
CIT 3136 CIT 3136 -- Week13 LectureWeek13 Lecture

2

Runtime EnvironmentsRuntime Environments
During execution, allocation must be
maintained by the generated code that
is compatible with the scope and
lifetime rules of the language.
Typically there are three choices for
allocating variables and parameters:
– Assign them fixed locations in global

memory (“static” allocation).
– Put them on the processor stack.
– Allocate them dynamically in memory

managed by the program (the “heap”).

3

Schematic:Schematic:

stack

code area

static/global area

heap

free space

4

C uses all three:C uses all three:
Global storage for definitions at level 0
(“external” definitions) and statically
declared locals.
Stack storage for parameters and normal
local variables.
Heap storage for dynamically allocated
data addressed through pointers (call to
an allocator such as malloc required).

5

Dynamic languages like Scheme Dynamic languages like Scheme
and Smalltalk use mostly the heap:and Smalltalk use mostly the heap:

All variables are implicitly pointers.
Stack is used only to maintain the heap.
Java is similar, except that simple vars are
kept on the stack.

FORTRAN and TINY use only FORTRAN and TINY use only
global storage:global storage:

All variables are static (even global in
TINY).

6

What about CWhat about C--Minus?Minus?

There are no pointers.
Local variables must still be kept on the
stack (we’ll see why in a minute).
Level 0 declarations can still be statically
allocated.
Thus, C-Minus can avoid having to
manage a heap.

7

Function calls:Function calls:
Every call, no matter what the language,
needs some allocated space to work
correctly:
– incoming parameter values
– outgoing return value
– return address
– space for local and temporary variables

This space is called an activation record.
Recursion forces the activation record to
be kept on the stack, since several
activations of the same function can exist
simultaneously.

8

FORTRAN does not allow recursion, so
activation records can be kept in static
storage.
TINY has no functions or procedures, so
no activation records, and so needs only
static storage too.
Some languages allow local data within a
call to be accessed after the call has
finished (Scheme). Then activation record
must go on the heap. (Well, C does too,
but that is defined to be an error.)
An activation record on the stack is called
a stack frame.

9

Schematic of an activation record Schematic of an activation record
on the stack:on the stack:

space for arguments
(parameters)

space for local data

space for local temporaries

return address

space for bookkeeping
information, including

What kind of book-
keeping information?
Pointer to previous
activation so that
whole activation can
be “popped” at once.

10

Example in C:Example in C:
int x,y;

int gcd(int u, int v)

{ if (v == 0) return u;

else return gcd(v,u % v);

}

main()

{ scanf("%d%d",&x,&y);

printf("%d\n",gcd(x,y));

return 0;

}

11

Call structure on input 15, 10:Call structure on input 15, 10:

u: 15
v: 10

free space

u: 10
v: 5

u: 5
v: 0

first call to gcd

second call to gcd

third call to gcd
control link

control link

control link

>

>

>

> fp

Direction of
stack growth

Activation record of

Activation record of

Activation record of

Activation record of
main

x: 15
y: 10

Global/static area

return address

return address

return address > sp

12

Sp is the “stack pointer”, typically a
register managed by the processor.
Fp is the “frame pointer”, which may or
may not be a register (if it isn’t a
register, it is usually not there).
Arguments are computed by caller and
pushed onto the stack; thus, they may
be viewed as belonging to the previous
frame (red lines above).
However, from the point of view of
scope, they are part of the callee (green
lines above).

13

Calling Sequence: standard code inserted Calling Sequence: standard code inserted
at call sites, and on entry and exit from at call sites, and on entry and exit from
functions:functions:

Caller responsibility:
– Before call, compute arguments and push in

order onto the stack
– Store return address at call
– On exit, pop remaining old frame info from

stack (like args, return value)
Callee responsibility:
– Set up and remove current frame
– Record return value

14

subl $8, %esp
movl 8(%ebp), %edx
movl %edx, %eax
sarl $31, %edx
idivl 12(%ebp)
pushl %edx
pushl 12(%ebp)
call _gcd
addl $16, %esp

L1:
movl %ebp, %esp
popl %ebp
ret

_gcd:

pushl %ebp

movl %esp, %ebp

subl $4, %esp

cmpl $0, 12(%ebp)

jne L2

movl 8(%ebp), %eax

jmp L1

.p2align 4,,7

L2:

Example in C (Example in C (gccgcc):): Entry sequence

fp

Compute arguments
(reverse order)

Adjust stack
Exit sequence

?

