
5/27/2003 2

Semantic AnalysisSemantic Analysis
Parser verifies that a program is
syntactically correct and constructs a
syntax tree (or other intermediate
representation).
Semantic analyzer checks that the
program satisfies all other static
language requirements (is
“meaningful”) and collects and
computes information needed for code
generation.

Semantic Analysis Tasks
• Have variables been declared before use?
• Have variables been declared twice in the same

scope?
• Has every declared variable been used?
• Are the variable and expression in an assignment

type-compatible?
• Do the operands of (arithmetic) operators have

compatible types?
• Do the arguments in a function call match the

parameters of the function definition in number and
type?

• Are arguments passed by reference variables?

5/27/2003 3

Important Semantic InformationImportant Semantic Information

Symbol table: collects declaration
and scope information to satisfy
“declaration before use” rule, and to
establish data type and other
properties of names in a program.
Data types and type checking:
compute data types for all typed
language entities and check that
language rules on types are satisfied.

5/27/2003 4

How to build the symbol table How to build the symbol table
and check types:and check types:

Analyze the scope rules for the
language and determine an
appropriate table structure for
maintaining this information.
Analyze the type requirements and
translate them into rules that can be
applied recursively on a syntax tree.

5/27/2003 5

Theoretical framework for Theoretical framework for
semantic analysissemantic analysis
Focus on attributes: computable
properties of language constructs that
are needed to satisfy language
requirements and/or generate code
Describe the computation of attributes
using equations or algorithms.
Associate these equations to grammar
rules and/or kinds of nodes in a syntax
tree.

5/27/2003 6

Analyze the structure of the
equations to determine an order in
which the attributes can be
computed. (Tree traversals of syntax
tree - preorder, postorder, inorder, or
some combination of them.)

• Such a set of equations, functions and
conditions is called an attribute grammar.

• Formally describing the evaluation of
attributes and the conditions that attributes
must satisfy using an attribute grammar
helps significantly, even if attribute grammar
tools are not used for semantic analysis.

• Tools such as GAG and Eli generate
semantic analysers from attribute grammar
specifications.

• Tools such as Yacc implicitly use attribute
grammars in their semantic actions.

5/27/2003 8

Example of an attribute grammarExample of an attribute grammar
Grammar:

exp → exp + term | exp - term | term
term → term * factor | factor
factor → (exp) | number

Attribute Grammar:

GRAMMAR RULE SEMANTIC RULES
exp1 → exp2 + term exp1 .val = exp2 .val + term.val
exp1 → exp2 - term exp1 .val = exp2 .val − term.val
exp → term exp.val = term.val
term1 → term2 * factor term1 .val = term2 .val ∗ factor.val
term → factor term.val = factor.val
factor → (exp) factor.val = exp.val
factor → number factor.val = number.val

5/27/2003 9

Notes:Notes:
Different instances of same
nonterminal must be subscripted to
distinguish them.
Some attributes must have been
precomputed (by scanner or parser),
e.g. number.val.
These particular attribute equations
look a lot like a yacc specification,
because they represent a bottom-up
attribute computation.

5/27/2003 10

A Second ExampleA Second Example
Grammar:

decl → type var-list
type → int | float
var-list → id , var-list | id

Attribute Grammar:

GRAMMAR RULE SEMANTIC RULES
decl → type var-list var-list.dtype = type.dtype
type → int type.dtype = integer
type → float type.dtype = real
var-list1 → id , var-list2 id .dtype = var-list1.dtype

var-list2.dtype = var-list1.dtype
var-list → id id .dtype = var-list.dtype

5/27/2003 11

NotesNotes
Data type typically propagates down
a syntax tree via declarations.
No longer something yacc can
handle directly.
Such an attribute is called inherited,
while bottom-up calculation is called
synthesized.
Syntax tree is a standard synthesized
attribute computable by yacc; other
attributes computed on the tree.

5/27/2003 12

Dependency graphDependency graph
Indicates order in which attributes must
be computed.
Synthesized attributes always flow from
children to parents, and can always be
computed by a postorder traversal.
Inherited attributes can flow any other
way.
L-attributed: a left-to-right traversal
suffices to compute attributes. However,
this may involve a combination of pre-
order, inorder, and postorder traversal.

5/27/2003 13

Data type dependencies (by Data type dependencies (by
grammar rule):grammar rule):

var-listtype

decl

dtype dtype

decl → type var-list:
var-list.dtype = type.dtype

, dtype

dtype

dtype

var-list

var-list id

var-list → id , var-list:
id .dtype = var-list1.dtype
var-list2.dtype = var-list1.dtype

5/27/2003 14

LL--attributed dependencies have attributed dependencies have
three basic mechanisms:three basic mechanisms:

(b) Inheritance from sibling to sibling
via the parent

(a) Inheritance from parent to siblings

a

a

a

A

C B a a

A

C B

(c) Sibling inheritance via sibling pointers

a a

A

C B

5/27/2003 15

Sample tree structure:Sample tree structure:
typedef enum {decl,type,id} nodekind;

typedef enum {integer,real} typekind;

typedef struct treeNode

{ nodekind kind;

struct treeNode

* lchild, * rchild, * sibling;

typekind dtype;

/* for type and id nodes */

char * name;

/* for id nodes only */

} * SyntaxTree;

5/27/2003 16

Sample tree instance:Sample tree instance:
String: float x, y

Tree:

decl

type
 dtype (= real)

id id
() x () y

5/27/2003 17

Traversal code:Traversal code:
void evalType (SyntaxTree t)

{ switch (t->kind)

{ case decl:

t->rchild->dtype = t->lchild->dtype;

evalType(t->rchild);

break;

case id:

if (t->sibling != NULL)

{ t->sibling->dtype = t->dtype;

evalType(t->sibling);

}

break;

} /* end switch */

} /* end evalType */

5/27/2003 18

Attributes need not be kept in the Attributes need not be kept in the
syntax tree:syntax tree:

GRAMMAR RULE SEMANTIC RULES
decl → type var-list
type → int dtype = integer
type → float dtype = real
var-list1 → id , var-list2 insert(id .name, dtype)
var-list → id insert(id .name, dtype)

dtype is global
Use a symbol table
to store the type of
each identifier

5/27/2003 19

New traversal code:New traversal code:
typekind dtype; /* global */

void evalType (SyntaxTree t)

{ switch (t->kind)

{ case decl:

dtype = t->lchild->dtype;

evalType(t->rchild);

break;

case id:

insert(t->name,dtype);

if (t->sibling != NULL)

evalType(t->sibling);

break;

} /* end switch */

} /* end evalType */

5/27/2003 20

Even better, use a parameter Even better, use a parameter
instead of a global variable:instead of a global variable:

void evalDecl(SyntaxTree t)

{ evalType(t->rchild, t->lchild->dtype);

}

void evalType(SyntaxTree t, typekind dtype)

{ insert(t->name,dtype);

if (t->sibling != NULL)

evalType(t->sibling,dtype);

}

Note: inherited attributes can often be turned into
parameters to recursive traversal functions, while
synthesized attributes can be turned into returned
values.

5/27/2003 21

Alternative to a difficult inherited Alternative to a difficult inherited
situation (not recommended):situation (not recommended):

Theorem (Knuth [1968]). Given an
attribute grammar, all inherited
attributes can be changed into
synthesized attributes by suitable
modification of the grammar, without
changing the language of the grammar.

5/27/2003 22

Example:Example:
New grammar for types:

decl → var-list id
var-list → var-list id , | type
type → int | float

New Tree for float x, y
might be:

type
 dtype (= real)

id

id

() x

() y
 dtype (= real)

 dtype (= real)

5/27/2003 23

Our approach:Our approach:
Compute inherited stuff first (symbol
table) in a separate pass
Then type inference and type
checking turns into a purely
synthesized attribute computation,
since all uses of names have their
types already computed.
Next:
– Symbol table structure
– Synthesized type rules

	CIT 3136 – Week 12 Lecture
	Semantic Analysis
	Important Semantic Information
	How to build the symbol table and check types:
	Theoretical framework for semantic analysis
	Example of an attribute grammar
	Notes:
	A Second Example
	Notes
	Dependency graph
	Data type dependencies (by grammar rule):
	L-attributed dependencies have three basic mechanisms:
	Sample tree structure:
	Sample tree instance:
	Traversal code:
	Attributes need not be kept in the syntax tree:
	New traversal code:
	Even better, use a parameter instead of a global variable:
	Alternative to a difficult inherited situation (not recommended):
	Example:
	Our approach:

