CIT 3136 - Week13 Lectute

Runtime Environments

e During execution, allocation must be
maintained by the generated code that
is compatible with the scope and
lifetime rules of the language.

e Typically there are three choices for
allocating variables and parameters:

— Assign them fixed locations in global
memory (“static” allocation).

— Put them on the processor stack.

— Allocate them dynamically in memory
managed by the program (the “heap”).

Schematic:

code area

static/global area

stack

J

free space

T

heap

C uses all three:

e Global storage for definitions at level 0
(“external” definitions) and statically
declared locals.

e Stack storage for parameters and normal
local variables.

e Heap storage for dynamically allocated
data addressed through pointers (call to
an allocator such as malloc required).

Dynamic languages like Scheme
and Smalltalk use mostly the heap:

e All variables are implicitly pointers.
e Stack is used only to maintain the heap.

e Java is similar, except that simple vars are
kept on the stack.

FORTRAN and TINY use only
global storage:

e All variables are static (even global in
TINY).

What about C-Minus?

e There are no pointers.

e Local variables must still be kept on the
stack (we’ll see why in a minute).

e Level 0 declarations can still be statically
allocated.

e Thus, C-Minus can avoid having to
manage a heap.

Function calls:

e Every call, no matter what the language,
needs some allocated space to work
correctly:

— incoming parameter values

— outgoing return value

— return address

— space for local and temporary variables

e This space is called an activation record.

e Recursion forces the activation record to
be kept on the stack, since several
activations of the same function can exist
simultaneously.

e FORTRAN does not allow recursion, so
activation records can be kept in static
storage.

e TINY has no functions or procedures, so
no activation records, and so needs only
static storage too.

e Some languages allow local data within a
call to be accessed after the call has
finished (Scheme). Then activation record
must go on the heap. (Well, C does too,
but that is defined to be an error.)

e An activation record on the stack is called
a stack frame.

Schematic of an activation record
on the stack:

space for arguments
(parameters)

space for bookkeeping

information, mcluding

What kind of book- return address
keeping information?
Pointer to previous space for local data

activation so that
whole activation can
be “popped” at once.

space for local temporaries

Example i C:

Nt X,V;

int gcd(Iint u, Iint v)

{ 1f (v == 0) return u;

el se return gcd(v,u %v);
}
mai n()

{ scanf("%%", &, &) ;
printf("%l\n", gcd(x,Yy));
return O;

}

10

Call structure on mput 15, 10:

X: 15)
y: 10 Global/static area
Activation record of
— mai n
u: 15
: 10 Activation record of
= control link first call togcd

return address

u: 10
5 Activation record of
— control link second call togcd

return address

u > Activation record of
v: O . third call togcd
fp- S control link
sp S return address
& \L Direction of
o PAEE stack growth

11

e Sp is the “stack pointer”, typically a
register managed by the processor.

e Fp is the “frame pointer”, which may or
may not be a register (if itisn’t a
register, it is usually not there).

e Arguments are computed by caller and
pushed onto the stack; thus, they may
be viewed as belonging to the previous
frame (red lines above).

e However, from the point of view of
scope, they are part of the callee (green
lines above).

12

Calling Sequence: standard code 1nserted
at call sites, and on entry and exit from
functions:

e Caller responsibility:

— Before call, compute arguments and push in
order onto the stack

— Store return address at call

— On exit, pop remaining old frame info from
stack (like args, return value)

e Callee responsibility:
— Set up and remove current frame
— Record return value

13

_gcd:
" pushl %bp ‘/
movl %esp, %ebp
subl $4, %esp
cnpl $0, 12(%bp)
jne L2

novl 8(%bp), %eax

jmp L1

.p2align 4,,7 /

L2: | Compute arguments
(reverse order) /

Adjust stack

\

Entry sequence

Example in C (gcc)/

subl $8, %esp

?