?

15

Where did the return address go?Where did the return address go?
Handled automatically by the processor
Call pushes retaddr onto stack
Ret assumes retaddr is on top of stack,
pops it to the program counter
Thus, in such an architecture, retaddr
goes above control link in stack frame
Remember, too, in C: args go onto stack
in reverse order.
Return value typically goes into a register
(eax in the case of the PC)

16

Local variable and parameter Local variable and parameter
access:access:

All locals are accessed by fixed
offset from the frame pointer.
Offset is computable at compile time
(keep a running total), but frame
pointer is not.
In a typical processor-managed
stack, parameters have positive
offset, local variables have negative
offset.

17

Example in C:Example in C:
int f(int x, int y)

{ int z = 42; return x + y + z;}

_f: pushl %ebp

movl %esp, %ebp

subl $4, %esp // reserve space for z

movl $42, -4(%ebp) // initialize z

movl 12(%ebp), %eax // move y to reg eax

addl 8(%ebp), %eax // add x to it

addl -4(%ebp), %eax // add z to it

movl %ebp, %esp

popl %ebp

ret

18

Picture (32Picture (32--bit architecture):bit architecture):

z

return address

control link

x

zOffset = -4

fp(ebp)

y
yOffset = 12

xOffset = 8

-4

8

4

0

12

16

sp

19

NonNon--local references local references -- always always
global in C:global in C:

int x; // non-local

int f(void)

{ int z = 42; return x + z;}

.globl _f

_f: . . .

movl $42, -4(%ebp)

movl -4(%ebp), %eax // load z

addl _x, %eax

. . .

ret

.comm _x,16 // allocate 16 bytes of “common”

// storage, give it the name _x

20

Arrays Arrays -- allocate in stack (size allocate in stack (size
must be fixed in C):must be fixed in C):

int f(void)

{ int z[4]; return z[0] + z[2];}

_f:

pushl %ebp

movl %esp, %ebp

subl $24, %esp

movl -16(%ebp), %eax // load z[2]

addl -24(%ebp), %eax // add z[0]

movl %ebp, %esp

popl %ebp

ret

21

Array picture:Array picture:

z[3]

return address

control link

zOffset = -24

fp(ebp)

-12

0

-4

-8

4

8

sp

-16

-20

-24

z[2]

z[1]

z[0]

?

?

22

Computed array subscripts:Computed array subscripts:
int f(int i)

{ int z[4]; return z[i];}

_f: pushl %ebp

movl %esp, %ebp

subl $24, %esp

movl 8(%ebp), %eax // move i to eax

leal 0(,%eax,4), %edx // mult by 4

leal -24(%ebp), %eax // load z addr

movl (%edx,%eax), %eax // *(z+4*i) -> eax

movl %ebp, %esp

popl %ebp

ret

23

Nested scopes:Nested scopes:

void f(void)

{ int x;

{ int y = 2;

{ int z = 3;

x = y + z;

}

}

{ int w = 4;

int v = 5;

x = v + w;

}

}

_f:

pushl %ebp

movl %esp, %ebp

subl $12, %esp

movl $2, -8(%ebp)

movl $3, -12(%ebp)

movl -12(%ebp), %eax

addl -8(%ebp), %eax

movl %eax, -4(%ebp)

movl $4, -12(%ebp)

movl $5, -8(%ebp)

movl -12(%ebp), %eax

addl -8(%ebp), %eax

movl %eax, -4(%ebp)

movl %ebp, %esp

popl %ebp

ret

24

Functions as parameters Functions as parameters -- they they
are just pointers:are just pointers:
int f(int (*g)(int),int x)

{ return g(x); }

_f: pushl %ebp

movl %esp, %ebp

subl $8, %esp // ??

