
Forgetting under the Well-Founded Semantics

José Júlio Alferes1, Matthias Knorr1, and Kewen Wang2

1 CENTRIA & Departamento de Informática, Faculdade Ciências e Tecnologia,
Universidade Nova de Lisboa, 2829-516 Caparica, Portugal

2 School of Information and Communication Technology, Griffith University,
Brisbane QLD 4111, Australia

Abstract. In this paper, we develop a notion of forgetting for normal
logic programs under the well-founded semantics. We show that a num-
ber of desirable properties are satisfied by our approach. Three different
algorithms are presented that maintain the computational complexity of
the well-founded semantics, while partly keeping its syntactical structure.

1 Introduction

Forgetting has drawn considerable attention in knowledge representation and
reasoning. This is witnessed by the fact that forgetting has been introduced
in many monotonic and nonmonotonic logics [1,5,9,10,11,12,16,18,19], and in
particular, in logic programming [6,15,17].

A potential drawback, common to all these three approaches, is the computa-
tional (data) complexity of the answer set semantics, which is coNP, while the
other common semantics for logic programs, the well-founded semantics (WFS),
is in P, which may be preferable in applications with huge amounts of data. How-
ever, to the best of our knowledge, forgetting under the well-founded semantics
has not been considered so far. Therefore, in this paper, we develop a notion of
forgetting for normal logic programs under the well-founded semantics. We show
that forgetting under the well-founded semantics satisfies the properties in [6]. In
particular, our approach approximates semantic forgetting of [6] for normal logic
programs under answer set semantics as well as forgetting in classical logic, in
the sense that whatever is derivable from a logic program under the well-founded
semantics after applying our notion of forgetting, is also derivable in each an-
swer set and classical model after applying semantic and classical forgetting to
the logic program and its classical representation, respectively. We also present
three different algorithms that maintain the favorable computational complexity
of the well-founded semantics when compared to computing answer sets.

2 Preliminaries

A normal logic program P , or simply logic program, is a finite set of rules r
of the form h ← a1, . . . , an, not b1, . . . , not bm where h, ai, and bj , with 1 ≤
i ≤ n and 1 ≤ j ≤ m, are all propositional atoms over a given alphabet Σ.

P. Cabalar and T.C. Son (Eds.): LPNMR 2013, LNAI 8148, pp. 36–41, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

Forgetting under the Well-Founded Semantics 37

Given a rule r, we distinguish the head of r as head(r) = h, and the body of r,
body(r) = body+(r) ∪ not body−(r), where body+(r) = {a1, . . . , an}, body−(r) =
{b1, . . . , bm} and, for a set S of atoms, not S = {not q | q ∈ S}. Rule r is positive
if body−(r) = ∅, negative if body+(r) = ∅, and a fact if body(r) = ∅.

Given a logic program P , BP is the set of all atoms appearing in P , and
LitP = BP ∪ notBP . Also, heads(P) denotes the set {p | p = head(r) ∧ r ∈ P}.

A three-valued interpretation I = I+ ∪ not I− with I+, I− ⊆ BP and I+ ∩
I− = ∅. Informally, I+ and I− contain the atoms that are true and false in I,
respectively. Any atom appearing neither in I+ nor in I− is undefined.

We recall the definition of the well-founded semantics based on the alternating
fixpoint [7]. Given a logic program P and S ⊆ BP , we define ΓP (S) = least(PS)
where PS = {head(r) ← body+(r) | r ∈ P, body−(r) ∩ S = ∅} and least(PS) is
the least model of the positive logic program PS . The square of ΓP , Γ

2
P , is a

monotonic operator and thus has both a least fixpoint, lfp(Γ 2
P), and a greatest

fixpoint gfp(Γ 2
P). We obtain the well-founded model WFM (P) of a normal logic

program P as WFM (P) = lfp(Γ 2
P) ∪ not (BP \ gfp(Γ 2

P)).
Two programs P and P ′ are equivalent (under WFS), denoted by P ≡wf P ′,

iff WFM (P) = WFM (P ′). Finally, the inference relation under the WFS is
defined for any literal q ∈ Lit(P) as follows: P |=wf q iff q ∈WFM (P).

3 Forgetting under the Well-Founded Semantics

When defining forgetting of an atom p in a given logic program P , we want to
obtain a new logic program P ′ such that it does not contain any occurrence of
p or its default negation not p. Additionally, we want to ensure that only the
derivation for p (and not p) is affected, keeping P ′ and P equivalent w.r.t. all
derivable literals excluding p (and not p). We want to achieve this based on the
semantics rather than the syntax and ground it in forgetting in classical logic.

So, we semantically define the result of forgetting under the WFS by determin-
ing the well-founded model, and then providing a logic program that excludes p
syntactically, and whose well-founded model excludes (only) p semantically.

Definition 1. Let P be a logic program and p an atom. The result of forgetting
about p in P , denoted forget(P, p), is a logic program P ′ such that the following
two conditions are satisfied:

(1) BP ′ ⊆ BP \ {p}, i.e., p does not occur in P ′, and
(2) WFM (P ′) = WFM (P) \ ({p} ∪ {not p})

This definition obviously does not introduce new symbols (cf. (F2) in [6]). In
the rest of this section, we assume P , P ′ logic programs and p an atom, and
show a number of desirable properties. The first one corresponds to (F3) in [6].

Proposition 2. For any l ∈ Lit \({p}∪{not p}), forget(P, p) |=wf l iff P |=wf l.

Our definition of forgetting also implies that there are syntactically different
logic programs that correspond to forget(P, p). However, as we show next, all

38 J.J. Alferes, M. Knorr, and K. Wang

Algorithm forget1(P, p)

Input: Normal logic program P and an atom p in P .

Output: A normal logic program P ′ representing forget(P, p).

Method:

Step 1. Compute the well-founded model WFM (P) of P .
Step 2. Let M be the three-valued interpretation obtained from WFM (P) by
removing p and not p. Construct a new logic program with BP ′ = BP \ {p}
whose well-founded model is exactly M :
P ′ = {a← . | a ∈M+} ∪ {a← not a. | a ∈ BP ′ \ (M+ ∪M−)}.
Step 3. Output P ′ as forget(P, p).

Fig. 1. Algorithm forget1(P, p)

results of forgetting about p in P are equivalent w.r.t. the well-founded semantics.
So, we simply use forget(P, p) as a generic notation representing any syntactic
variant of all semantically equivalent results of forgetting about p in P .

Proposition 3. If P ′ and P ′′ are two results of forget(P, p), then P ′ ≡wf P ′′.

Forgetting also preserves equivalence on ≡wf (cf. (F4) in [6]).

Proposition 4. If P ≡wf P ′, then forget(P, p) ≡wf forget(P ′, p).

However, our definition of forgetting preserves neither strong nor uniform
equivalence. Intuitively, the reason is that Def. 1 only specifies the change on
the semantics but not the precise syntactic form of the resulting program.

We may also generalize the definition of forgetting to a set of atoms S in the
obvious way and show that the elements of the set can be forgotten one-by-one.

Proposition 5. Let P be a logic program and S = {q1, . . . , qn} a set of atoms.
Then forget(P, S) ≡wf forget(forget(P, q1), . . . , qn).

We show that our notion of forgetting is faithful w.r.t. semantic forgetting in
ASP [6] as follows, which also links to classical forgetting (cf. (F1) in [6]).

Theorem 6. Let P be a logic program and p, q atoms.

1. If q ∈WFM (forget(P, p)), then q ∈M for all M ∈ AS(forgetASP (P, p)).
2. If not q ∈WFM (forget(P, p)), then q �∈M for all M ∈ AS(forgetASP (P, p)).

4 Computation of Forgetting

4.1 Näıve Semantics-Based Algorithm

Def. 1 naturally leads to an algorithm for computing the result of forgetting
about p in a given logic program P : compute the well-founded model M of P
and construct a logic program from scratch corresponding toWFM (forget(P, p)).
This idea is captured in Algorithm forget1(P, p) shown in Fig. 1.

Forgetting under the Well-Founded Semantics 39

Algorithm forget2(P, p)

Input: Normal logic program P and an atom p in P .

Output: A normal logic program P ′ representing forget(P, p).

Method:

Step 1. Query for the truth value of p in WFM (P) of P (e.g., using XSB).
Step 2. Remove all rules whose head is p. Moreover, given the obtained truth
value of p in WFM (P), execute one of the three cases:

t: Remove all rules that contain not p in the body, and remove p from all the
remaining rule bodies.

u: Substitute p and not p in each body of a rule r in P by not head(r).
f : Remove all rules that contain p in the body, and remove not p from all the

remaining rule bodies.