movl 8(%ebp),

novl %edx,

Yedx

Oeax
sarl $31, %edx
1 di vl 12(%bp)

pushl %edx

pushl 12(%ebp)

|

call _gcd

addl $16, %esp

"novl Y%ebp, %esp

popl %ebp

_ret

Exit sequence

/

14

Where did the return address go?

e Handled automatically by the processor
e Call pushes retaddr onto stack

e Ret assumes retaddr is on top of stack,
pops it to the program counter

e Thus, in such an architecture, retaddr
goes above control link in stack frame

e Remember, too, in C: args go onto stack
In reverse order.

e Return value typically goes into a register
(eax in the case of the PC)

15

Local variable and parameter
access:

e All locals are accessed by fixed
offset from the frame pointer.

e Offset is computable at compile time
(keep a running total), but frame
pointer is not.

¢ In a typical processor-managed
stack, parameters have positive
offset, local variables have negative
offset.

16

Example i C:
int f(Iint X, int y)

{ Iint z =

42; return x +y + z;}

Y%ebp

Yesp, Yebp

$4, %esp // reserve space for z
$42, -4(%bp) // initialize z
12(%&bp), %ax // nove y to reg eax
8(%ebp), Y%ax // add x to it
-4(%bp), %®ax // add z to it

Yebp, %esp

Y%ebp

17

Picture (32-bit architecture):

16
y

12 yOfset = 12
X

8 xOffset = 8
return address

4
control link

f p(ebp) > 0
Z
Sp > -4 zOffset = -4

18

Non-local references - always
global 1n C:

int x; // non-1local
int f(vol d)
{ Iint z =42, return x + z;}

.globl _f

I
mov| $42, -4(%bp)
nov| -4(%bp), %ax // load z
addl _X, % ax

ret

.comm x,16 // allocate 16 bytes of “common”

/] storage, give it the nane _x

19

Arrays - allocate 1n stack (size
must be fixed in C):

I nt f(void)
{ int z[4];, return z[O0] + z[2];}

pushl
nov|
subl
novl|
addl
novl
popl
r et

Y%ebp

Yesp, %ebp

$24, %sp

-16(Y%&ebp), Y%ax // | oad z[2]
-24(%bp), Y%ax // add z[O]
Y%ebp, %esp

Y%ebp

20

Array picture:

8
return address
4
control link
fp(ebp) > . 0
' -4
?
-8
z[3
[3] 10
z[2]
-16
z[1]
- 20
z[O]
Sp > -24 zOffset = -24

Computed array subscripts:

Int f(int

)

{ int z[4], return z[i];}

Yesp, Yebp

$24, %esp

8(%bp), Y%ax // nove I to eax
O(,%ax,4), %dx // nmult by 4

-24(Y%bp), %ax // |l oad z addr
(%edx, Y%eax), Y%eax // *(z+4*i)

Yebp, %esp

Y%ebp

- > eax

22

f:
pushl Y%ebp

Nested scopes:

nov| Yesp, %bp
voi d f(voi d) subl $12, %esp
{ int Xo/ebp)
o nov| $3, %ebp)
{ |n.t Ossd nov| %ebp), %eax
{ int@=3 addl _8(%bp), Yeax
Q():\y tZ nov| Yeax, 4§ %bp)
} nmovl| $4—€12{ %ebp)
} _) nmovl| $5,—- 8 %ebp)
{ !nt = ,L_H nov| -12(%&bp), Yeax
QW= addl -8(%ebp), Y%eax
X =V w nov| Yeax, -4(%bp)
) nov| Yebp, %esp
} popl %ebp

ret
23

Functions as parameters - they
are just pointers:

int f(int (*g)(int),int x)

{ return g(x); }

f: pushl %ebp
movl Yesp, Y%ebp
subl $8, %sp // ??
subl $12, %sp // ??
pushl 12(%bp) // push X
call *8(%bp) // call g
addl $16, %esp
movl %ebp, %esp
popl %ebp
ret