subl $12, %esp // ??

pushl 12(%ebp) // push x

call *8(%ebp) // call g

addl $16, %esp

movl %ebp, %esp

popl %ebp

ret

25

int g(int y)

{ return f(g,y); }

_g:

pushl %ebp

movl %esp, %ebp

subl $8, %esp

subl $8, %esp

pushl 8(%ebp) // push y

pushl $_g // push global g

call _f

addl $16, %esp

movl %ebp, %esp

popl %ebp

ret

26

Nested functions Nested functions -- a major complication! a major complication!
(Pascal, (Pascal, AdaAda, Scheme), Scheme)

procedure main is -- Ada example

y : integer := 2;

procedure p(x: integer) is

function q return integer is

begin return x + y; end;

y: integer := 3; -- nonlocal/nonglobal to r!

function r return integer is

begin return q + y; end;

begin -- p

put(r);

end;

begin

p(1); -- prints 6

end;

27

Stack during call to q:Stack during call to q:

free space

p call to

Activation record of

control link Activation record of

control link r call to
Activation record of

fp
sp

main program

x:1

q call to
Activation record of control link

y:2

y:3

Inside q we
must find this y

Inside r we
must find this y

28

New piece of bookkeeping info New piece of bookkeeping info --
the access link:the access link:

Each activation record must keep a
record of the location of the
activation record in which its
corresponding function was defined.
This can be computed and stored at
the time of call, but not before.
It is typically called the access link.

29

Stack with access links:Stack with access links:

free space

p call to

Activation record of

control link Activation record of

control link r call to
Activation record of

fp
sp

main program
x:1

q call to
Activation record of control link

y:2

y:3

access link

access link

access link

30

Use access link for Use access link for nonlocal nonlocal
references:references:

Inside r, follow one access link to
find y.
Inside q, follow one access link to
find x, two access links to find y.
Number of access links to follow =
difference in nesting levels.
Following multiple access links is
called access chaining.

31

Nested functions as parameters:Nested functions as parameters:
When a function is passed to another
function, its access link must be
passed as well as its code
(instruction) pointer.
Functions become pairs of pointers,
called the ip (instruction pointer) and
the ep (environment pointer):
<ip,ep>. This is called a closure.
ip can be computed at compile time,
but ep cannot.

32

Parameters: values or references?Parameters: values or references?
In C, all parameters are value parameters:
arguments are copied values, which
become initial values of the parameters
during each call. This means that simple
variables in the calling environment
cannot be changed by the callee.
Well, not quite: arrays are implicitly
pointers or references, so the values
stored in an array can be changed by a
callee.
Sometimes we say arrays are passed in C
by reference.

33

In some languages (Pascal, Ada), you can
specify explicitly that you want a reference
parameter instead of a value parameter:
p(var x:integer) (Pascal).
Any such reference parameter needs an
extra level of indirection to fetch its value.
In some languages (Scheme, Java),
certain parameters (lists in Scheme,
objects in Java) are, like C arrays,
implicitly references. So a similar
indirection is necessary, and values can
be changed by a callee.

	CIT 3136 - Week13 Lecture
	Runtime Environments
	Schematic:
	C uses all three:
	Dynamic languages like Scheme and Smalltalk use mostly the heap:
	What about C-Minus?
	Function calls:
	Schematic of an activation record on the stack:
	Example in C:
	Call structure on input 15, 10:
	Calling Sequence: standard code inserted at call sites, and on entry and exit from functions:
	Example in C (gcc):
	Where did the return address go?
	Local variable and parameter access:
	Example in C:
	Picture (32-bit architecture):
	Non-local references - always global in C:
	Arrays - allocate in stack (size must be fixed in C):
	Array picture:
	Computed array subscripts:
	Nested scopes:
	Functions as parameters - they are just pointers:
	Nested functions - a major complication! (Pascal, Ada, Scheme)
	Stack during call to q:
	New piece of bookkeeping info - the access link:
	Stack with access links:
	Use access link for nonlocal references:
	Nested functions as parameters:
	Parameters: values or references?

