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Abstract

In this paper we investigate forgetting in disjunc-
tive logic programs, where forgetting an atom
from a program amounts to a reduction in the sig-
nature of that program. The goal is to provide
an approach that is syntax-independent, in that if
two programs are strongly equivalent, then the re-
sults of forgetting an atom in each program should
also be strongly equivalent. Our central definition
of forgetting is impractical but satisfies this goal:
Forgetting an atom is characterised by the set of
SE consequences of the program that do not men-
tion the atom to be forgotten. We then provide
an equivalent, practical definition, wherein forget-
ting an atom p is given by those rules in the pro-
gram that don’t mention p, together with rules ob-
tained by a single inference step from rules that do
mention p. Forgetting is shown to have appropri-
ate properties; as well, the finite characterisation
results in a modest (at worst quadratic) blowup.
Finally we have also obtained a prototype imple-
mentation of this approach to forgetting.

Introduction
Forgetting is an operation for eliminating vari-
ables from a knowledge base (Lin and Reiter
1994; Lang et al. 2003). It constitutes a reduction
in an agent’s language or, more accurately, signa-
ture, and has been studied under different names,
such as variable elimination, uniform interpola-
tion and relevance (Subramanian et al. 1997).
Forgetting has various potential uses in a reason-
ing system. For example, in query answering, if
one can determine what is relevant to a query, then
forgetting the irrelevant part of a knowledge base
may yield a more efficient operation. Forgetting
may also provide a formal account and justifica-
tion of predicate hiding, for example for privacy
issues. As well, forgetting may be useful in sum-
marising a knowledge base or reusing part of a
knowledge base or in clarifying relations between
predicates.

The best-known definition of forgetting is with
respect to classical propositional logic, and is due

to George Boole (Boole 1854). To forget an atom
p from a formula φ in propositional logic, one dis-
joins the result of uniformly substituting > for
p in φ with the result of substituting ⊥; that is,
forgetting is given by φ[p/>] ∨ φ[p/⊥]. (Lin
and Reiter 1994) investigated the theory of for-
getting for first order logic and its application in
reasoning about action. Forgetting has been ap-
plied in resolving conflicts (Eiter and Wang 2008;
Zhang and Foo 1997), and ontology comparison
and reuse (Kontchakov et al. 2008; Konev et al.
2013).

The knowledge base of an agent may be rep-
resented in a non-classical logic, in particular a
nonmonotonic approach such as answer set pro-
gramming (ASP) (Gelfond and Lifschitz 1988;
Baral 2003; Gebser et al. 2012). However, the
Boole definition clearly does not extend readily
to logic programs. In the past few years, several
approaches have been proposed for forgetting in
ASP (Eiter and Wang 2006; 2008; Wang et al.
2005; Zhang et al. 2005; Zhang and Foo 2006).
The approach to forgetting in (Zhang et al. 2005;
Zhang and Foo 2006) is syntactic, in the sense
that their definition of forgetting is given in terms
of program transformations, but is not based on
answer set semantics or SE models1 (for normal
logic programs). A semantic theory of forgetting
for normal logic programs under answer set se-
mantics is introduced in (Wang et al. 2005), in
which a sound and complete algorithm is devel-
oped based a series of program transformations.
This theory is further developed and extended to
disjunctive logic programs (Eiter and Wang 2006;
2008). However, this theory of forgetting is de-
fined in terms of standard answer set semantics
instead of SE models.

In order to use forgetting in its full generality,
for dealing with relevance or predicate hiding, or
in composing, decomposing, and reusing answer
set programs, it is desirable for a definition to be
given in terms of the logical content of a program,

1See the next section for definitions.



that is in terms of SE models. For example, the
reuse of knowledge bases requires that when a
sub-programQ in a large program P is substituted
with another program Q′, the resulting program
should be equivalent to P . This is not the case
for answer set semantics due to its nonmonotonic-
ity. As a result, two definitions of forgetting have
been introduced in HT-logic (Wang et al. 2012;
2013). These approaches indirectly establish the-
ories of forgetting under SE models as HT-logic
provides a natural extension of SE models. The
approach to interpolation for equilibrium logic in-
troduced in (Gabbay et al. 2011) is more gen-
eral than forgetting. However, the issue of directly
establishing a theory of forgetting for disjunctive
logic programs under SE models is still not fully
resolved yet. In addition, it is even more challeng-
ing to develop efficient algorithm for computing a
result of forgetting under SE models.

