We call an (atomic) concept A or its negation ¬A a literal concept or
simply literal. An pseudo-literal with role R is a concept description of the form ∃R.F
or ∀R.F , where R is a role name and F is an arbitrary concept. A generalized literal is
either a literal or a pseudo-literal.

First, every arbitrary concept description can be transformed into an equivalent dis-
junction of conjunctions of generalized literals. This is a very basic DNF for ALC .

Definition 4.2. A concept description D is in disjunctive normal form (DNF) if D = ⊥
or D = > or D is a disjunction of conjunctions of generalized literals D = D1 t · · · t
Dn, where each Di 6≡ ⊥ (1 ≤ i ≤ n) is a conjunction

d
L of literals, or of the form

l
L u

l

R∈R

[
∀R.UR u

l

k

∃R.(E(k)
R u UR)

]
where R is the set of role names that occur in Di, and each UR and each E

(k)
R u UR is

a concept description in DNF.

We note that, to guarantee the correctness of the algorithm, the above DNF for ALC is
more complex than we have in classical logic and DL-Lite.

Each concept description inALC can be transformed into an equivalent one in DNF
by the following two steps: (1) first transform the given concept description into a dis-
junction of conjunctions of pseudo-literals using De Morgan’s laws, distributive laws
and necessary simplifications, and then (2) for each conjunction in the resulting concept
description, perform the following three laws in order:

C ; ∀R.> u C, for C = ∃R.C1 u · · · u ∃R.Cm,m > 0
∀R.C1 u ∃R.C2 ; ∀R.C1 u ∃R.(C1 u C2)

∀R.C1 u · · · u ∀R.Cn ; ∀R.(C1 u · · · u Cn).

The first transformation above is to transform a concept description containing only
existential quantifier into the normal form. For example, if C is concept name, ∃R.C,
which is not in normal form, can be transformed into the normal form ∀R.> u ∃R.C.
While the second is to assemble several quantifications with the same role name into a
single one, the third is crucial for guaranteeing the correctness of our algorithm.

Algorithm 1 (Compute C-Forgetting)
Input: An ALC concept description C and a set V of variables in C.
Output: forget(C,V).
Method:
Step 1. Transform C into its DNF D. If D is> or⊥, return D; otherwise, let D = D1t· · ·tDn

as in Definition 4.2.
Step 2. For each conjunct E in each Di, perform the following transformations:

– if E is a literal of the form A or ¬A with A ∈ V , replace E with >;
– if E is a pseudo-literal in the form of ∀R.F or ∃R.F with R ∈ V , replace E with >;
– if E is a pseudo-literal in the form of ∀R.F or ∃R.F where R 6∈ V , replace F with

forget(F,V), and replace each resulting ∀R.(> t F) with >.

Step 3. Return the resulting concept description as forget(C,V).

Fig. 1. Forgetting in concept descriptions.

Once anALC concept description D is in the normal form, the result of c-forgetting
about a set V of variables in D can be obtained from D by simple symbolic manipula-
tions (ref. Algorithm 1).

According to Algorithm 1, an input concept description must first be transformed
into the normal form before the steps for forgetting are applied. For instance, if we
want to forget A in the concept description D = A u ¬A u B, D is transformed into
the normal form, which is ⊥, and then obtain forget(D,A) = ⊥. We note that B is not
a result of forgetting about A in D.

Example 4.2. Given a concept D = (A t ∃R.¬B) u ∀R.(B t C), we want to forget
about concept name B in D. In Step 1 of Algorithm 1, D is firstly transformed into its
DNF D′ = [Au∀R.(BtC)]t [∀R.(BtC)u∃R.(¬BuC)]. Note that ∃R.(¬BuC)
is transformed from ∃R.[¬B u (B t C)]. Then in Step 2, each occurrence of B in D′

is replaced by >, and ∀R.(> t F) is replaced with >. We obtain forget(D, {B}) =
A t ∃R.C. To forget about role R in D, Algorithm 1 replaces each pseudo-literals in
D′ of the form ∀R.F or ∃R.F with >, and returns forget(D, {R}) = >.

Obviously, the major cost of Algorithm 1 is from transforming the given concept
description into its DNF. For this reason, the algorithm is exponential time in the worst
case. However, if the concept description C is in DNF, Algorithm 1 takes only linear
time (w.r.t. the size of C) to compute the result of c-forgetting about V in C. And the
result of c-forgetting is always in DNF.

