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Abstract. The concept of forgetting has received significant interest in artificial
intelligence recently. Informally, given a knowledge base, we may wish to forget
about (or discard) some redundant parts (such as atoms, predicates, concepts, etc)
but still preserve the consequences for certain forms of reasoning. In nonmonotonic
reasoning, so far forgetting has been studied only in the context of extension
based approaches, mainly answer-set programming. In this paper forgetting is
studied in the context of defeasible logic, which is a simple, efficient and sceptical
nonmonotonic reasoning approach.

1 Introduction

The concept of forgetting has received significant interest in Artificial Intelligence
recently. Informally, given a knowledge base, we may wish to forget about (or discard)
some redundant parts (such as atoms, predicates, concepts, etc) but still preserve the
consequences for certain forms of reasoning. Forgetting has been introduced in many
formalisms for knowledge representation, for instance, in propositional logic [17, 18],
first-order logic [19, 31], modal logic [25, 14, 30], description logic [28, 27, 16], and
logic programming [7, 26, 29]. The theory of forgetting has also been fruitfully applied in
various contexts, e.g. in cognitive robotics [19], for resolving conflicts and inconsistencies
[18, 7], and in particular, in ontology engineering [15].

Regarding nonmonotonic logics, so far forgetting has been studied only in the context
of extension based approaches, mainly answer-set programming. On the other hand,
defeasible reasoning is a nonmonotonic reasoning approach in which the gaps due to
incomplete information are closed through the use of defeasible rules. Defeasible logics
were introduced by Nute [23] and developed over several years [3, 10, 6]. They allow
for defeasible reasoning, where a conclusion supported by a rule might be overturned
by the effect of another rule; they also have a monotonic reasoning component, and
a priority on rules. One feature of their design is that they are quite simple, allowing
efficient reasoning; in fact, basic defeasible logics have linear time complexity [20]. Its
properties have been thoroughly studied and analyzed, with strong results in terms of
proof theory [22, 3] and semantics [10, 21].

Defeasible logic has recently attracted considerable interest. Its use in various appli-
cation domains has been advocated, including the modeling of regulations and business



rules [2], modeling of contracts [8], legal reasoning [13], agent negotiations [9, 24],
modeling of agents and agent societies [12, 11], and applications to the Semantic Web
[1, 4] and ambient intelligence [5].

However, to our best knowledge, a theory of forgetting for defeasible logic is still
missing. In this paper, we first examine a naive definition of forgetting for defeasible logic
and explain why such a definition is insufficient for practical applications. Specifically,
the naive definition does not preserve any syntactical information of the original theory.
For this reason, we develop a new approach to forgetting for defeasible logic and establish
some of its formal properties, including completeness, computational complexity, and
structure preservation. Salient features of the solution provided include linear time
complexity, and linear size of the output of (iterated) forgetting.

The paper is organised as follows. Section 2 presents the basics of defeasible logic.
Section 3 introduces the problem of forgetting in the context of defeasible logic, and
presents a first, naive solution. An analysis of the weaknesses of this approach leads to
an improved approach, presented in Section 4, where its properties and computational
complexity are also analyzed. We conclude the paper with plans for future work in
Section 5.

2 Defeasible Logic

In this paper we restrict attention to essentially propositional defeasible logic. Rules with
free variables are interpreted as rule schemas, that is, as the set of all ground instances. If
q is a literal, ∼ q denotes the complementary literal (if q is a positive literal p then ∼ q
is ¬p; and if q is ¬p, then ∼ q is p).

Rules are defined over a language (or signature) Σ, the set of propositions (atoms)
and labels that may be used in the rule.

A rule r : A(r) ↪→ C(r) consists of its unique label r, its antecedent A(r), which is
a finite set of literals (possibly omitted if empty), an arrow ↪→ (which is a placeholder
for concrete arrows to be introduced in a moment), and its head (or consequent) C(r)
which is a literal. In writing rules we omit set notation for antecedents, and sometimes
we omit the label when it is not relevant for the context. There are three kinds of rules,
each designated by a different arrow:
• → designates strict rules (definitional rules);
• ⇒ designates defeasible rules (nonmonotonic rules that may be attacked by other

rules); and
• Ã designates defeaters (special rules that do not support positive conclusions but

may only attack other rules).
Given a set R of rules, we denote by Rs the set of all strict rules in R, by Rsd the set

of all strict and defeasible rules in R, and by R[q] the set of rules in R with consequent
q.