A key intuition behind forgetting is that the log-
ical consequences of a set of formulas that don’t
mention forgotten symbols should still be believed
after forgetting. This leads to a very simple (ab-
stract) knowledge-level definition, provided that a
consequence operator is provided in the underly-
ing logic. In particular, the semantics of a logic
usually associates a set of models Mod(K) with
each knowledge baseK. This makes it straightfor-
ward to formulate a definition of forgetting based
on the above intuition. However, such a defini-
tion of forgetting suffers from the problem of in-
expressibility, i.e., the result of forgetting may not
be expressible in the logic. In this paper, we es-
tablish such a theory of forgetting for disjunctive
logic programs under SE models. Besides several
important properties, we show that the result of
forgetting for a given disjunctive program is still
a disjunctive program. This result confirms the
existence and expressibility of forgetting for DLP
under SE models and in fact provides an algorithm
for computing forgetting under SE models. We in-
vestigate some optimisation techniques for the al-
gorithm and report a prototype implementation of
the algorithm.

Answer Set Programming
Here we briefly review pertinent concepts in an-
swer set programming; for details see (Gelfond
and Lifschitz 1988; Baral 2003; Gebser et al.
2012).

Let A be an alphabet, consisting of a set of
atoms. A (disjunctive) logic program over A is
a finite set of rules of the form

a1; . . . ; am ← b1, . . . , bn,∼c1, · · · ,∼cp. (1)

where ai, bj , ck ∈ A, and m,n, p ≥ 0 and
m + n + p > 0. Binary operators ‘;’ and ‘,’
express disjunction and conjunction respectively.

For atom a, ∼a is (default) negation. We will use
LA to denote the language (viz. set of rules) gen-
erated by A.

Without loss of generality, we assume that there
are no repeated literals in a rule. The head and
body of a rule r, H(r) and B(r), are defined by:

H(r) = {a1, . . . , am} and
B(r) = {b1, . . . , bn,∼c1, . . . ,∼cp}.

Given a set X of literals, we define

X+ = {a ∈ A | a ∈ X},
X− = {a ∈ A | ∼a ∈ X}, and
∼X = {∼a | a ∈ X ∩ A}.

For simplicity, we sometimes use a set-based no-
tation, expressing a rule as in (1) as

H(r)← B(r)+,∼B(r)− .

The reduct of a program P with respect to a set of
atoms Y , denoted PY , is the set of rules:

{H(r)← B(r)+ | r ∈ P, B(r)− ∩ Y = ∅}.
Note that the reduct consists of negation-free rules
only. An answer set Y of a program P is a subset-
minimal model of PY . A program induces 0, 1,
or more answer sets. The set of all answer sets of
a program P is denoted by AS (P ). For example,
the program P = {a ← . c; d ← a,∼b} has
answer sets AS (P ) = {{a, c}, {a, d}}. Notably,
a program is nonmonotonic with respect to its an-
swer sets. For example, the program {q ← ∼p}
has answer set {q} while {q ← ∼p. p ←} has
answer set {p}.

SE Models
As defined by (Turner 2003), an SE interpretation
on a signature A is a pair (X,Y ) of interpreta-
tions such that X ⊆ Y ⊆ A. An SE interpreta-
tion is an SE model of a program P if Y |= P and
X |= PY , where |= is the relation of logical en-
tailment in classical logic. The set of all SE mod-
els of a program P is denoted by SE (P ). Then,
Y is an answer set of P iff (Y, Y ) ∈ SE (P ) and
no (X,Y ) ∈ SE (P ) with X ⊂ Y exists. Also,
we have (Y, Y ) ∈ SE (P ) iff Y ∈ Mod(P ).

A program P is satisfiable just if SE (P ) 6= ∅.2
Thus, for example, we consider P = {p ← ∼p}
to be satisfiable, since SE (P ) 6= ∅ even though
AS (P ) = ∅. Two programs P and Q are strongly
equivalent, symbolically P ≡s Q, iff SE (P ) =
SE (Q). Alternatively, P ≡s Q holds iff AS (P ∪
R) = AS (Q∪R), for every programR (Lifschitz
et al. 2001). We also write P |=s Q iff SE (P ) ⊆
SE (Q).

2Note that many authors in the literature define sat-
isfiability in terms of answer sets, in that for them
a program is satisfiable if it has an answer set, i.e.,
AS(P ) 6= ∅.



SE Consequence
While the notion of SE models puts ASP on a
monotonic footing with respect to model theory,
(Wong 2008) has subsequently provided an infer-
ential system for rules that preserves strong equiv-
alence, where his notion of SE consequence is
shown to be sound and complete with respect to
the semantic notion of SE models. His inference
system is given as follows, where lower case let-
ters are atoms, upper case are sets of atoms, and
for a set of atoms C = {c1, . . . , cn}, ∼C stands
for {∼c1, . . . ,∼cn}.

Inference Rules for SE Consequence:

Taut x← x

Contra ← x,∼x
Nonmin From A← B,∼C infer

A;X ← B, Y,∼C,∼Z
WGPPE From A1←B1, x,∼C1 and

A2;x←B2,∼C2 infer
A1;A2 ← B1, B2,∼C1,∼C2

S-HYP From A1 ← B1,∼x1,∼C1,
. . . ,

An ← Bn,∼xn,∼Cn,
A← x1, . . . , xn,∼C infer

A1; . . . ;An ←
B1, . . . , Bn,∼C1, . . . ,∼Cn,∼A,∼C

Several of these rules are analogous to or similar
to well-known rules in the literature. For example,
Nonmin is weakening; WGPPE is analogous to
cut; and S-HYP is a version of hyper-resolution.
Let `s denote the consequence relation generated
by these rules, for convenience allowing sets of
rules on the right hand side of `s. Then P ↔s

P ′ abbreviates P `s P ′ and P ′ `s P . As well,
define

CnA(P ) = {r ∈ LA | P `s r}.

Then the above set of inference rules is sound and
complete with respect to the entailment |=s.
Theorem 1 ((Wong 2008)) P |=s r iff P `s r.

The Approach
Formal Preliminaries
Since forgetting in our approach amounts to de-
creasing the alphabet, or signature, of a logic pro-
gram, we need additional notation for relating sig-
natures. Let A and A′ be two signatures where
A′ ⊂ A. Then A′ is a reduction3 of A, and A is

3The standard term in model theory is reduct (Chang
and Keisler 2012; Doets 1996; Hodges 1997). However
reduct has its own meaning in ASP, and so we adopt
this variation.

an expansion of A′. Furthermore, if w is an SE
interpretation on A and w′ is an SE interpretation
on A′ where w and w′ agree on the interpreta-
tion of symbols in A′ then w′ is the A-reduction
of w, and w is an A′-expansion of w′. For fixed
A′ ⊂ A, reductions are clearly unique whereas
expansions are not.

For a logic program P , σ(P ) denotes the sig-
nature of P , that is, the set of atoms mentioned
in P . SE models are defined with respect to an
understood alphabet; for SE model w we also use
σ(w) to refer to this alphabet. Thus for example
if A = {a, b, c} then, with respect to A, the SE
model w = ({a}, {a, b}) is more perspicuously
written as ({a,¬b,¬c}, {a, b,¬c}), and so in this
case σ(w) = {a, b, c}.

If A′ ⊂ A and for SE models w, w′ we have
σ(w) = A and σ(w′) = A′ then we use w|A′ to
denote the reduction of w with respect to A′ and
we use w′↑A to denote the set of expansions of w′

with respect to A. This notation extends to sets of
models in the obvious way. As well, we use the
notion of a reduction for logic programs; that is,
for A′ ⊆ A,

P|A′ = {r ∈ P | σ(r) ⊆ A′}.

An Abstract Characterisation of
Forgetting
As described, our goal is to define forgetting with
respect to the logical content of a logic program.
For example, if we were to forget b from the pro-
gram {a← b., b← c.}, we would expect the rule
a ← c to be in the result, since it is implicit in
the original program. Consequently, our primary
definition is the following.

Definition 1 LetP be a disjunctive logic program
over signatureA. The result of forgettingA′ in P ,
denoted Forget(P,A′), is given by:

Forget(P,A′) = CnA(P ) ∩ LA\A′ .

That is, the result of forgetting a set of atomsA′ in
program P is simply the set of SE consequences
that of P over the original alphabet, but excluding
atoms from A′.

This definition is very simple. This character-
ization is abstract, at the knowledge level. As a
consequence, many formal results are very easy
to show. On the other hand, the definition is not
immediately practically useful since forgetting re-
sults in an infinite set of rules. Consequently a key
question is to determine a finite characterisation
(that is to say, a uniform interpolant) of Forget.
We explore these issues next.