Theorem 4.1. Let V be a set of concept and role names and C a concept description
in ALC . Then Algorithm 1 always returns forget(C,V).

Using the Tableau for ALC , we have established a proof for Theorem 4.1.

5 Approximate Forgetting in ALC Ontologies

The basic idea of forgetting about a signature V in a KB K is to obtain a new KB K′
such thatK′ andK are equivalent w.r.t. all consequences (assertions and inclusions) that
are irrelevant to V . An important observation is that the sizes of those consequences in
an application often have an upper bound N . The problem of computing forgetting in
KBs of expressive DLs including ALC is quite hard in general. Instead of computing
the result K′ of KB-forgetting, we propose to compute an approximation K′′ to K′, i. e.
K′′ andK are equivalent w.r.t. consequences that are irrelevant to V and whose sizes are
bounded by N . To this end, we introduce a non-decreasing sequence of KBs (the n-th
KB is called n-forgetting) and the result of KB-forgetting is the limit of this sequence.
Moreover, each KB in the sequence in turn can be computed using Algorithm 1 for
computing c-forgetting. So the results in this section essentially provide a novel way
of approximating the result of KB-forgetting. Another advantage of n-forgetting is that
there always exists a result of n-forgetting and thus its existence does not dependent on
the existence of KB-forgetting.

As a special case, we first introduce an approximation to TBox-forgetting. Exam-
ple 3.2 shows that, for some TBox T , forget(T ,V) may not be expressible as a finite
ALC TBox. Thus, it is natural to consider a sequence of (finite) TBoxes that approx-
imate the result of forgetting in T in the sense that the sequence is non-decreasing in
terms of logical implication and the limit of the sequence is the result of forgetting. Such
a consequence is constructed by using results developed for c-forgetting in Section 4.

We note that, for an inclusion C v D in T , forget(C,V) v forget(D,V) may not be
a logical consequence of T and thus may not be in forget(T ,V). However, if we trans-
form T into an equivalent singleton TBox {> v CT }, where CT =

d
CvD∈T (¬C t

D), then inclusion α0 of the form > v forget(CT ,V) is a logical consequence of
T . In general, the singleton TBox {α0} is not necessarily equivalent to forget(T ,V).
However, it can be a starting point of a sequence whose limit is forget(T ,V). Note
that T is also equivalent to {> v CT u ∀R.CT } for an arbitrary role name R in T .
Hence, inclusion α1 of the form > v forget(CT u∀R.CT ,V) is a logical consequence
of T , and it can be shown that TBox {α1} is logically stronger then {α0}. That is,
forget(T ,V) |= {α1} |= {α0}. Let α2 be > v forget(CT u ∀R.CT u ∀R.∀R.CT ,V),
then we have forget(T ,V) |= {α2} |= {α1} |= {α0}. In this way, we can construct a
sequence of TBoxes with increasing logical strength, whose limit is forget(T ,V).

For n ≥ 0, define

C
(n)
T =

nl

k=0

l

R1,...,Rk∈R
∀R1 · · · ∀Rk.CT

where CT =
d

CvD∈T (¬C tD) and R is the set of role names in K.
We now define a sequence of TBoxes, which essentially provides an approximation

to the result of TBox-forgetting.

Definition 5.1. Let T be an ALC TBox and V be a set of variables. For each n ≥ 0,
the TBox

forgetn(T ,V) = {> v forget(C(n)
T ,V) }

is called the n-forgetting about V in T .

Note that the above n-forgetting for TBoxes is defined in terms of forgetting in concept
descriptions (c-forgetting).

Example 5.1. Consider the TBox T in Example 3.2, we have CT = (¬A t B) u
(¬B t C) u (¬C t ∀R.C) u (¬C tD), and C

(0)
T = CT , C

(1)
T = CT u ∀R.CT , . . . ,

C
(n)
T = CT u ∀R.C

(n−1)
T (n ≥ 2).

Let V = {B,C}. For each n ≥ 0, the forgetn(T ,V) can be computed as follows.
forget0(T ,V) = {> v ¬A tD }, which is equivalent to {A v D }.
forget1(T ,V) = {> v ¬A t (D u ∀R.D) }, which is {A v D, A v ∀R.D }.
· · · · · ·
forgetn(T ,V) = {A v D, A v ∀R.D, . . . , A v ∀R.∀R · · · ∀R︸ ︷︷ ︸

n Rs

.D }.

