1. (a) Prove by mathematical induction that, for all integers \(N \geq 0 \), \(N(N^2+5) \) is divisible by 6.

(b) Prove the same result without using mathematical induction.

2. Let \(F_n = 2^{2n} + 1 \), for \(n \geq 0 \). Prove by mathematical induction that

\[
F_n = \prod_{k=0}^{n-1} F_k + 2.
\]

(Here, \(\Pi \) denotes product; the product of an empty set is 1.)

3. Prove by mathematical induction that, for all integers \(N \geq 4 \), \(N! > 2^N \).

4. A binary tree is full if every internal node has exactly 2 subtrees. Prove that a full binary tree with \(n \) leaves has \(2^n - 1 \) nodes by integer induction and by structural induction.

5. Define a \(k \)-ary tree to be full if every internal node has exactly \(k \) subtrees. Find a formula for the number of nodes in a full \(k \)-ary tree with \(n \) leaves, and prove it by structural induction.

6. Let \(w^R \) be the reverse of a string \(w \). Let \(w_1 \) and \(w_2 \) be strings in \(\{a, b\} \). Prove by mathematical induction on \(|w_1| \) that \(w_1^R w_2^R = (w_2 w_1)^R \).

7. Let \(w \) be a string in \(\{a, b\} \). Prove by mathematical induction on \(|w| \) that \((w^R)^R = w \).

8. There are two ways to define “balanced parenthesis strings”:

(a) Grammatically (GB): The empty string \(\epsilon \) is balanced; if \(s \) is balanced then \((s) \) is balanced; if \(s \) and \(t \) are balanced then \(st \) is balanced.

(b) By scanning (SB): \(s \) is balanced if and only if \(s \) has an equal number of left and right parentheses, and every prefix of \(s \) has at least as many left as right parentheses.

Prove that a string of parentheses is GB if and only if it is SB.

9. Prove by contradiction that the square root of 2 is not rational.

10. Prove that the following sets are countably infinite.

(a) The set of all strings in \(\{a, b\}^* \).

(b) The set of all positive rational numbers.

(c) The set of all full binary trees whose leaves are \(a \) or \(b \).