The following results are elementary, but show
that the definition of forgetting has the “right”
properties.



Proposition 1 Let P and P ′ be disjunctive logic
program and let A (possibly primed or sub-
scripted) be alphabets.

1. P `s Forget(P,A)
2. If P ↔s P ′ then Forget(P,A) ↔s

Forget(P ′,A)
3. Forget(P,A) = CnA′(Forget(P,A))

where A′ = σ(P ) \ A.
4. Forget(P,A) =

Forget(Forget(P,A \ {a}), {a}))
5. Forget(P,A1 ∪ A2) =

Forget(Forget(P,A1),A2))

6. P is a conservative extension of Forget(P,A).
Thus, forgetting results in no consequences not
in the original theory. As well, the result of
forgetting is independent of syntax and yields a
deductively-closed theory (Parts 2 and 3). Part
4 gives an iterative means of determining forget-
ting on an element-by-element basis. The next
part, which generalises the previous, shows that
forgetting is decomposable with respect to a sig-
nature, which in turn implies that forgetting is a
commutative operation with respect to its second
argument. Last, P is a conservative extension
of the result of forgetting, which is to say, triv-
ially σ(P ) \ A′ ⊆ σ(P ), and the consequences of
P and Forget(P,A) coincide over the language
Lσ(P )\A′ .

With regards to SE models, we obtain the fol-
lowing results giving an alternative characterisa-
tion of forgetting. Here only we use the notation
SEA(P ) to indicate the SE models of program P
over alphabet A.

Proposition 2 Let A′ ⊆ A, and let σ(P ) ⊆ A.

1. SEA\A′(Forget(P,A′)) = SEA(P )|(A\A′)

2. SEA(Forget(P,A′)) = (SEA(P )|(A\A′))↑A

The first part provides a semantic characterisation
of forgetting: the SE models of Forget(P,A′) are
exactly the SE models of P restricted to the sig-
natureA\A′. Very informally, what this means is
that the SE models of Forget(P,A′) can be deter-
mined by simply dropping the symbols inA′ from
the SE models of P . The second part, which is a
simple corollary of the first, expresses forgetting
with respect to the original signature.

Of course, one may wish to re-express the effect
of forgetting in the original language of P ; in fact,
many approaches to forgetting assume that the un-
derlying language is unchanged. To this end, we
can consider a variant of Definition 1 as follows,
where A′ ⊆ A.

ForgetA(P,A′) ≡ CnA(Forget(P,A′)) (2)

That is, Forget(P,A′) is re-expressed in the orig-
inal language with signature A. The result is a

theory over the original language, but where the
resulting theory carries no contingent information
about the domain of application regarding ele-
ments of A′.

The following definition is useful in stating re-
sults concerning forgetting.
Definition 2 Signature A is irrelevant to P ,
IR(P,A), iff there is P ′ such that P ↔s P

′ and
σ(P ′) ∩ A = ∅.

Zhang and Zhou (2009) give four postulates
characterising their approach to forgetting in the
modal logic S5. An analogous result follows here
with respect to forgetting re-expressed in the orig-
inal signature:
Proposition 3 Let A′ ⊆ A and let σ(P ),
σ(P ′) ⊆ A.

Then P ′ = ForgetA(P,A′) iff
1. P `s P ′
2. If IR(r,A′) and P `s r then P ′ `s r
3. If IR(r,A′) and P 6`s r then P ′ 6`s r
4. IR(P ′,A′)
For the last three parts we have that, if a rule r
is independent of a signature A′, then forgetting
A′ has no effect on whether that formula is a con-
sequence of the original knowledge base or not
(Parts 2 and 3). The last part is a “success” pos-
tulate: the result of forgetting A′ yields a theory
expressible without A′.

A Finite Characterisation of Forgetting
Aside: Forgetting in Propositional Logic We
first take a quick detour to forgetting in propo-
sitional logic to illustrate the general approach
to finitely characterising forgetting. Let φ be
a formula in propositional logic and let p be
an atom; the standard definition for forgetting p
from φ in propositional logic is defined to be
φ[p/>] ∨ φ[p/⊥]. It is not difficult to show that
this is equivalent to Definition 1, but suitably re-
expressed in terms of propositional logic. This
definition however is not particularly convenient.
It is applicable only to finite sets of formulas. As
well, it results in a formula whose main connec-
tive is a disjunction.

