
CIT 3136 CIT 3136 –– Lecture 7Lecture 7

Top-Down Parsing

4/18/2003 2

Chapter 4: TopChapter 4: Top--down Parsingdown Parsing

A top-down parsing algorithm parses
an input string of tokens by tracing out
the steps in a leftmost derivation.
Such an algorithm is called top-down
because the implied traversal of the
parse tree is a preorder traversal.

4/18/2003 3

Two basic kinds of topTwo basic kinds of top--down parser:down parser:
• Predictive parsers that try to make decisions

about the structure of the tree below a node
based on a few lookahead tokens (usually
one!). This is a weakness, since little
program structure has been seen before
predictive decisions must be made.

• Backtracking parsers that solve the
lookahead problem by backtracking if one
decision turns out to be wrong and making a
different choice. But such parsers are slow
(exponential time in general).

4/18/2003 4

Fortunately, many practical techniques have
been developed to overcome the predictive
lookahead problem, and the version of
predictive parsing called recursive-descent
is still the method of choice for hand-coding,
due to its simplicity.

But because of the inherent weakness of top-
down parsing, it is not a good choice for
machine-generated parsers. Instead, more
powerful bottom-up parsing methods should
be used (Chapter 5).

4/18/2003 5

RecursiveRecursive--descent parsingdescent parsing
Simple, elegant idea: use the grammar
rules as recipes for procedure code.
Each non-terminal corresponds to a
procedure. Each appearance of a
terminal in the rhs of a rule causes a
token to be matched. Each appearance
of a non-terminal corresponds to a call
of the associated procedure.

4/18/2003 6

ExampleExample
Grammar rule:

factor → (exp) | number
Code:

void factor(void)

{ if (token == number) match(number);

else {

match(‘(‘);

exp();

match(‘)’);

}

}

4/18/2003 7

Example, continued (2)Example, continued (2)

Note how lookahead is not a problem
in this example: if the token is
number, go one way, if the token is ‘(‘
go the other, and if the token is
neither, declare error:
void match(Token expect)

{ if (token == expect)
getToken();

else error(token,expect);

}

4/18/2003 8

Example, continued (3)Example, continued (3)
A recursive-descent procedure can

also compute values or syntax trees:
int factor(void)

{ if (token == number)

{ int temp = atoi(tokStr);

match(number); return temp;

}

else {

match(‘(‘); int temp = exp();

match(‘)’); return temp;

}

}

4/18/2003 9

Errors in RecursiveErrors in Recursive--descent are descent are
tricky to handle:tricky to handle:
If an error occurs, we must somehow

gracefully exit possibly many
recursive calls. Best solution: use
exception handling to manage stack
unwinding (which C doesn’t have!).

But there are worse problems: left
recursion doesn’t work!

4/18/2003 10

Left recursion is impossible!Left recursion is impossible!
exp → exp addop term | term

void exp(void)

{ if (token == ??)

{ exp(); // uh, oh!!

addop();

term();

}

else term();

}

4/18/2003 11

EBNF to the rescue!EBNF to the rescue!
exp → term { addop term }

void exp(void)

{ term();

while (token is an addop)

{ addop();

term();

}

}

4/18/2003 12

This code can even left associate:This code can even left associate:
int exp(void)

{ int temp = term();

while (token == ‘+’

|| token == ‘-’)

if (token == ‘+’)

{ match(‘+’); temp += term();}

else

{ match(‘-’); temp -= term();}

return temp;

}

4/18/2003 13

Note that right recursion/assoc. is Note that right recursion/assoc. is
not a problem:not a problem:

exp → term [addop exp]

void exp(void)

{ term();

if (token is an addop)

{ addop();

exp();

}

}

4/18/2003 14

Solving theSolving the lookaheadlookahead problem in problem in
greater generality:greater generality:

Compute “First” sets for choices:
First(α) = the set of tokens that can appear
at the front of α. Then if we have a
grammar rule A → α1 | ... | αn and First(αi)
∩ First(αj) is empty for all i and j, then a
decision on a choice can be made.
A problem occurs if an αi can disappear;
then we must compute “Follow” sets (the
tokens that can “follow” a symbol), and
show that First ∩ Follow is empty.

4/18/2003 15

Error Recovery in ParsersError Recovery in Parsers
A parser should try to determine that an
error has occurred as soon as possible.
Waiting too long before declaring error
means the location of the actual error may
have been lost.
After an error has occurred, the parser
must pick a likely place to resume the
parse. A parser should always try to parse
as much of the code as possible, in order
to find as many real errors as possible
during a single translation.

4/18/2003 16

Error Recovery in Parsers Error Recovery in Parsers
(continued)(continued)

A parser should try to avoid the error
cascade problem, in which one error
generates a lengthy sequence of spurious
error messages.

A parser must avoid infinite loops on
errors, in which an unending cascade of
error messages is generated without
consuming any input.

4/18/2003 17

“Panic Mode” in recursive“Panic Mode” in recursive--descentdescent
Extra parameter consisting of a set of
synchronizing tokens.
As parsing proceeds, tokens that may
function as synchronizing tokens are
added to the synchronizing set as each
call occurs.
If an error is encountered, the parser
scans ahead, throwing away tokens until
one of the synchronizing set of tokens is
seen in the input, whence parsing is
resumed.

4/18/2003 18

Example (in Example (in pseudocodepseudocode))
procedure scanto (synchset) ;
begin
while not (token in synchset ∪ { EOF }) do

getToken ;
end scanto ;

procedure checkinput (firstset, followset) ;
begin
if not (token in firstset) then

error ;
scanto (firstset ∪ followset) ;

end if ;
end;

4/18/2003 19

Example (in Example (in pseudocodepseudocode, cont), cont)
procedure exp (synchset) ;
begin
checkinput ({ (, number }, synchset) ;
if not (token in synchset) then
term (synchset) ;
while token = + or token = - do

match (token) ;
term (synchset) ;

end while ;
checkinput (synchset, { (, number }) ;
end if;

end exp ;

4/18/2003 20

Example (in Example (in pseudocodepseudocode, , conclconcl.).)
procedure factor (synchset) ;
begin
checkinput ({ (, number }, synchset) ;
if not (token in synchset) then
case token of
(: match(() ; exp ({)}) ; match()) ;
number : match(number) ;
else error ;
end case ;

checkinput (synchset, { (, number }) ;
end if ;

end factor ;

4/18/2003 21

CC--Minus and recursiveMinus and recursive--descent descent
parsing problems:parsing problems:
18. expression → var = expression | simple-expression
19. var → ID | ID [expression]
20. simple-expression →

additive-expression relop additive-expression
| additive-expression

21. relop → <= | < | > | >= | == | !=
22. additive-expression → additive-expression addop term | term
23. addop → + | -
24. term → term mulop factor | factor
25. mulop → * | /
26. factor → (expression) | var | call | NUM
27. call → ID (args)

	CIT 3136 – Lecture 7
	Chapter 4: Top-down Parsing
	Two basic kinds of top-down parser:
	Recursive-descent parsing
	Example
	Example, continued (2)
	Example, continued (3)
	Errors in Recursive-descent are tricky to handle:
	Left recursion is impossible!
	EBNF to the rescue!
	This code can even left associate:
	Note that right recursion/assoc. is not a problem:
	Solving the lookahead problem in greater generality:
	Error Recovery in Parsers
	Error Recovery in Parsers (continued)
	“Panic Mode” in recursive-descent
	Example (in pseudocode)
	Example (in pseudocode, cont)
	Example (in pseudocode, concl.)
	C-Minus and recursive-descent parsing problems:

