
4/2/2003 1

CIT3136 CIT3136 -- Lecture 5 Lecture 5
ContextContext--Free Grammars and Free Grammars and
ParsingParsing

4/2/2003 2

Definition of a ContextDefinition of a Context--free free
Grammar:Grammar:

• An alphabet or set of basic symbols (like
regular expressions, only now the symbols
are whole tokens, not chars), including ε.
(Terminals)

• A set of names for structures (like statement,
expression, definition). (Non-terminals)

• A set of grammar rules expressing the
structure of each name. (Productions)

• A start symbol (the name of the most general
structure  compilation_unit in C).

4/2/2003 3

Basic Example: Simple integer Basic Example: Simple integer
arithmetic expressionsarithmetic expressions

In what way does such a CFG differ from
a regular expression?
digit = 0|1|…|9
number = digit digit*

Recursion!

exp → exp op exp | (exp) | number
op → + | - | *

2 non-terminals

6 terminals

6 productions (3 on each line)

Recursive rules “Base” rule

4/2/2003 4

CFGs CFGs are designed to represent are designed to represent
recursive (i.e. nested) structuresrecursive (i.e. nested) structures

But consequences are huge:
The structure of a matched string is
no longer given by just a sequence of
symbols (lexeme), but by a tree (parse
tree)
Recognizers are no longer finite, but
may have arbitrary data size, and
must have some notion of stack.

4/2/2003 5

Recognition Process is much Recognition Process is much
more complex:more complex:

Algorithms can use stacks in many
different ways.
Nondeterminism is much harder to
eliminate.
Even the number of states can vary
with the algorithm (only 2 states
necessary if stack is used for
“state”structure.

4/2/2003 6

Major Consequence: Many Major Consequence: Many
parsing algorithms, not just oneparsing algorithms, not just one

Top down
– Recursive descent (hand choice)
– “Predictive” table-driven, “LL”

(outdated)
Bottom up
– “LR” and its cousin “LALR” (machine-

generated choice [Yacc/Bison])
– Operator-precedence (outdated)

4/2/2003 7

Structural Issues First!Structural Issues First!
Express matching of a string
[“(34-3)*42”] by a derivation:

(1) exp ⇒ exp op exp [exp → exp op exp]
(2) ⇒ exp op number [exp → number]

(3) ⇒ exp * number [op → *]
(4) ⇒ (exp) * number [exp → (exp)]
(5) ⇒ (exp op exp) * number [exp → exp op exp]
(6) ⇒ (exp op number) * number [exp → number]
(7) ⇒ (exp - number) * number [op → -]
(8) ⇒ (number - number)*number [exp → number]

4/2/2003 8

Abstract the structure of a Abstract the structure of a
derivation to a parse tree:derivation to a parse tree:

exp

op

*

1

exp 4 3 exp

number

2

exp

exp op exp

number - number

5

8 7 6

()

4/2/2003 9

Derivations can vary, even when Derivations can vary, even when
the parse tree doesn’t:the parse tree doesn’t:
A leftmost derivation (Slide 8 was a

rightmost):
(1) exp ⇒ exp op exp [exp → exp op exp]
(2) ⇒ (exp) op exp [exp → (exp)]
(3) ⇒ (exp op exp) op exp [exp → exp op exp]
(4) ⇒ (number op exp) op exp [exp → number]
(5) ⇒ (number - exp) op exp [op → -]
(6) ⇒ (number - number) op exp [exp → number]
(7) ⇒ (number - number) * exp [op → *]
(8) ⇒ (number - number) * number [exp → number]

4/2/2003 10

A leftmost derivation corresponds to a (top-down)
preorder traversal of the parse tree.

A rightmost derivation corresponds to a (bottom-up)
postorder traversal, but in reverse.

Top-down parsers construct leftmost derivations.

(LL = LLeft-to-right traversal of input, constructing a
LLeftmost derivation)

Bottom-up parsers construct rightmost derivations
in reverse order.

(LR = LLeft-to-right traversal of input, constructing a
RRightmost derivation)

4/2/2003 11

But what if the parse tree But what if the parse tree does does
vary?[vary?[exp op exp op expexp op exp op exp]]

exp

op

*

exp

number

exp

exp op exp

number - number

exp

op

*

exp

number

exp

exp op exp

number

-

number

Correct one

The grammar is ambiguous, but why should
we care? Semantics!

4/2/2003 12

Principle of SyntaxPrinciple of Syntax--directed directed
SemanticsSemantics

The parse tree will be used as the
basic model; semantic content will
be attached to the tree; thus the tree
should reflect the structure of the
eventual semantics (semantics-
based syntax would be a better term)

4/2/2003 13

Sources of Ambiguity:Sources of Ambiguity:

Associativity and precedence of
operators
Sequencing
Extent of a substructure (dangling
else)
“Obscure” recursion (unusual)
– exp → exp exp

4/2/2003 14

Dealing with ambiguityDealing with ambiguity

Disambiguating rules
Change the grammar (but not the
language!)
Can all ambiguity be removed?
– Backtracking can handle it, but the

expense is great

4/2/2003 15

Example: integer arithmeticExample: integer arithmetic

exp → exp addop term | term
addop → + | -
term → term mulop factor | factor
mulop → *

factor → (exp) | number

Precedence “cascade”

4/2/2003 16

Repetition and RecursionRepetition and Recursion
Left recursion: A → A x | y
– yxx: A

A x

y

x A

Right recursion: A → x A | y
– xxy: A

A x

y

x A

4/2/2003 17

Repetition & Recursion, cont.Repetition & Recursion, cont.
Sometimes we care which way
recursion goes: operator
associativity
Sometimes we don’t: statement and
expression sequences
Parsing always has to pick a way!
The tree may remove this information
(see next slide)

4/2/2003 18

Abstract Syntax TreesAbstract Syntax Trees

Express the essential structure of the
parse tree only
Leave out parens, cascades, and
“don’t-care” repetitive associativity
Corresponds to actual internal tree
structure produced by parser
Use sibling lists for “don’t care”
repetition: s1 --- s2 --- s3

4/2/2003 19

Previous Example [(34Previous Example [(34--3)*42]3)*42]

*

42

34 3

-

4/2/2003 20

Data StructureData Structure
typedef enum {Plus,Minus,Times} OpKind;

typedef enum {OpK,ConstK} ExpKind;

typedef struct streenode

{ ExpKind kind;

OpKind op;

struct streenode *lchild,*rchild;

int val;

} STreeNode;

typedef STreeNode *SyntaxTree;

4/2/2003 21

Or (using a union):Or (using a union):
typedef enum {Plus,Minus,Times} OpKind;

typedef enum {OpK,ConstK} ExpKind;

typedef struct streenode

{ ExpKind kind;

struct streenode *lchild,*rchild;

union {

OpKind op;

int val; } attribute;

} STreeNode;

typedef STreeNode *SyntaxTree;

4/2/2003 22

Sequence ExamplesSequence Examples

stmt-seq → stmt ; stmt-seq | stmt
one or more stmts separated by a ;
stmt-seq → stmt ; stmt-seq | ε
zero or more stmts terminated by a ;
stmt-seq → stmt-seq ; stmt | stmt
one or more stmts separated by a ;
stmt-seq → stmt-seq ; stmt | ε
zero or more stmts preceded by a ;

4/2/2003 23

“Obscure” Ambiguity Example“Obscure” Ambiguity Example
Incorrect attempt to add unary minus:

exp → exp addop term | term | - exp
addop → + | -
term → term mulop factor | factor
mulop → *

factor → (exp) | number

4/2/2003 24

Ambiguity Example, continuedAmbiguity Example, continued

Better: (only one at beg. of an exp)
exp → exp addop term | term | - term
Or maybe: (many at beg. of term)
term → - term | term1
term1 → term1 mulop factor | factor
Or maybe: (many anywhere)
factor → (exp) | number | - factor

4/2/2003 25

Dangling else ambiguityDangling else ambiguity

statement → if-stmt | other
if-stmt → if (exp) statement

| if (exp)statement else statement
exp → 0 | 1

The following string has two parse trees:
if(0) if(1) other else other

4/2/2003 26

Parse trees for dangling else:Parse trees for dangling else:
statement

if-stmt

if () exp statement

0 if-stmt

if () else exp statement statement

1 other other

Correct one
statement

if-stmt

if () else exp statement statement

0 other if-stmt

if () exp statement

1 other

4/2/2003 27

Disambiguating Rule:Disambiguating Rule:
An else part should always be associated

with the nearest if-statement that does
not yet have an associated else-part.

(Most-closely nested rule: easy to state,
but hard to put into the grammar itself.)

Note that a “bracketing keyword” can
remove the ambiguity:

if-stmt → if (exp) stmt end
| if (exp)stmt else stmt end

Bracketing keyword

4/2/2003 28

Extra Notation:Extra Notation:
So far: Backus-Naur Form (BNF)
– Metasymbols are | → ε

Extended BNF (EBNF):
– New metasymbols […] and {…}
– ε largely eliminated by these

Parens? Maybe yes, maybe no:
– exp → exp (+ | -) term | term
– exp → exp + term | exp - term | term

4/2/2003 29

EBNF EBNF MetasymbolsMetasymbols::
Brackets […] mean “optional” (like ?
in regular expressions):
– exp → term ‘|’ exp | term becomes:

exp → term [‘|’ exp]
– if-stmt → if (exp) stmt

| if (exp)stmt else stmt
becomes:
if-stmt → if (exp) stmt [else stmt]

Braces {…} mean “repetition” (like *
in regexps - see next slide)

4/2/2003 30

Braces in EBNFBraces in EBNF
Replace only left-recursive
repetition:
– exp → exp + term | term becomes:

exp → term { + term }
Left associativity still implied
Watch out for choices:
– exp → exp + term | exp - term | term

is not the same as
exp → term { + term } | term { - term }

4/2/2003 31

Simple Expressions in EBNFSimple Expressions in EBNF

exp → term { addop term }
addop → + | -
term → factor { mulop factor }
mulop → *

factor → (exp) | number

4/2/2003 32

Final Notational Option:Final Notational Option:
Syntax Diagrams (from EBNF):Syntax Diagrams (from EBNF):

term

exp

<

>

addop <

number

() exp >

>

> >

>
factor

	CIT3136 - Lecture 5 Context-Free Grammars and Parsing
	Definition of a Context-free Grammar:
	Basic Example: Simple integer arithmetic expressions
	CFGs are designed to represent recursive (i.e. nested) structures
	Recognition Process is much more complex:
	Major Consequence: Many parsing algorithms, not just one
	Structural Issues First!
	Abstract the structure of a derivation to a parse tree:
	Derivations can vary, even when the parse tree doesn’t:
	But what if the parse tree does vary?[exp op exp op exp]
	Principle of Syntax-directed Semantics
	Sources of Ambiguity:
	Dealing with ambiguity
	Example: integer arithmetic
	Repetition and Recursion
	Repetition & Recursion, cont.
	Abstract Syntax Trees
	Previous Example [(34-3)*42]
	Data Structure
	Or (using a union):
	Sequence Examples
	“Obscure” Ambiguity Example
	Ambiguity Example, continued
	Dangling else ambiguity
	Parse trees for dangling else:
	Disambiguating Rule:
	Extra Notation:
	EBNF Metasymbols:
	Braces in EBNF
	Simple Expressions in EBNF
	Final Notational Option:Syntax Diagrams (from EBNF):