A superiority relation on R is a binary relation > on R. When r1 > r2, then r1

is called superior to r2, and r2 inferior to r1. Intuitively, r1 > r2 expresses that r1

overrules r2, should both rules be applicable. Typically we assume > to be acyclic (that
is, the transitive closure of > is irreflexive).
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A defeasible theory is a triple D = (F,R, >) where F is a finite set of literals (called
facts), R a finite set of rules, and > is an acyclic superiority relation on R. We call D
decisive, if the atom dependency graph of D is acyclic.

Example 1. The following is a theory D = (F,R, >) in defeasible logic, where

F = { }
R = {r0 :→ d

r1 :⇒ a
r2 :⇒ ¬a
r3 : a ⇒ b
r4 :⇒ ¬b
r5 : d, b ⇒ c
r6 :⇒ ¬c },

and r1 > r2 r3 > r4.

A conclusion of a theory D in defeasible logic is a tagged literal and can have one of
the following four forms:

– +∆q, which is intended to mean that q is definitely provable in D.
– −∆q, which is intended to mean that we have proved that q is not definitely provable

in D.
– +∂q, which is intended to mean that q is defeasibly provable in D.
– −∂q, which is intended to mean that we have proved that q is not defeasibly provable

in D.

If we are able to prove q definitely, then q is also defeasibly provable. This is a direct
consequence of the formal definition below. It resembles the situation in, say, Reiter’s
default logic: a formula is sceptically provable from a default theory T = (W, D) (in the
sense that it is included in each extension) if it is provable from the set W of classical
formulas.

Let us consider the theory in Example 1. Intuitively, d can be derived by the strict rule
r0 and thus +∆d is provable from the theory, and so is +∂d. Also, −∆¬d is provable,
as an attempt to prove ¬d fails finitely. Similarly, +∂a is provable (as r1 > r2), and so
is −∂¬a is provable (defeasible logic is sceptical, and the rule supporting a is superior
to the rule supporting ¬a).

Provability for defeasible logic is based on the concept of a derivation (or proof )
in D = (F,R, >). A derivation is a finite sequence P = (P (1), ..., P (n)) of tagged
literals constructed by inference rules. There are four inference rules (corresponding to
the four kinds of conclusion) that specify how a derivation may be extended. (P (1..i)
denotes the initial part of the sequence P of length i):

+∆: We may append P (i+1) = +∆q if either
q ∈ F or
∃r ∈ Rs[q]∀a ∈ A(r) : +∆a ∈ P (1..i)

To prove +∆q, this means we need to establish a proof for q using facts and strict rules
only. This is a deduction in the classical sense. No proofs for the negation of q need to
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be considered (in contrast to defeasible provability below, where opposing chains of
reasoning must be taken into account, too).

To prove −∆q, that is, that q is not definitely provable, q must not be a fact. In
addition, we need to establish that every strict rule with head q is known to be inapplicable.
Thus for every such rule r there must be at least one antecedent a for which we have
established that a is not definitely provable (−∆a).

−∆: We may append P (i+1) = −∆q if
q /∈ F and
∀r ∈ Rs[q]∃a ∈ A(r) : −∆a ∈ P (1..i)

It is worth noticing that this definition of nonprovability does not involve loop detection.
Thus if D consists of the single rule p → p, we can see that p cannot be proven, but
defeasible logic is unable to prove −∆p.

+∂: We may append P (i+1) = +∂q if either
(1) +∆q ∈ P (1..i) or
(2) (2.1) ∃r ∈ Rsd[q] ∀a ∈ A(r): +∂a ∈ P (1..i) and

(2.2) −∆ ∼q ∈ P (1..i) and
(2.3) ∀s ∈ R[∼ q] either

(2.3.1) ∃a ∈ A(s): −∂a ∈ P (1..i) or
(2.3.2) ∃t ∈ Rsd[q] such that

∀a ∈ A(t): +∂a ∈ P (1..i) and t > s

Let us illustrate this definition. To show that q is defeasibly provable, we have two
choices: (1) we show that q is already definitely provable; or (2) we need to argue using
the defeasible part of D as well. In particular, we require that there must be a strict or
defeasible rule with head q which can be applied (2.1). But now we need to consider
possible attacks, that is, reasoning chains in support of ∼q. To be more specific: to prove
q defeasibly we must show that ∼q is not definitely provable (2.2). Also (2.3) we must
consider the set of all rules (including defeaters) which are not known to be inapplicable
and which have head ∼q. Essentially each such rule s attacks the conclusion q. For q
to be provable, each such rule must be counterattacked by a rule t with head q with the
following properties: (i) t must be applicable at this point, and (ii) t must be stronger
than s. Thus each attack on the conclusion q must be counterattacked by a stronger rule.

The definition of the proof theory of defeasible logic is completed by the condition
−∂. It is nothing more than a strong negation of the condition +∂.

−∂: We may append P (i+1) = −∂q if
(1) −∆q ∈ P (1..i) and
(2) (2.1) ∀r ∈ Rsd[q] ∃a ∈ A(r): −∂a ∈ P (1..i) or

(2.2) +∆ ∼q ∈ P (1..i) or
(2.3) ∃s ∈ R[∼q] such that

(2.3.1) ∀a ∈ A(s): +∂a ∈ P (1..i) and
(2.3.2) ∀t ∈ Rsd[q]

either ∃a ∈ A(t): −∂a ∈ P (1..i) or t 6> s
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To prove that q is not defeasibly provable, we must first establish that it is not definitely
provable. Then we must establish that it cannot be proven using the defeasible part of the
theory. There are three possibilities to achieve this: either we have established that none
of the (strict and defeasible) rules with head q can be applied (2.1); or ∼q is definitely
provable (2.2); or there must be an applicable rule r with head ∼q such that no possibly
applicable rule s with head ∼q is superior to s (2.3).

The elements of a derivation P in D are called lines of the derivation. We say that a
tagged literal L is provable in D = (F,R, >), denoted D ` L, if there is a derivation in
D such that L is a line of P . When D is obvious from the context we write ` L.

Consider the theory in Example 1 again. Then the conclusions that can be drawn from
this theory are: −∆a, −∆¬a, +∂a, −∂¬a, −∆b, −∆¬b, +∂b, −∂¬b, −∆c, −∆¬c,
−∂c, −∂¬c, +∆d, +∂d, −∆¬d, −∂¬d.

Two defeasible theories D and D′ are equivalent, denoted D ≡ D′, if for each
tagged literal L, it holds that D ` L iff D′ ` L.

3 Forgetting in Defeasible Logic: A Naive Approach

Intuitively, given a knowledge base K and a set of atoms A, which we wish to forget
from K, we are interested in obtaining a knowledge base K ′ = forget(K, A) such that:
(a) K ′ does not contain any occurrence of any atom in A, and (b) K ′ is equivalent to K
for all atoms not belonging to A.

In the context of defeasible logic, this intuitive idea translates to the following task:

Given a defeasible theory D and a set of atoms A, find a defeasible theory D′

such that (a) D′ does not contain any occurrences of any atom in A, and (b)
D′ ` q ⇔ D ` q for any tagged literal q that does not contain any atom in A.

We denote such a theory D′ by forget(D,A); for singleton A = {a}, we also write
forget(D, a). Note that, by definition, any two different defeasible theories D′ and D′′

satisfying conditions (a) and (b) above are equivalent. Thus forget(D,A) is uniquely
defined, modulo equivalence of defeasible theories.

A first, naive approach to solving this problem is applying the following algorithm.

Algorithm 1

1. Compute the set cons(D) of all conclusions of D.
2. Delete all conclusions from cons(D) that contain an atom in A.
3. Construct a defeasible theory D′ that has exactly those conclusions contained in the

result of step 2. ut

Before continuing, let us make an initial remark about this approach: While quite naive,
it is computationally feasible, in contrast to, say, propositional logic or description
logics where forgetting has already been studied; the reason is that the conclusions of a
defeasible theory (step 1) can be computed in linear time, as shown in [20]. Indeed, the
algorithm provided in that work constitutes the first step in our algorithm.

Thus, the only question that remains is whether step 3 can be carried out. To provide
an answer to this question, we have to carefully analyze the proof theory of defeasible
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Table 1. Distinct cases of provable sets of conclusions involving p and ¬p (cf. [22])

Case Set of conclusions Rules with this outcome

1 p → p,¬p → ¬p

2 +∆¬p, +∂¬p p → p,→ ¬p

3 −∆¬p p → p,¬p ⇒ ¬p

4 −∆¬p,−∂¬p p → p

5 +∂p,−∆¬p,−∂¬p ⇒ p, p → p

6 +∆p, +∂p, +∆¬p, +∂¬p → p,→ ¬p

7 +∆p, +∂p,−∆¬p,−∂¬p → p

8 −∆p, +∂p,−∆¬p,−∂¬p ⇒ p

9 −∆p,−∆¬p p ⇒ p,¬p ⇒ ¬p

10 −∆p,−∆¬p,−∂¬p p ⇒ p

11 −∆p,−∂p,−∆¬p,−∂¬p

logic. This analysis provides a number of relationships among different conclusions; for
example, if D ` +∆p then also D ` +∂p. And also D 6` +∂p or D 6` −∂p (or both).
In addition, there are interrelationships between possible conclusions involving an atom
p and its negation. For example, if D ` +∆¬p and D ` −∆p then D ` −∂p.

Maher et al. [22] provide a thorough analysis of the proof theory of defeasible
logic, and reveal that regarding the provability of a set of conclusions involving p and
its negation, there are essentially eleven distinct cases, out of 28 = 256 syntactically
possible sets of conclusions, which are summarized in Table 1. For each of these cases,
we provide in the rightmost column a respective defeasible theory that contains only the
literals p and ¬p. Thus we demonstrate how step 3 of Algorithm 1 can be carried out.

Let us explain a few of these cases. Case 1 is the one where no conclusion regarding
p or ¬p can be drawn. This outcome is achieved by strict loops for both p and ¬p, which
are not detected by the proof theory of Section 2, therefore no conclusion can be drawn.

Case 2 represents that D 6` −∆p and D 6` +∂p while D ` +∆¬p and D ` +∂¬p.
The theory for it has again a loop for p, but ¬p is definitely, thus also defeasibly, provable.

The theory for case 3 consists of the rules {p → p,¬p ⇒ ¬p}. Here there is a
strict loop for p, but a defeasible loop for ¬p. The latter allows one to derive at least the
definite non-provability of ¬p (as there is no fact nor a strict rule with head ¬p).

Case 6 is the one of inconsistency, which may only occur if both p and ¬p are
definitely (hence also defeasibly) provable, as achieved by the theory provided. Finally,
in case 10 absence of facts or strict rules achieves definite non-provability. The loop on p
prevents us from deriving −∂p, whereas absence of a rule with head ¬p gives us −∂¬p.

Summarizing the discussion so far, all three steps of the algorithm provided in this
section are feasible, and provide a solution to the problem of forgetting.

Proposition 1. Given a defeasible theory D and a set of atoms A, Algorithm 1 computes
a defeasible theory D′ = forget(D,A) .

Moreover, the algorithm can be evaluated efficiently: given Table 1, step 1 is the only
involved step which however can be done in linear time [20].
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Proposition 2. Algorithm 1 computes forget(D,A) in linear time.

Though these theoretical results are positive, the algorithm is still naive, in the sense
that it completely abandons the original structure of the knowledge base and returns an
artificial theory.

Example 2. Take the theory in Example 1 and now suppose we wish to forget about b.
Then Algorithm 1 returns forget(D,A) = (F ′, R′, >′) where

R′ = { → d
⇒ a }

and F ′ and >′ are empty.

This approach is clearly not suitable for practical purposes. The question arises
whether the theoretical properties can be achieved while maintaining the original knowl-
edge structure to the extent possible. This question is studied in the next section.

4 Forgetting in Defeasible Logic: An Improved Approach

The idea for the improved algorithm is the following: assuming that we have the complete
picture regarding the derivability of p and ¬p (one of the eleven cases of the previous
section), we transform the set of rules in a way that takes into account the derivability of
p and ¬p. For example, consider the rules

r1 : p, s → ¬a
r2 : p, q ⇒ a

and the derivability D ` −∆p and D ` +∂p. Rule r1 cannot fire as we have established
that p is not definitely derivable. And we can delete p from the body of r2 as p is
defeasibly derivable. As a result of this transformation, the resulting set of rules contains
no occurrence of p, and represents the result of forgetting p. Let us now consider another
interesting case. Consider the rule

r : p ⇒ s

and the derivability D ` −∆p and D 6` +∂p and D 6` −∂p . Clearly rule r cannot fire
ever, as p cannot be derived. However, −∂p cannot be derived either (indicating a cyclic
situation; see e.g. case 10 in Table 1). Suppose we have in our theory another rule

r′ :⇒ ¬s.

Rule r′ does not fire to prove ¬s because it is attacked by r and r cannot be discarded as
we cannot prove non-derivability of its antecedent p. Simply deleting r when forgetting
p would delete this attack on r′, thus enabling derivability of ¬s and altering the set of
conclusions not involving p. The solution to this problem is to turn r into a defeater

r :Ã s.
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This rule fails to support derivation of s but is able to attack r′ and prevents it from
firing.

As a final example, consider the rule

r : p → q

and suppose D ` +∂p and D ` −∆p. In this case, the strict rule r fails to prove q
strictly, but is able to prove q defeasibly. If we were to simply remove r in the process of
forgetting p, we would lose this defeasible provability of q. To avoid this problem, we
replace r by the defeasible rule

r :⇒ q

Based on these ideas, we provide in the following the full transformation in all eleven
cases of derivability of p and ¬p.

Case 1: { }

– Replace all rules r : A ↪→ q where p or ¬p appear in A with r : A \ {p,¬p}Ã q.
– Delete all facts and rules with p or ¬p in their head.

Case 2: {+∆¬p, +∂¬p}

– Replace all rules r : A ↪→ q such that p appears in A with r : A \ {p}Ã q.
– Remove all occurrences of ¬p from all rule bodies.
– Delete all facts and rules with p or ¬p in their head.

Case 3: {−∆¬p}

– Replace all rules r : A ↪→ q such that p appears in A with r : A \ {p}Ã q.
– Replace all rules r : A ↪→ q such that ¬p appears in A with r : A \ {¬p}Ã q.
– Delete all facts and rules with p or ¬p in their head.

Case 4: {−∆¬p,−∂¬p}

– Replace all rules r : A ↪→ q such that p appears in A with r : A \ {p}Ã q.
– Remove all rules with ¬p as one of its antecedents.
– Delete all facts and rules with p or ¬p in their head.

Case 5: {+∂p,−∆¬p,−∂¬p}

– Replace all strict rules r : A → q with p in A by the defeasible rule r : A\{p} ⇒ q.
– Remove all occurrences of p in the bodies of defeasible rules and defeaters.
– Remove all rules with ¬p as one of its antecedents.
– Delete all facts and rules with p or ¬p in their head.

Case 6: {+∆p, +∂p,+∆¬p, +∂¬p}

– Remove all occurrences of p and ¬p from all rule bodies.
– Delete all facts and rules with p or ¬p in their head.
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Case 7: {+∆p, +∂p,−∆¬p,−∂¬p}

– Remove all occurrences of p from the bodies of all rules.
– Remove all rules with ¬p as one of its antecedents.
– Delete all facts and rules with p or ¬p in their head.

Case 8: {−∆p, +∂p,−∆¬p,−∂¬p}

– Replace all strict rules r : A → q with p in A by the defeasible rule r : A\{p} ⇒ q.
– Remove all occurrences of p from the bodies of all defeasible rules and defeaters.
– Remove all rules with ¬p as one of its antecedents.
– Delete all facts and rules with p or ¬p in their head.

Case 9: {−∆p,−∆¬p}

– Replace all rules r : A ↪→ q where p or ¬p appear in A with r : A \ {p,¬p}Ã q.
– Delete all facts and rules with p or ¬p in their head.

Case 10: {−∆p,−∆¬p,−∂¬p}

– Replace all rules r : A ↪→ q where p appears in A with r : A \ {p}Ã q.
– Remove all rules with ¬p as one of its antecedents.
– Delete all facts and rules with p or ¬p in their head.

Case 11: {−∆p,−∂p,−∆¬p,−∂¬p}

– Remove all rules in which p or ¬p occurs.

This leads us then to the following improved algorithm for forgetting.

Algorithm 2

1. Compute all conclusions concerning atoms in A.
2. For each atom p in A, transform the rules in D to obtain D′.
3. Delete all priority pairs r > s where r or s was deleted in step 2. ut

Step 1 can be carried out, in the worst case, by computing all conclusions of D. Step 2 is
based on the analysis provided above.

Example 3. Reconsider the theory D in Example 1. Note that −∆b, +∂b, −∆¬b, and
−∂¬b} are provable from D. So, by Case 8 above, application of Algorithm 2 yields the
theory D′ = (∅, R′, >′) as forget(D, b), where

R′ = { r0 :→ d
r1 :⇒ a
r2 :⇒ ¬a
r5 : d ⇒ c
r6 :⇒ ¬c }

and r1 >′ r2.
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Example 4. Consider the defeasible theory D = (F,R, >) where

R = { r1 : a ⇒ a
r2 : a ⇒ b
r3 :⇒ ¬b }

and F and > are empty. Here ¬b is not defeasibly derivable because a cannot be shown
to be non-provable (−∂a cannot be derived). Thus it would be a mistake to simply delete
r2 when forgetting a. Instead, Algorithm 2 correctly turns a modified rule r2 (without a
in the body) into a defeater, giving as result the defeasible theory D′ = (∅, R′, ∅) where
R′ contains the rules

r2 :Ã b
r3 :⇒ ¬b.

The following proposition states that Algorithm 2 indeed provided a correct solution
for forgetting.

Proposition 3. Given a defeasible theory D and a set of atoms A, Algorithm 2 computes
a defeasible theory D′ = forget(D,A).

Proof. (Sketch) We want to show that for each tagged literal L whose literal is neither p
nor ¬p, D ` L iff D′ ` L.

If D ` L, then there exists a derivation of L in D: P = (P (1), ..., P (n)). We use
P ′ to denote the sequence of tagged literals obtained from P by removing every tagged
literal whose literal is either p or ¬p. Then we can prove that P ′ is a derivation of L in
D′ by induction on the length n of P . The induction step can be done by examining the
Cases 1-11 in Algorithm 2.

On the other hand, if P ′ = (P ′(1), ..., P ′(m)) is a derivation of L in D′, we can
construct a derivation P of L in D inductively as follows.

Assume that a derivation (P (1), ..., P (u)) of P ′(m− 1) in D has been constructed.
Again, the induction step can be done by examining the Cases 1-11 in Algorithm 2. For
instance, here we consider the Case 7 in Algorithm 2: D ` {+∆p, +∂p,−∆¬p,−∂¬p}.

To construct a derivation of P ′(m) = L in D, consider four possible cases:
Case 1. L = +∆q: Then either q ∈ F or ∃r′ ∈ R′

s[q] ∀a ∈ A(r′) : +∆a ∈
P ′(1..m − 1). If q ∈ F , then it is done. If q 6∈ F , by the (last) induction assumption,
∀a ∈ A(r′) : +∆a ∈ P (1..u). If r′ ∈ R, then (P (1), ..., P (u), L) is already a
derivation of L in D. So we assume that r′ 6∈ R. By the Case 7 in Algorithm 2, there
exists r ∈ R such that A(r) = A(r′)∪{p}. Let P ′′ = (P ′′(1), ..., P ′′(v)) be a derivation
of +∆p; then P = (P (1), ..., P (u), P ′′(1), ..., P ′′(v), L) is a derivation of L in D.
Cases 2,3,4: L = −∆q, L = +∂q, L = −∂q: we can similarly construct a derivation of
L in D. ut

4.1 Semantic Properties

Algorithm 2 satisfies a number of desirable properties. One is that forgetting atoms
which do not occur in the theory cause no change.
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Proposition 4. Let D be a defeasible theory and let A be a set of atoms. Then forget(D,A) ≡
forget(D,A′) where A′ ⊆ A is the set of atoms from A that occur in D; in particular
forget(D, ∅) = D.

Another such property is irrelevance of syntax with respect to equivalence.

Proposition 5. Let D and D′ be defeasible theories such that D ≡ D′. Then, for every
set A of atoms, forget(D,A) ≡ forget(D′, A).

Proof. Let D and D′ be two defeasible theories that are equivalent. Then, for each
tagged literal L whose literal is not in A,

forget(D,A) ` L
iff D ` L
iff D′ ` L
iff forget(D′, A) ` L.

Thus, forget(D,A) and forget(D′, A) are also equivalent. ut

In addition, the result is independent of whether atoms are forgotten successively (in
some order), or altogether.

Proposition 6. Let D be a defeasible theory and let A = {a1, . . . , an, an+1} be a set
of atoms. Then forget(D,A) ≡ forget(forget(D, {a1, . . . , an}), an+1).

Proof. (Sketch) This can be shown by a simple induction on the size n of A. Let
An = {a1, . . . , an}. We need only to observe that

forget(D,A) ≡ forget(D,An) ≡ forget(forget(D,An), an+1). ut

Note that Algorithm 2 is as little disruptive to the original theory as possible. A close
inspection reveals that its only operations are to:

– remove all rules containing atoms in A in their heads;
– remove provable atoms from A from rule bodies;
– remove rules with an atom from A in their body, in cases where this atom is not

provable;
– turn rules into defeaters in certain cases caused by cyclicity (see Example 2);
– remove priority pairs where one of the rules involved was deleted.

All these changes are necessary and as little obstructive as possible in the attempt to
compile the derivability of literals from A into the knowledge base. The following formal
property seeks to partially capture this intuitive notion of “structure preservation”. It
makes use of direct dependency. Formally, an atom a is directly dependent on an atom
b iff either a and b are identical, or there is a rule r with head a or ¬a, such that b
or ¬b appears in the body of r. An atom a is dependent on an atom b iff there is a
sequence a1, a2, . . . , at of atoms such that t > 0 and ai is directly dependent on ai+1

for i = 1, . . . , t− 1.

Proposition 7. forget(D,A) differs from D only on rules whose head is directly depen-
dent on an atom in A.
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4.2 Complexity

Like Algorithm 1, also Algorithm 2 can be run efficiently, as all steps 1-3 are feasible in
linear time (for steps 2 and 3, suitable standard data structures are used).

Proposition 8. Algorithm 2 computes forget(D,A) in linear time.

Finally, the size of the outcome remains linear, ensuring (in conjunction with Proposition
5) that the result of iterated forgetting is of linear size. The latter does not necessarily
follow from the linear time complexity, as there might be an exponential increase in the
number of iterations.

Corollary 1 (of Propositions 4, 6 and 8). For every defeasible theory D and sets
of atoms A1, . . . , Am, The size of D′ = forget(forget(· · · forget(D,A1), · · · ), Am)
computed by Algorithm 2 is linear in the size of D, and D′ is computed in time linear in
the size of D and A1, . . . , Am.

Proof. (Sketch) By Proposition 4, without loss of generality the sets Ai are pairwise
disjoint and nonempty. For each Ai, we can write the forgetting of Ai = {ai,1, . . . , ai,ni

}
as iterated forgetting of each ai,j , 1 ≤ j ≤ ni. Thus, we obtain that

D′ = forget(forget(· · · forget(D, a1,1), · · · ), am,nm).

By Proposition 6 again, D′ = forget(D,A) where A =
⋃m

i=1 Ai. The result follows
then from Proposition 8. ut

4.3 Modularity

Let us, given any two defeasible theories D1 = (F1, R1, <1) and D2 = (F2, R2, <2),
define their union D1 ∪D2 to be the defeasible theory (F1 ∪ F2, R1 ∪R2, <1 ∪ <2).