24

Int g(int y)

{

return f(g,vy);

pushl
nov|
subl
subl
pushl
pushl
cal |
add|
nov|
popl
r et

Y%ebp
Yesp,

}

Y%ebp

$8, %esp
$8, %esp

8(%bp) // push vy
$ g // push gl obal

f

$16, %esp

Y%ebp,
Y%ebp

Yesp

9

25

Nested functions - a major complication!
(Pascal, Ada, Scheme)

procedure nain is -- Ada exanple
y)y_ i nteger := 2;
procedure_p(x: integer) is
function g return integer is
begin return Xy, end;
Lnteger := 3; -- nonlocal/nonglobal to r!
function turn integer is
begin return q end;
begin -- p
put (r);
end,
begi n
p(l); -- prints 6
end,;

26

Stack during call to q:

Activation record of
> y:2 main program

X:1

control link Activation record of
/'I y:3 « call to P

Activation record of

Pl control link call to T
control link Activation record of
fp callto Q
Sp ——p
free space

27

New piece of bookkeeping info -
the access link:

e Each activation record must keep a
record of the location of the
activation record in which its
corresponding function was defined.

e This can be computed and stored at
the time of call, but not before.

e It is typically called the access link.

28

Stack with access links:

y: 2 <+—
—P
x: 1
access link
/ control link <—«
y:3
access link
P control link
access link
control link
fp —»
Sp ———p

free space

Activation record of
main program

Activation record of
call to P

Activation record of
callto I

Activation record of
call to

29

Use access link for nonlocal
references:

e Inside r, follow one access link to
find y.

e Inside g, follow one access link to
find x, two access links to find y.

e Number of access links to follow =
difference in nesting levels.

e Following multiple access links is
called access chaining.

30

Nested functions as parameters:

e When a function is passed to another
function, its access link must be
passed as well as its code
(instruction) pointer.

e Functions become pairs of pointers,
called the ip (instruction pointer) and
the ep (environment pointer):
<ip,ep>. This is called a closure.

e Ip can be computed at compile time,
but ep cannot.

31

Parameters: values or references?

e In C, all parameters are value parameters:
arguments are copied values, which
become initial values of the parameters
during each call. This means that simple
variables in the calling environment
cannot be changed by the callee.

e Well, not quite: arrays are implicitly
pointers or references, so the values
stored In an array can be changed by a
callee.

e Sometimes we say arrays are passed in C
by reference.

32

¢ In some languages (Pascal, Ada), you can
specify explicitly that you want a reference

parameter instead of a value parameter:
p(var X:i1nteger) (Pascal).

e Any such reference parameter needs an
extra level of indirection to fetch its value.

e In some languages (Scheme, Java),
certain parameters (lists in Scheme,
objects in Java) are, like C arrays,
implicitly references. So a similar
indirection is necessary, and values can
be changed by a callee.

33

	CIT 3136 - Week13 Lecture
	Runtime Environments
	Schematic:
	C uses all three:
	Dynamic languages like Scheme and Smalltalk use mostly the heap:
	What about C-Minus?
	Function calls:
	Schematic of an activation record on the stack:
	Example in C:
	Call structure on input 15, 10:
	Calling Sequence: standard code inserted at call sites, and on entry and exit from functions:
	Example in C (gcc):
	Where did the return address go?
	Local variable and parameter access:
	Example in C:
	Picture (32-bit architecture):
	Non-local references - always global in C:
	Arrays - allocate in stack (size must be fixed in C):
	Array picture:
	Computed array subscripts:
	Nested scopes:
	Functions as parameters - they are just pointers:
	Nested functions - a major complication! (Pascal, Ada, Scheme)
	Stack during call to q:
	New piece of bookkeeping info - the access link:
	Stack with access links:
	Use access link for nonlocal references:
	Nested functions as parameters:
	Parameters: values or references?