An alternative is given as follows. Assume that
a formula (or formulas) for forgetting is expressed
in clause form, where a (disjunctive) clause is ex-
pressed as a set of literals. For forgetting an atom
p, consider the set of all clauses obtained by re-
solving on p:
Definition 3 Let S be a set of propositional
clauses and p ∈ P . Define

Res(S, p) = {φ | ∃φ1, φ2 ∈ S such that
p ∈ φ1 and ¬p ∈ φ2, and
φ = (φ1 \ {p}) ∪ (φ2 \ {¬p})}



We obtain the following, where ForgetPC refers
to forgetting in propositional logic:

Theorem 2 Let S be a set of propositional
clauses over signature P and p ∈ P .

ForgetPC(P, p) ↔ S|(P\{p}) ∪Res(S, p).

This provides an arguably more convenient
means of computing forgetting, in that it is eas-
ily implementable, and one remains with a set of
clauses.

Back to Forgetting in Logic Programming:
We can use the same overall strategy for comput-
ing forgetting in a disjunctive logic program. In
particular, for forgetting an atom a, we can use the
inference rules from (Wong 2008) to compute “re-
solvents” of rules that don’t mention a. It proves
to be the case that the corresponding definition is
a bit more intricate, since it involves various com-
binations of WGPPE and S-HYP, but overall the
strategy is the same as for propositional logic.

In the definition below, ResLP corresponds
to Res for forgetting in propositional logic. In
propositional logic, Res was used to compute all
resolvents on an atom a. Here the same thing is
done: we consider instances of WGPPE and S-
HYP in place of propositional resolution; these
instances are given by the two parts of the union,
respectively, below.

Definition 4 LetP be a disjunctive logic program
and a ∈ A.

Define:

ResLP (P, a) =

{r | ∃r1, r2 ∈ P such that
r1 = A1←B1, a,∼C1,

r2 = A2; a←B2,∼C2,

r = A1;A2 ← B1, B2,∼C1,∼C2 }
∪
{r | ∃r1, . . . , rn, r′ ∈ P such that a = a1

ri = Ai←Bi,∼ai,∼Ci, 1 ≤ i ≤ n
r′ = A← a1, . . . an,∼C and
r = A1; . . . ;An ←

B1, . . . , Bn,∼C1, . . . ,∼Cn,∼A,∼C }

We obtain the following:

Theorem 3 Let P be a disjunctive logic program
over A and a ∈ A. Assume that any rule r ∈
P is satisfiable, non-tautologous, and contains no
redundant occurrences of any atom.

Then:
Forget(P, a)↔s P|(A\{a}) ∪ ResLP (P, a).

Proof Outline: From Definition 1, Forget(P, a)
is defined to be the set of those SE consequences
of program P that do not mention a. Thus for

disjunctive rule r, r ∈ Forget(P, a) means that
P `s r and a 6∈ σ(r). Thus the left-to-right
direction is immediate: Any r ∈ P|(A\{a}) or
r ∈ ResLP (P, a) is a SE consequence of P that
does not mention a.

For the other direction, assume that we have a
proof of r from P , represented as a sequence of
rules. If no rule in the proof mentions a, then we
are done. Otherwise, since r does not mention
a, there is a last rule in the proof, call it rn that
does not mention a, but is obtained from rules that
do mention a. The case where rn is obtained via
Taut, Contra, or Nonmin is easily handled. If
rn is obtained via WGPPE or S-HYP then there
are rules rk and rl that mention a (and perhaps
other rules in the case of S-HYP). If rk,rl ∈ P
then rn ∈ ResLP (P, a). If one of rk, rl is not
in P (say, rk) then there are several cases, but in
each case it can be shown that the proof can be
transformed to another proof where the index of
rk in the proof sequence is decreased and the in-
dex of no rule mentioning a is increased. This
process must terminate (since a proof is a finite
sequence), where the premisses of the proof are
either rules of P that do not mention a, elements
of ResLP (P, a), or tautologies.