We call (
dn

i=1 Ci)(a) the conjunction of assertions C1(a), . . . , Cn(a) while
(
⊔n

i=1 Ci)(a) is called the disjunction of these assertions.
Before we can perform forgetting on a given ABox, we need to preprocess it and

thus transform it into a normal form. To this end, we give the following definition.

Definition 5.2. An ABox A in ALC is complete if for any individual name a in A and
assertion C(a) with A |= C(a), we have |= C ′ v C, where C ′(a) is the conjunction of
all the concept assertions about a in A.

For example, ABox A = {∀R.A(a), R(a, b)} is incomplete, because A |= A(b)
whereas no such assertion C(b) exists in A that |= C v A. After adding assertions
A(b), ∃R.A(a) and >(a) into A, the resulting ABox is complete.

In complete ABoxes, concept assertion entailment can be reduced to concept sub-
sumption, and is independent of role assertions.

However, there exist incomplete ABoxes that are not equivalent any (finte) complete
ABox. For example, the ABox {R(a, b), R′(b, a)} has infinitely many logical conse-
quences of the form (∃R.∃R′.C t¬C)(a) where C is an arbitrary concept description.
This kind of situations are caused by certain cycles in ABoxes. We say an ABox is
acyclic if there exists no cycle of the form R1(a, a1), R2(a1, a2), . . . , Ri(ai, a) in A in
the ABox.

Note all the role assertions in an acyclic ABox form tree-shape relations between
individuals. We call an individual without any predecessor a root individual, and that
without any successor a leaf individual.

Algorithm 2 is developed to transform a given acyclicALC ABox into an equivalent
complete ABox. The correctness of the algorithm shows that any acyclic ABox can be
transformed to an equivalent complete ABox in ALC .

Note that Algorithm 2 always terminates.

Lemma 5.1. Given an acyclic ALC ABox A, Algorithm 2 always returns a complete
ABox A′ that is equivalent to A.

With the notion of complete ABox, we can extend n-forgetting in TBoxes and define
n-forgetting for an ALC KB as follows.

Algorithm 2 (Complete an acyclic ABox)
Input: An acyclic ALC ABox A.
Output: An equivalent complete ALC ABox A′.
Method:
Step 1. Starting from root individuals, for each individual a and each role assertion R(a, b) in A,
let C(a) be the conjunction of all the concept assertions about a in A.
Transform C into its DNF C =

Fn
i=1 Di as in Definition 4.2. Let ∀R.Ui be the universal quan-

tified conjunct of R in Di. Add (
Fn

i=1 Ui)(b) to A.
Step 2. For each individual a in A, add >(a) to A.
Step 3. Starting from leaf individuals, for each individual b and each role assertion R(a, b) in A,
add assertion (∃R.E)(a) to A, where E(b) is the conjunction of all the concept assertions about
b in A.
Step 4. Return the resulting ABox.

Fig. 2. Transform an acyclic ABox into a complete ABox.

Definition 5.3. Let K = (T ,A) be an ALC KB with A being an acyclic ABox and V
a set of variables. For each n ≥ 0, the KB forgetn(K,V) = (T ′,A′) is called the result
of n-forgetting about V in K, where T ′ = forgetn(T ,V) = {> v forget(C(n)

T ,V) }
and A′ is obtained from A through the following steps:

1. For each individual name a in A, add C
(n)
T (a) to A.

2. Apply Algorithm 2 to obtain a complete ABox, still denoted A.
3. For each individual name a inA, replace C(a) with (forget(C,V))(a), where C(a)

is the conjunction of all the concept assertions about a in A.
4. Remove each R(a, b) from A where R ∈ V .

The basic idea behind Definition 5.3 is to transform the given KB into a new KB such
that forgetting can be done in its ABox and TBox, separately, in terms of c-forgetting
for individual assertions and inclusions.

Example 5.2. Consider the KB K = (T ,A) in Example 3.2 and let V = {B,C}.
For each n ≥ 0, let An be the ABox of forgetn(K,V). We will only elabourate the

computation of A0 as follows: Note that A is acyclic. First C
(0)
T (a) and C

(0)
T (b) are

added into A, where C
(n)
T is the same as in Example 5.1. After applying Algorithm 2

to A, the resulting ABox is equivalent to
{ (B u C u ∀R.C uD)(a), R(a, b), ((¬A tB) u C u ∀R.C uD)(b),
∃R.((¬A tB) u C u ∀R.C uD)(a) }
By applying c-forgetting to the conjunctions of concept assertions about a and b,

we obtain A0 = {D(a), R(a, b), D(b) }.
Similarly, we can compute A1, . . . ,An as:

A1 = { D(a), (∀R.D)(a), R(a, b), D(b), (∀R.D)(b) }.
· · · · · ·

An = { D(a), (∀R.D)(a), . . . , (∀R.∀R · · · ∀R︸ ︷︷ ︸
n Rs

.D)(a), R(a, b),

D(b), (∀R.D)(b), . . . , (∀R.∀R · · · ∀R︸ ︷︷ ︸
n Rs

.D)(b) }.

The following result shows that n-forgetting preserves logical consequences of the
original KB.

Given a concept description C, let |C| be the number of all different subconcepts
of C. For a TBox T , define |T | =

∑
CvD∈T (|C| + |D|). Similarly, for an ABox A,

define |A| =
∑

C(a)∈A |C|. Then for a KB K = (T ,A), |K| = |T |+ |A|.

Proposition 5.1. LetK be anALC KB and V be a set of variables. Then forgetn(K,V)
satisfies the following conditions:

1. K |= forgetn(K,V).
2. Let C and D be two concept descriptions containing no variable in V . If n ≥

2|C|+|D|+|K|, then K |= C v D iff forgetn(K,V) |= C v D.
3. Let C be a concept description containing no variable in V , and a an individual

name in K. If n ≥ 2|C|+|K|, then K |= C(a) iff forgetn(K,V) |= C(a).
4. Let R be a role name not in V , and a, b two individual names in K. Then K |=

R(a, b) iff forgetn(K,V) |= R(a, b).

Recall from the definition of KB-forgetting that, with respect to inclusions and as-
sertions not containing variables in V , K is logically equivalent to forget(K,V). Propo-
sition 5.1 tells us that if we know which inclusions and assertions not containing vari-
ables in V we wish to reason about in advance, then we can derive a value for n, com-
pute forgetn(K,V), and use the fact that, with respect to these inclusions and assertions,
forgetn(K,V) is logically equivalent to K and hence to forget(K,V). In this way, we
can use forgetn(K,V) as a practical approximation to forget(K,V).

The above proposition shows that, for any n ≥ 0, each forgetn(K,V) is logically
weaker than forget(K,V). Also, as the number n is sufficiently large, forgetn(K,V)
preserves more and more consequences of K. Therefore, the sequence of KBs
{forgetn(K,V)}n≥0 is non-decreasing w.r.t. semantic consequence as the next propo-
sition shows.

Proposition 5.2. Let K be an ALC KB and V a set of variables. Then, for any n ≥ 0,
we have forgetn+1(K,V) |= forgetn(K,V).

Based on the above two results, we can show the main theorem of this section as fol-
lows, which states that the limit of the sequence of n-forgettings captures the result of
forgetting.

Theorem 5.1. Let K be an ALC KB and V a set of variables. Then

forget(K,V) =
∞⋃

n=0

forgetn(K,V).

So, by Theorem 5.1, we can compute forget(K,V), if it exists, using algorithms intro-
duced in the paper.

Corollary 5.1. Let K be an ALC KB and V be a set of variables. V is forgettable from
K if and only if there exists N ≥ 0 such that forgetn(K,V) ≡ forgetN (K,V) for all
n ≥ N . In this case, forget(K,V) = forgetN (K,V).

As we can see from Example 3.2, the sizes of consequences (assertions and inclu-
sions) of K not containing variables in V do not have an upper bound. If it does not
exist, we can always choose n large enough to “approximate” forget(K,V). However,
two issues are still unclear to us: First, the computation of forgetn+1(K,V) is not based
on forgetn(K,V). Next, it would be interesting to find a way to measure how close
forgetn(K,V) is from forget(K,V).

6 Conclusion

In this paper, we have proposed a theory of forgetting for ontologies represented as
knowledge bases in ALC and shown several important properties of forgetting, which
together demonstrate the suitability of our approach. Unlike the case of DL-Lite, forget-
ting for ALC KBs may not exist in general because the result of forgetting is an infinite
KB in some cases. For this reason, we have developed an algorithm for approximating
the result of forgetting in ontologies and shown that the algorithm is sound and com-
plete w.r.t. our semantic definition of forgetting. This new approximation is achieved
by employing forgetting for concept descriptions. In our approach, both concepts and
roles can be forgotten inALC ontologies. The notion of forgetting is a semantic one and
thus many properties can be formally proven. The technique of forgetting for DLs has
applications in reuse of large ontologies and many other tasks in ontology engineering.

There are still several interesting issues that we are working on: (1) Currently we are
working on an implementation prototype of forgetting. Such a forgetting component can
be used by ontology editors to enhance their ability of partially reusing large ontologies.
The forgetting component is planning to be embedded into Protégé [27]. (2) We are also
working on extending the results in this paper to more expressive DLs.

References

1. H. Alani, S. Harris, and B. O’Neil. Winnowing ontologies based on application use. In Proc.
3rd ESWC, pp.185–199, 2006.

2. G. Antoniou and F. Harmelen. A Semantic Web Primer. MIT Press (2nd Edition), 2008.
3. F. Baader, D. Calvanese, D.McGuinness, D. Nardi, and P. Patel-Schneider. The Description

Logic Handbook. Cambridge University Press, 2002.
4. T. Berners-Lee, J. Hendler, and O. Lassila. The semantic web. Scientific American, pp.

29–37, May, 2001.
5. M. Dzbor, E. Motta, C. Buil, J. M. Gomez, O. Görlitz, and H. Lewen. Developing ontologies

in owl: an observational study. In Proc. Workshop on OWL: Experiences and Directions,
2006.

6. T. Eiter and K. Wang. Semantic forgetting in answer set programming. Artificial Intelligence,
172(14): 1644–1672, 2008.

7. S. Ghilardi, C. Lutz, and F. Wolter. Did i damage my ontology? a case for conservative
extensions in description logics. In Proc. KR’06, pp.187–197, 2006.

8. B. Grau, Y. Kazakov, I. Horrocks, and U. Sattler. A logical framework for modular integra-
tion of ontologies. In Proc. IJCAI’07, pp.298–303, 2007.

9. B. Grau, B. Parsia, and E. Sirin. Combining OWL ontologies using e-connections. Journal
of Web Semantics, 4(1):40–59, 2006.

10. B. Cuenca Grau, Y. Kazakov, I. Horrocks, and U. Sattler. Just the right amount: Extracting
modules from ontologies. In Proc. WWW’07, pp.717–726, 2007.

11. R. Kontchakov, D. Walther, and F. Wolter. The logical difference problem for description
logic terminologies. In Proc. IJCAR’08, pp.259-274, 2008.

12. R. Kontchakov, D. Walther, and F. Wolter. Forgetting and uniform interpolation in large-scale
description logic terminologies. In Proc. IJCAI’09, 2009.

13. R. Kontchakov, F. Wolter, and M. Zakharyaschev. Modularity in DL-Lite. In Proc. DL’07,
2007.

14. R. Kontchakov, F. Wolter, and M. Zakharyaschev. Can you tell the difference between DL-
Lite ontologies? In Proc. KR’08, pp.285–295, 2008.

15. J. Lang, P. Liberatore, and P. Marquis. Propositional independence: Formula-variable inde-
pendence and forgetting. J. Artif. Intell. Res., 18:391–443, 2003.

16. F. Lin and R. Reiter. Forget it. In Proc. AAAI Fall Symposium on Relevance, pp.154–159,
1994.

17. C. Lutz, D. Walther, and F. Wolter. Conservative extensions in expressive description logics.
In Proc. IJCAI’07, pp. 453–458, 2007.

18. S. Peroni, E. Motta, and M. d’Aquin. Identifying key concepts in an ontology, through the
integration of cognitive principles with statistical and topological measures. In Proc. 3rd
ASWC, pages 242–256, 2008.

19. B. ten Cate, W. Conradie, M. Marx, and Y. Venema. Definitorially complete description
logics. In Proc. KR’06, pp.79–89, 2006.

20. Z. Wang, K. Wang, R. Topor, and J. Z. Pan. Forgetting concepts in DL-Lite. In Proc.
ESWC’08, pp.245–257, 2008.

21. Z. Wang, K. Wang, and R. Topor. Forgetting for Knowledge Bases in DL-Litebool. In Proc.
ARCOE’09 (IJCAI’09 Workshop), 2009.

22. http://www.fmrc.org.au/snomed/
23. http://www.openclinical.org/prj_galen.html
24. http://fma.biostr.washington.edu/
25. http://ncit.nci.nih.gov/
26. http://www.obofoundry.org/
27. http://protege.stanford.edu
28. http://www.neon-toolkit.org
29. http://www.topquadrant.com/products/TB_Composer.html

