CIT 3136 - Week13 Lecture

Runtime Environments

- During execution, allocation must be maintained by the generated code that is compatible with the scope and lifetime rules of the language.
- Typically there are three choices for allocating variables and parameters:
 - Assign them fixed locations in global memory ("static" allocation).
 - Put them on the processor stack.
 - Allocate them dynamically in memory managed by the program (the "heap").

Schematic:

code area
static/global area
stack
\downarrow
free space
\uparrow
heap

C uses all three:

- Global storage for definitions at level 0 ("external" definitions) and statically declared locals.
- Stack storage for parameters and normal local variables.
- Heap storage for dynamically allocated data addressed through pointers (call to an allocator such as malloc required).

Dynamic languages like Scheme and Smalltalk use mostly the heap:

- All variables are implicitly pointers.
- Stack is used only to maintain the heap.
- Java is similar, except that simple vars are kept on the stack.
- FORTRAN and TINY use only global storage:
 - All variables are static (even global in TINY).

What about C-Minus?

- There are no pointers.
- Local variables must still be kept on the stack (we'll see why in a minute).
- Level 0 declarations can still be statically allocated.
- Thus, C-Minus can avoid having to manage a heap.

Function calls:

- Every call, no matter what the language, needs some allocated space to work correctly:
 - incoming parameter values
 - outgoing return value
 - return address
 - space for local and temporary variables
- This space is called an *activation record*.
- Recursion forces the activation record to be kept on the stack, since several activations of the same function can exist simultaneously.

- FORTRAN does not allow recursion, so activation records can be kept in static storage.
- TINY has no functions or procedures, so no activation records, and so needs only static storage too.
- Some languages allow local data within a call to be accessed after the call has finished (Scheme). Then activation record must go on the heap. (Well, C does too, but that is defined to be an error.)
- An activation record on the stack is called a stack frame.


```
Example in C:
```

int x,y;

```
int gcd( int u, int v)
\{ if (v == 0) return u; \}
  else return gcd(v,u % v);
}
main()
{ scanf("%d%d",&x,&y);
  printf("%d\n",gcd(x,y));
  return 0;
}
```

Call structure on input 15, 10:

- Sp is the "stack pointer", typically a register managed by the processor.
- Fp is the "frame pointer", which may or may not be a register (if it isn't a register, it is usually not there).
- Arguments are computed by caller and pushed onto the stack; thus, they may be viewed as belonging to the previous frame (red lines above).
- However, from the point of view of scope, they are part of the callee (green lines above).

Calling Sequence: standard code inserted at call sites, and on entry and exit from functions:

- Caller responsibility:
 - Before call, compute arguments and push in order onto the stack
 - Store return address at call
 - On exit, pop remaining old frame info from stack (like args, return value)
- Callee responsibility:
 - Set up and remove current frame
 - Record return value

Where did the return address go?

- Handled automatically by the processor
- Call pushes retaddr onto stack
- Ret assumes retaddr is on top of stack, pops it to the program counter
- Thus, in such an architecture, retaddr goes *above* control link in stack frame
- Remember, too, in C: args go onto stack in *reverse order*.
- Return value typically goes into a register (eax in the case of the PC)

Local variable and parameter access:

- All locals are accessed by *fixed* offset from the frame pointer.
- Offset is computable at compile time (keep a running total), but frame pointer is not.
- In a typical processor-managed stack, parameters have positive offset, local variables have negative offset.

Example in C:

int f(int x, int y) { int z = 42; return x + y + z;}

_f: pushl %ebp

_ _ _ _ _ _ _ _ _ _

- movl %esp, %ebp
- subl \$4, %esp // reserve space for z
- movl \$42, -4(%ebp) // initialize z
- movl 12(%ebp), %eax // move y to reg eax
- addl 8(%ebp), %eax // add x to it
- addl -4(%ebp), %eax // add z to it
- movl %ebp, %esp
- popl %ebp

ret

Picture (32-bit architecture):

Non-local references - always global in C: int x; // non-local int f(void) $\{ int z = 42; return x + z; \}$.globl _f f:... movl \$42, -4(%ebp)movl -4(%ebp), %eax // load zaddl x, %eax . . . ret .comm x,16 // allocate 16 bytes of "common" // storage, give it the name x