Consider the following case, where rn =
A1;A2;A3 ← B1, B2, B3, and we use the nota-
tion that each Ai is a set of implicitly-disjoined
atoms while each Bi is a set of implicitly-
conjoined literals. Assume that rn is obtained
by an application of WGPPE from rk =
a;A1;A2 ← B1, B2 and rl = A3 ← a,B3.
Assume further that rk is obtained from ri =
a; b;A1 ← B1 and rj = A2 ← b, B2 by an appli-
cation of WGPPE. This situation is illustrated in
Figure 1a.

a; b;

3 <− B ,1

A1 A2 <− A3 <−

B2A2 <−

B1 B2 B3<−

B ,1A ;1

A ;1 A ;2 B3B ,2

b, a,

a;

A

Figure 1a

Then essentially the steps involving the two ap-
plications of WGPPE can be “swapped”, as il-
lustrated in Figure 1b, where rk is replaced by
r′k = a;A1;A2 ← B1, B2.

a; b;

3 <− B ,1

A1 A2 <− A3 <−

B3A3 <−

B1 B2 B3<−

B ,1A ;1

A ;1 A ;2 B3B ,2

b, a,

b;

A

Figure 1b



Thus the step involving a is informally “moved
up” in the proof. There are 12 other cases, involv-
ing various combinations of the inference rules,
but all proceed the same as in the above. �

The theorem is expressed in terms of forgetting
a single atom. Via Proposition 1.4 this readily ex-
tends to forgetting a set of atoms. Moreover, since
we inherit the results of Propositions 1 and 3, we
get that the results of forgetting are independent
of syntax, even though the expression on the right
hand side of Theorem 3 is a set of rules obtained
by transforming and selecting rules in P . It can
also be observed that forgetting an atom results in
at worst a quadratic blowup in the size of the pro-
gram. While this may seem comparatively mod-
est, it implies that forgetting a set of atoms may
result in an exponential blowup.

Example 1 Let P = {p ← ∼q. r ← p}. For-
getting p yields {r ← ∼q} (where r ← ∼q is
obtained by an application of WGPPE), while
forgetting q and r yield programs {r ← p} and
{p← ∼q} respectively.

Computation of Forgetting
By Theorem 3, we have the following algorithm
for computing the result of forgetting. A rule r
is a tautology if it is of the form r = A; b ←
b, B,∼C; a rule r is a contradictory if it is of the
form r = A; c ← B,∼c,∼C; a rule r is minimal
if there is no rule r′ in P such that B(r′) ⊆ B(r),
H(r′) ⊆ H(r) and one of these two subset rela-
tions is proper; otherwise, r is non-minimal.
Algorithm 1 (Computing a result of forgetting)
Input: Disjunctive program P and literal a in P .
Output: Forget(P, a).
Procedure:

Step 1. Remove tautology rules, contradiction
rules and non-minimal rules from P . The result-
ing disjunctive program is still denoted P .

Step 2. Collect all rules in P that do not contain
the atom a, denoted P ′.

Step 3. For each pair of rules r1 = A1 ←
B1, a,∼C1 and r2 = A2; a←B2,∼C2, add the
rule r = A1;A2 ← B1, B2,∼C1,∼C2 to P ′

Step 4. For each rule r′ = A← a1, . . . an,∼C
where for some i, ai = a, and for each set
of n rules {ri = Ai ← Bi,∼ai,∼Ci | 1 ≤
i ≤ n}, add the rule r = A1; . . . ;An ←
B1, . . . , Bn,∼C1, . . . ,∼Cn,∼A,∼C to P ′.

Step 5. Return P ′ as Forget(P, a).
Some remarks for the algorithm are in order.

Obviously, Step 1 is to preprocesss the input pro-
gram by eliminating tautology rules, contradiction
rules and non-minimal rules from P . Initially, all
rules that do not contain a, which are trivial SE-
consequences of P , are included in the result of
forgetting. In many practical applications, such a

part of input program is usually not very large and
thus forgetting can be efficiently done although
the input program can be very large. Step 3 and
Step 4 implement two resolution rules WGPPE
and S-HYP, respectively.

Conflict Resolving by Forgetting:
Revisited
(Eiter and Wang 2006; 2008) explore how their se-
mantic forgetting for logic programs can be used
to resolve conflicts in multi-agent systems. How-
ever, their notion of forgetting is based on an-
swer sets and thus does not preserve the syntac-
tic structure of original logic programs, as pointed
out in (Cheng et al. 2006). In this subsection,
we demonstrate how this shortcoming of Eiter and
Wang’s forgetting can be overcome in our SE-
forgetting for disjunctive programs.

The basic idea of conflict resolving (Eiter and
Wang 2006; 2008) consists of two observations:

1. each answer set corresponds to an agreement
among some agents;

2. conflicts are resolved by forgetting some liter-
als/concepts for some agents/ontologies.

Definition 5 Let S = (P1, P2, . . . , Pn), where
each logic program Pi represents the prefer-
ences/constraints of Agent i. A compromise of
S is a sequence C = (F1, F2, . . . , Fn) where
each Fi is a set of atoms to be forgotten from
Pi. An agreement of S on C is an answer set of
forget(S, C) = forget(P1, F1)∪ forget(P2, F2)∪
· · · ∪ forget(Pn, Fn).

For specific applications, we may need to impose
certain conditions on each Fi. However, the two
algorithms (Algorithms 1 and 2) in (Cheng et al.
2006) may not produce intuitive results if directly
used in a practical application. Consider a simple
scenario with two agents.

Example 2 (Cheng et al. 2006) Suppose that two
agents A1 and A2 try to reach an agreement on
submitting a paper to a conference, as a regular
paper or as a system description. If a paper is
prepared as a system description, then the system
may be implemented either in Java or Prolog. The
preferences and constraints are as follows.

1. The same paper cannot be submitted as both a
regular paper and system description.

2. A1 would like to submit the paper as a regular
one and, in case the paper is submitted as a
system description and there is no conflict, he
would prefer to use Java.

3. A2 would like to submit the paper as a system
description but not prefer regular paper.

Obviously, the preferences of these two agents
are jointly inconsistent and thus it is impossible



to satisfy both at the same time. The scenario
can be encoded as a collection of three disjunc-
tive programs (P0 stands for general constraints):
S = (P0, P1, P2) whereR,S, J, P mean “regular
paper,” “system description,” “Java” and “Pro-
log,” respectively: P0 = {← R,S}, P1 = {R ←
. J ← S,∼P}, P2 = {← R. S ←}.

Intuitively, ifA1 can make a compromise by for-
gettingR, then there will be an agreement {S, J},
that is, a system description is prepared and Java
is used for implementing the system. However, if
we directly use forgetting in conflict resolution, by
forgetting R, we can only obtain an agreement
{S} which does not contain J . In fact, this is
caused by the removal of J ← S,∼P in the pro-
cess of forgetting. This rule is abundant in P1 but
becomes relevant when we consider the interac-
tion of A1 with other agents (here A2).

As pointed out in (Cheng et al. 2006), it is nec-
essary to develop a theory of forgetting for dis-
junctive programs such that locally abundant (or
locally irrelevant) rules in the process of forget-
ting can be preserved. Our SE forgetting pro-
vides an ideal solution to the above problem. This
can be seen from the definition of SE-forgetting
and Algorithm 1 (if needed, we don’t have to
eliminate non-minimal rules in Step 1). In fact,
Forget(P1, R) = {J ← S,∼P}, which pre-
serves the locally redundant rule J ← S,∼P .

Conclusion
In this paper we have addressed forgetting under
SE models in disjunctive logic programs, wherein
forgetting amounts to a reduction in the signature
of a program. Essentially, the result of forgetting
an atom (or set of atoms) from a program is the
set of SE consequences of the program that do not
mention that atom or set of atoms. This defini-
tion then is at the knowledge level, that is, it is ab-
stract and is independent of how a program is rep-
resented. Hence this theory of forgetting is useful
for tasks such as knowledge base comparison and
reuse. A result of the proposed forgetting under
SE models is also a result of forgetting under an-
swer sets but not vice versa. Moreover, we have
developed an efficient algorithm for computing
forgetting in disjunctive logic programs, which is
complete and sound with respect to the original
knowledge-level definition.

A prototype implementation, of forgetting has
been implemented in Java and is available pub-
licly at http://www.ict.griffith.edu.
au/˜kewen/SE-Forget/. While our exper-
iments on the efficiency of the system are still
underway, preliminary results show that the algo-
rithm is very efficient. Currently we are still work-
ing on improving efficiency of the implementation
and are experimenting on applying it to large prac-

tical logic programs and randomly generated pro-
grams. We plan to apply this notion of forgetting
to knowledge base comparison and reuse. For fu-
ture work we also plan to investigate a similar ap-
proach to forgetting for other classes of logic pro-
grams.
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