Tutorial problems: Turing machines, decidability and undecidability

1. Give implementation level and formal descriptions of a Turing machine to recognise the language \(L = \{ a^n b^n c^n \mid n \geq 0 \} \). You may assume either a single- or doubly-infinite tape.

2. Give implementation level and formal descriptions of a Turing machine to compute the sum of integers \(m \) and \(n \). The input should have the form \(1^{m+1}01^{n+1} \), with the head on the leftmost 1, and the output should have the form \(1^{m+n+1} \), with the head again on the leftmost 1.

3. Give an implementation level description of a Turing machine to compute Ackermann’s function, defined by \(A(0, n) = n + 1, A(m + 1, 0) = A(m, 1), A(m + 1, n + 1) = A(m, A(m + 1, n)) \). The input and output should have the same form as in the previous question. (Difficult)

4. (Hopcroft et al., Exercise 8.4.3) Give implementation level descriptions of nondeterministic Turing machines — possibly a multitape machines — that recognise the following languages. Try to exploit nondeterminism to avoid iteration and keep computations short and your Turing machines small.
 (a) The set of all strings of \(a \)'s and \(b \)'s that contain two nonoverlapping occurrences of some substring of length 100, i.e.,
 \[L = \{ wxyxz \in \{a, b\}^* \mid |x| = 100 \} \]
 (b) The language of all strings of the form \(w_1 \# w_2 \# \cdots \# w_n \), for any \(n \geq 0 \), such that each \(w_i \in \{0, 1\}^+ \) and, for some \(j \), \(w_j \) is the binary representation of the integer \(j \).

5. Prove that every context-free language is Turing-recognisable. That is, prove that every language accepted by some PDA is also accepted by some Turing machine.

6. (a) Construct a 2-stack PDA to accept the language \(L_{abc} = \{ a^n b^n c^n \mid n \geq 0 \} \).
 (b) Construct a 2-stack PDA to accept the language \(L_{ww} = \{ ww \mid w \in \{a, b\}^* \} \).

7. Prove that every Turing-machine (with a douby-infinite tape) can be simulated by a 2-stack PDA.

8. Define a “queue machine”. Prove that if a language is accepted by some TM, and hence by some 2-stack PDA, then it is also accepted by some queue machine.
 Hint There is a standard representation of a queue using two stacks with \(O(1) \) amortised time for put and get operations. For this exercise we need to be able to represent two stacks using a single queue.

9. Give a detailed encoding of arbitrary Turing machines in some fixed alphabet.

10. Give a detailed implementation level description of a universal Turing machine \(U \). The machine \(U \) takes as input an encoding (previous question) of a Turing machine \(M \) and a string \(w \). It should simulate the behaviour of \(M \) when started with \(w \) on its input tape, and accept (resp., reject) iff \(M \) applied to \(w \) accepts (resp., rejects).
Hint. Use a 3-tape machine. Store \langle M, w \rangle on the first tape, store the current tape of \(M \) on the second tape, and store the current state of \(M \) on the third tape.

11. (Sipser, Problem 4.12) Show that the language

\[
A = \{ \langle R, S \rangle \mid R \text{ and } S \text{ are regular expressions and } L(R) \subseteq L(S) \}\}
\]

is decidable.

12. (Sipser, Problem 4.13) Let \(\Sigma = \{0, 1\} \). Show that the language

\[
B = \{ \langle G \rangle \mid G \text{ is a CFG over } \Sigma \text{ and } 1^* \cap L(G) \neq \emptyset \}
\]

is decidable.

13. (Sipser, Problem 4.14) Let \(\Sigma = \{0, 1\} \). Show that the language

\[
C = \{ \langle G \rangle \mid G \text{ is a CFG over } \Sigma \text{ and } 1^* \subseteq L(G) \}
\]

is decidable.

14. (Sipser, Problem 4.24) Show that the language

\[
\text{PALDFA} = \{ \langle M \rangle \mid M \text{ is a DFA that accepts some palindrome } \}
\]

is decidable. **Hint.** Use theorems about CFLs.

15. (Sipser, Problem 5.9) Show that the language

\[
T = \{ \langle M \rangle \mid M \text{ is a TM that accepts } w^R \text{ iff it accepts } w \}
\]

is undecidable.

16. (Sipser, Problems 5.17) Show that the Post Correspondence Problem is is decidable over the unary alphabet \(\Sigma = \{1\} \).

17. (Sipser, 5.20) Prove that there exists an undecidable subset of \(\{1\} \).

18. (Sipser, 5.29) Show that both conditions of Rice’s Theorem are necessary for proving that the property \(P \) to be undecidable.

19. (Sipser, 5.33) Let

\[
S = \{ \langle M \rangle \mid M \text{ is a TM and } L(M) = \{ \langle M \rangle \} \}
\]

Show that neither \(S \) nor \(\overline{S} \) is Turing-recognisable.

20. (Hopcroft et al., Exercise 9.3.4) We know by Rice’s theorem that none of the following problems are decidable. However, are they Turing-recognisable or not?

 (a) Does \(L(M) \) contain at least two strings?
 (b) Is \(L(M) \) infinite?
 (c) Is \(L(M) \) a context-free language?
 (d) Is \(L(M) = (L(M))^R \)?