Arrays - allocate in stack (size must be fixed in C):

int f(void)
{ int z[4]; return z[0] + z[2];}

_f:

pushl	%ebp
movl	%esp, %ebp
subl	\$24, %esp
movl	-16(%ebp), %eax // load z[2]
addl	-24(%ebp), %eax // add z[0]
movl	%ebp, %esp
popl	%ebp
ret	

Array picture:

21

Computed array subscripts:

int f(int i)
{ int z[4]; return z[i];}

_f: pushl %ebp

_ _ _ _ _ _ _ _

- movl %esp, %ebp
- subl \$24, %esp
- movl 8(%ebp), %eax // move i to eax
- leal 0(,%eax,4), %edx // mult by 4
- leal -24(%ebp), %eax // load z addr
- movl (%edx,%eax), %eax // *(z+4*i) -> eax
- movl %ebp, %esp

popl %ebp

ret

	_f:	
Nested scopes:	pushl	%ebp
	movl	%esp, %ebp
	subl	\$12, %esp
Vola I(Vola)	movl	\$2, -8(%ebp)
{ int x;	movl	\$3, (12)(%ebp)
$\{ int(y) = 2; \\ f = 1 + 2 = 2; \\ f = 1$	movl	-12(%ebp), %eax
$\{ int(z) = 3; $	addl	-8(%ebp), %eax
$\mathbf{x} = \mathbf{y} + \mathbf{z};$	movl	(eax, -4)
}	movl	<u>\$4, -12(</u> %ebp)
}	movl	\$5, -8(%ebp)
$\{ int w = 4;$	movl	-12(%ebp), %eax
int v = 5;	addl	-8(%ebp), %eax
$\mathbf{x} = \mathbf{v} + \mathbf{w};$	movl	% eax, -4 (%ebp)
}	movl	%ebp, %esp
}	popl	%ebp
	ret	
		23

Functions as parameters - they are just pointers:

int f(int (*g)(int),int x)
{ return g(x); }

_f: pushl %ebp

- movl %esp, %ebp
- subl \$8, %esp // ??
- subl \$12, %esp // ??
- pushl 12(%ebp) // push x
- call *8(%ebp) // call g
- addl \$16, %esp
- movl %ebp, %esp
- popl %ebp

ret

<pre>int g(int y </pre>)			
<pre>{ return f(g,y); }</pre>				
	_			
_g:				
pushl	%ebp			
movl	%esp, %ebp			
subl	\$8, %esp			
subl	\$8, %esp			
pushl	8(%ebp) // push y			
pushl	\$_g // push global g			
call	_f			
addl	\$16, %esp			
movl	%ebp, %esp			
popl	%ebp			
ret				

Nested functions - a major complication! (Pascal, Ada, Scheme)

```
procedure main is -- Ada example
 y: integer := 2;
  procedure p(x: integer) is
    function q return integer is
        begin return x + (y) end;
   (y) integer := 3; -- nonlocal/nonglobal to r!
    function r return integer is
        begin return q + y) end;
  begin -- p
    put(r);
  end;
begin
 p(1); -- prints 6
end;
```

Stack during call to q:

New piece of bookkeeping info - the access link:

- Each activation record must keep a record of the location of the activation record in which its corresponding function was defined.
- This can be computed and stored at the time of call, but not before.
- It is typically called the access link.

Stack with access links:

Use access link for nonlocal references:

- Inside r, follow one access link to find y.
- Inside q, follow one access link to find x, two access links to find y.
- Number of access links to follow = difference in nesting levels.
- Following multiple access links is called access chaining.

Nested functions as parameters:

- When a function is passed to another function, its access link must be passed as well as its code (instruction) pointer.
- Functions become pairs of pointers, called the ip (*instruction pointer*) and the ep (*environment pointer*):
 <ip,ep>. This is called a *closure*.
- ip can be computed at compile time, but ep cannot.

Parameters: values or references?

- In C, all parameters are value parameters: arguments are copied values, which become initial values of the parameters during each call. This means that simple variables in the calling environment cannot be changed by the callee.
- Well, not quite: arrays are *implicitly* pointers or references, so the values stored in an array can be changed by a callee.
- Sometimes we say arrays are passed in C by reference.

- In some languages (Pascal, Ada), you can specify explicitly that you want a reference parameter instead of a value parameter: p(var x:integer) (Pascal).
- Any such reference parameter needs an extra level of indirection to fetch its value.
- In some languages (Scheme, Java), certain parameters (lists in Scheme, objects in Java) are, like C arrays, *implicitly* references. So a similar indirection is necessary, and values can be changed by a callee.