Step 3. Output the result P ′ as forget(P, p).

Fig. 2. Algorithm forget2(P, p)

4.2 Query-Based Algorithm

Algorithm forget1(P, p) has two shortcomings. First, the syntactical structure of
the original logic program is completely lost, which is not desirable if the rules
are subject to later update or change: the author would be forced to begin from
scratch, since the originally intended connections in the rules were lost in the
process. Second, the computation is not particularly efficient, e.g., if we consider
a huge number of rules from which we want to forget one atom p only.

In the following, we tackle the shortcomings of forget1(P, p) based on the fact
that the WFS is relevant, in the sense that it allows us to query for one atom in
a top-down manner without having to compute the entire model.1 This means
that we only consider a limited number of rules in which the query/goal or one of
its subsequent subgoals appear. Once the truth value of p is determined, we only
make minimal changes to accommodate the forgetting of p: if p is true (resp.
false), then body atoms (resp. entire rules) are removed appropriately; if p is
undefined, then all occurrences of p (and not p) are substituted by the default
negation of the rule head, thus ensuring that the rule head will be undefined,
unless it is true because of another rule in P whose body is true in WFM (P).
The resulting algorithm forget2(P, p) is shown in Fig. 2.

4.3 Forgetting as Program Transformations

What if we could actually avoid computing the well-founded-model at all? We
investigate how to compute forget(P, p) using syntactic program transformations
instead, thereby handling (F5) and completing the match to the criteria in [6].

1 See, e.g., XSB (http://xsb.sourceforge.net) for an implementation.

http://xsb.sourceforge.net

40 J.J. Alferes, M. Knorr, and K. Wang

Algorithm forget3(P, p)

Input: Normal logic program P and an atom p in P .

Output: A normal logic program P ′ representing forget(P, p).

Method:

Step 1. Compute P̂ by exhaustively applying the transformation rules in �→X

to P .
Step 2. If neither p← . ∈ P̂ nor p �∈ heads(P̂), then substitute p and not p in
each body of a rule r in P̂ by not head(r). After that, remove all rules whose
head is p.
Step 3. Output the result P ′ as forget(P, p).

Fig. 3. Algorithm forget3(P, p)

The basic idea builds on a set of program transformations �→X [3], which is
a refinement of [2] for the WFS, avoiding the potential exponential size of the
resulting program in [2] yielding the program remainder P̂ . It is shown in [3]
that �→X is always terminating and confluent and that the remainder resulting
from applying these syntactic transformations to P relates to the well-founded
model WFM (P) in the following way: p ∈ WFM (P) iff p ← . ∈ P̂ and not p ∈
WFM (P) iff p �∈ heads(P̂). We can use this to create the algorithm forget3(P, p)
shown in Fig. 3 which syntactically computes the result of forget(P, p).

Theorem 7. Given logic program P and atom p, forgetx(P, p), 1 ≤ x ≤ 3,
computes a correct result of forget(P, p), terminates, and computing P ′ is in P.

5 Conclusions

We have developed a notion of semantic forgetting under the well-founded se-
mantics and presented three different algorithms for computing the result of such
forgetting, and in each case the computational complexity is in P.

In terms of future work, we intend to pursue different lines of investigation.
First, we may consider a notion of forgetting that also preserves strong equiv-
alence for different programs, similar to [15] for the answer set semantics, pos-
sibly based on HT2 [4] or adapting work on updates using SE-models [13,14].
An important issue then is whether the result is again expressible as a normal
logic program. Second, since forgetting has been considered for description log-
ics (DLs), we may also consider forgetting in formalisms that combine DLs and
non-monotonic logic programming rules under WFS, such as [8].

Acknowledgments. J. Alferes and M. Knorr were partially supported by FCT
(Fundação para aCiência e aTecnologia) under project “ERRO–EfficientReason-
ing with Rules and Ontologies” (PTDC/EIA-CCO/121823/2010), and M. Knorr
also by FCTGrant SFRH/BPD/86970/2012.K.Wangwas partially supported by
Australian Research Council under grants DP110101042 and DP1093652.

Forgetting under the Well-Founded Semantics 41

References

1. Antoniou, G., Eiter, T., Wang, K.: Forgetting for defeasible logic. In: Bjørner,
N., Voronkov, A. (eds.) LPAR-18 2012. LNCS, vol. 7180, pp. 77–91. Springer,
Heidelberg (2012)

2. Brass, S., Dix, J.: Semantics of disjunctive logic programs based on partial evalu-
ation. J. Log. Program. 38(3), 167–312 (1999)

3. Brass, S., Dix, J., Freitag, B., Zukowski, U.: Transformation-based bottom-up com-
putation of the well-founded model. TPLP 1(5), 497–538 (2001)

4. Cabalar, P., Odintsov, S.P., Pearce, D.: Logical foundations of well-founded se-
mantics. In: Doherty, P., Mylopoulos, J., Welty, C.A. (eds.) KR, pp. 25–35. AAAI
Press (2006)

5. van Ditmarsch, H.P., Herzig, A., Lang, J., Marquis, P.: Introspective forgetting.
In: Wobcke, W., Zhang, M. (eds.) AI 2008. LNCS (LNAI), vol. 5360, pp. 18–29.
Springer, Heidelberg (2008)

6. Eiter, T., Wang, K.: Semantic forgetting in answer set programming. Artif. In-
tell. 172(14), 1644–1672 (2008)

7. Gelder, A.V.: The alternating fixpoint of logic programs with negation. J. Comput.
Syst. Sci. 47(1), 185–221 (1993)

8. Knorr, M., Alferes, J.J., Hitzler, P.: Local closed world reasoning with description
logics under the well-founded semantics. Artif. Intell. 175(9-10), 1528–1554 (2011)

9. Kontchakov, R., Wolter, F., Zakharyaschev, M.: Logic-based ontology comparison
and module extraction, with an application to DL-Lite. Artif. Intell. 174(15), 1093–
1141 (2010)

10. Lang, J., Liberatore, P., Marquis, P.: Propositional independence: Formula-variable
independence and forgetting. J. Artif. Intell. Res. (JAIR) 18, 391–443 (2003)

11. Lin, F., Reiter, R.: Forget it! In: Proceedings of the AAAI Fall Symposium on
Relevance, pp. 154–159 (1994)

12. Lutz, C., Wolter, F.: Foundations for uniform interpolation and forgetting in ex-
pressive description logics. In: Walsh, T. (ed.) IJCAI, pp. 989–995. IJCAI/AAAI
(2011)

13. Slota, M., Leite, J.: On semantic update operators for answer-set programs. In:
Coelho, H., Studer, R., Wooldridge, M. (eds.) ECAI. Frontiers in Artificial Intelli-
gence and Applications, vol. 215, pp. 957–962. IOS Press (2010)

14. Slota, M., Leite, J.: Robust equivalence models for semantic updates of answer-set
programs. In: Brewka, G., Eiter, T., McIlraith, S.A. (eds.) KR, pp. 158–168. AAAI
Press (2012)

15. Wang, Y., Zhang, Y., Zhou, Y., Zhang, M.: Forgetting in logic programs under
strong equivalence. In: Brewka, G., Eiter, T., McIlraith, S.A. (eds.) KR, pp. 643–
647. AAAI Press (2012)

16. Wang, Z., Wang, K., Topor, R.W., Pan, J.Z.: Forgetting for knowledge bases in
DL-Lite. Ann. Math. Artif. Intell. 58(1-2), 117–151 (2010)

17. Zhang, Y., Foo, N.Y., Wang, K.: Solving logic program conflict through strong
and weak forgettings. In: Kaelbling, L.P., Saffiotti, A. (eds.) IJCAI, pp. 627–634.
Professional Book Center (2005)

18. Zhang, Y., Zhou, Y.: Knowledge forgetting: Properties and applications. Artif.
Intell. 173(16-17), 1525–1537 (2009)

19. Zhou, Y., Zhang, Y.: Bounded forgetting. In: Burgard, W., Roth, D. (eds.) AAAI,
pp. 280–285. AAAI Press (2011)

	Forgetting under the Well-Founded Semantics
	1 Introduction
	2 Preliminaries
	3 Forgetting under the Well-Founded Semantics
	4 Computation of Forgetting
	4.1 Na¨ıve Semantics-Based Algorithm
	4.2 Query-Based Algorithm
	4.3 Forgetting as Program Transformations

	5 Conclusions
	References