Given a theory D and a set A of atoms, it is often the case that D is large but only a
small fraction of D is relevant to A. That is, D can be split into two parts D1 and D2

where D2 is irrelevant to A. In this case, to forget about A in D, one would expect to
perform forgetting only on D1. Unfortunately, this is not true in general. Consider the
following theory D = (F,R, >), where

R = { r1 : a′ ⇒ a
r2 : a ⇒ b
r3 : b ⇒ c
r4 : → a′ }

and F and > are empty. Then D = D1 ∪D2 where D1 = (∅, {r1, r2, r3}, ∅) and D2 =
(∅, {r4}, ∅). Then for A = {b}, forget(D,A) is not equivalent to forget(D1, A) ∪D2:
We note that +∂b is provable from D and the body of r3 is b. So, if A = {b} is forgotten
from D, +∂c remains provable from forget(D,A).

On the other hand, +∂b is not provable in D and thus when forgetting about A = {b},
the rule r3 is deleted. As a result, even when r5 : a′ is added, +∂c is still not provable
from forget(D1, A) ∪D2.

We see that the solution provided by Algorithm 2 is not modular. But at least the
following restricted form of splitting for forgetting holds, which can be seen from the
correctness of Algorithm 2.
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Proposition 9. Let A be a set of atoms and let D = D1 ∪D2 be a defeasible theory
without defeaters such that (1) no atom in D1 depends on an atom in D2, and (2) no
atoms in A appear in D2. Then forget(D,A) is equivalent to forget(D1, A) ∪D2.

Proof. (Sketch) Without loss of generality, we assume that A = {p}. Given a tagged
literal L whose literal is q instead of p, we consider two possible cases.
Case 1. q appears only in D1: Then

D ` L
iff D1 ` L
iff forget(D1, A) ` L
iff forget(D1, A) ∪D2 ` L.

Case 2. q appears in D2: It can also be shown that D ` L iff forget(D1, A) ∪D2 ` L.
The basic idea is that, given a tagged literal L′ whose literal is in D1, we can always
replace the derivation of a tagged literal L′ in D1 with a derivation of L′ in forget(D1, A)
or vice versa. ut

As a final point, we wish to place this partial modularity result into context. There
is an intuitive trade-off between dependency/derivability of literals and modularity.
Intuitively, if we want to achieve unrestricted modularity, then information about the
connection (derivability) between pairs of literals must be retained in the theory; but to
record such information, without additional symbols, requires quadratic space. Let us
consider as an example the following set of rules:

ai ⇒ b with i ∈ {1, . . . , n},

b ⇒ cj with j ∈ {1, . . . , n}.

Here each cj depends on all ai’s, and we have quadratically many “implied rules”
ai ⇒ cj to incorporate when forgetting about b, which cannot be done in linear time.
And in lack of any further information to discriminate among different rules, it would also
be unclear which of these implied rules to add, so adding none would make sense; this
is exactly what Algorithm 2 does. So we would argue that Algorithm 2 is a reasonable
core for linear-time forgetting algorithms in the context of defeasible logic. Adding all,
or some (according to some external criteria) “implied rules” would give refinements of
this basic algorithm.

5 Conclusion

In this paper we studied the problem of forgetting in the context of defeasible logic.
We provided two algorithms for computing the result of forgetting a set of literals, a
naive algorithm and an advanced one (Algorithm 2) whose output has several desired
properties. Salient features of the solutions provided are linear time complexity, and the
linear size of iterated forgetting. In addition, Algorithm 2 preserves a lot of structure
of the original defeasible theory; to measure how much in formal terms (e.g., using
similarly via tree edit distance) remains to be considered.
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We intend to continue work on forgetting. One task is to determine a modular
approach to forgetting: Algorithm 2 is not modular, as it has to recompute all conclusions
related to p and ¬p every time the theory is changed. An interesting question would be
to define a pure transformation approach, in the spirit of step 2 of Algorithm 2, without
the need for step 1. Many research questions follow on from this, including a thorough
analysis of time complexity, space of the outcome, and tradeoff between modularity and
dependency and derivability, continuing the discussion at the end of Section 4.

Another idea for future work is to apply forgetting to multi-context theories, and in
particular to the work of [5] which is essentially a contextual defeasible logic. Finally,
we might apply forgetting in the context of the Semantic Web, in particular to defeasible
rule systems over RDF [1, 4], as a means of information integration and knowledge
dynamics, and to deal with inconsistencies in this context.
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