
3515ICT: Theory of Computation

Turing machines and undecidability

(IALC, Chapters 8 and 9)

Introduction to Turing’s life, Turing machines, universal machines, unsolvable problems.

An undecidable problem (Section 8.1)

No program H can test whether a given program will print "hello, world" as its first
output on a given input.

Detailed proof by self-reference leading to a contradiction.

Proofs that other problems are undecldable (or unsolvable) by reduction from a known unde-
cidable problem.

Example: Proof that the halting problem is undecidable (by reduction from the hello-world
problem).

Alternative proof that there exist undecidable problems (languages): Let Σ be a finite alphabet.
Then Σ∗ has countably many elements. Every language over Σ is a subset of Σ∗ and is thus
countable. By diagonalisation, the number of subsets of Σ∗ is not countable. But the number
of computer programs is countable. Hence there exist undecidable problems.

Turing machines (Section 8.2)

A Turing machine (TM) is a finite-state machine with an infinite tape (for input and working
storage) and a tape head that can read or write one tape cell and move left or right. It normally
accepts the input string, or completes its computation, by entering a final or accepting state.

Example of a TM to recognise the language { 0n1n | n ≥ 1 } (Exx. 8.2 and 8.3, Figs. 8.9
and 8.10). Machine structure:

while 0 {
// ID is X*q0*Y*1*
change 0 to X & move R
while 0 or Y move R
change 1 to Y & move L // fail if not 1 (too many 0s)
while Y or 0 move L
move R

}
while Y move R // fail if 1 (too many 1s)
halt

We can test this machine on inputs 000111, 00011, 00111, 000110.

Formal definition of a TM M = (Q,Σ,Γ, δ, q0, B, F ): Q is a finite set of states, Σ is a finite
input alphabet, Γ is a finite tape alphabet (Σ ⊂ Γ), δ : Q×Γ→ Q×Γ×{L,R} is a transition
function, q0 ∈ Q is the initial state, BinΓ − Σ is the blank symbol, and F ⊆ Q is the set of
final states.

1



Instantaneous description (ID) X1X2 . . . Xi−1qXi . . . Xn of a TM. A move of a TM is denoted
`; a sequence of zero or more moves is denoted `∗.
Turing machines to recognise languages accept by entering a final state (and halting); Turing
machines to perform computation may simply halt when the computation is complete.

Example of a TM to recognise palindromes (M, Ex. 16.2, Fig. 16.4). Machine structure:

while true {
if a {

change a to B & move R
while a or b move R
move L
if B halt // odd-length palindrome
if a {

while a or b move L
move R

}
} else if b {

... similarly ...
} else {

break
}

}
if B halt // even-length palindrome

Test on inputs abba, abbba, abaa.

Example of a TM to recognise Lww = {ww | w ∈ {a, b}∗ } (M, Ex. 16.3, Fig. 16.5). Machine
structure:

// Stage 1: Check length is even, change as / bs to As / Bs
while a or b {

change a to A or b to B & move R
while a or b move R
move L
change a to A or b to B & move L
while a or b move L
if A or B move R

}
// Stage 2: Change As and Bs in first half to as and bs
if Blank halt
if A or B move L
while A or B change to a or b & move L
if Blank move R
// Stage 3: Compare first and second halves
while true {

if a {
change a to A & move R
while a or b or Blank move R

2



change A to Blank & move L // fail if B
while a or b or Blank move L
if A or B move R

} else if b {
... similarly ...

}
}
if Blank halt

Test on inputs aba, abaa, abab.

The language L(M) accepted by a TM M is the set of strings w in Σ∗ such that q0w ` αqβ for
some state q in F and any tape strings α and β.

The set of languages accepted by TMs is called the set of computably enumerable languages.
The set of languages accepted by TMs that always halt is called the set of computable lan-
guages. Significance of this distinction.

Example of a TM to perform integer subtraction (Ex. 8.4, Fig. 8.12). The initial tape is 0m10n.
(Who knows why they reversed the normal roles of 0s and 1s?) The TM halts with 0m−n on its
tape. Machine structure:

while 0 {
// ID is q0ˆ(m-k)11ˆk0(n-k)
change 0 to B & move R
while 0 move R
while 1 move R
if B { // m >= n, so return 0ˆ(m-n)

move L
while 1 change to B & move L
while 0 move L
if B change to 0 & halt

}
change 0 to 1 & move L
while 1 or 0 move L
if B move R

}
// m < n, so return zero (blank tape)
change 1 to B & move R
while 1 change to B & move R
while 0 change to B & move R
if B halt

Test on 0000100, 00100, 01000.

It is more common to represent the unary integer n ≥ 0 by 1n+1, so we can represent 0 by 1
(and not by a blank tape!).

Programming techniques (Section 8.3)

• Storage in the state.

3



• Multiple tracks.

• Subroutines.

Example of a TM to perform multiplication using a “submachine” (Ex. 8.8, Figs. 8.14 and 8.15).

Exercise: Construct a TM to recognise language { 0n | n a perfect square }.
Exercise: Construct a TM to compute the factorial function.

Exercise (difficult): Construct a TM to compute Ackermann’s function: A(0, n) = n + 1,
A(m + 1, 0) = A(m, 1), A(m + 1, n + 1) = A(m,A(m + 1, n)). This function grows very
rapidly. (See Turing’s World for a solution.)

Extensions of Turing machines (Section 8.4)

A multitape TM differs from a TM in that each transition depends on each of the tape symbols
and can independently change each tape symbol and move the head on each tape.

Every language accepted by some multitape TM is also accepted by some (single-tape) TM
(Theorem 8.9).

The construction (not required) depends on simulating the multiple tapes on a single (multi-
track) tape.

The time taken by the single-tape TM to simulate n steps of the multitape TM is O(n2) (The-
orem 8.10).

A nondeterministic TM differs from a TM in the same way that an NFA differs from a FA:
the value of the transition function δ(p,X) is a set of triples (q,X,D). It accepts an input if
some sequence of transitions reaches a final state.

If MN is a nondeterministic TM, then there is a deterministic TM MD such that L(MN) =
L(MD) (Theorem 8.11).

The construction of the equivalent (multitape) TM MD depends on maintaining a queue of
pending IDs of MN (p. 341).

Suppose that MN has at most m choices from any ID. Then the time taken by MD to simu-
late n steps of MN by this construction is O(nmn). It is unknown whether a subexponential
simulation is possible.

Summary: Adding features to a Turing Machine does not give more computing power.

Restricted Turing machines (Section 8.5)

Multistack Machines A multistack machine is like a PDA with k ≥ 1 independent stacks.
If language L is accepted by some TM, then it is also accepted by some 2-stack machine
(Theorem 8.13).

Construction: Let αqβ be an ID of the TM. Represent this ID by storing αR on the first stack
(i.e., last(α) on top), β on the second stack (first(β) on top), and performing transitions to
maintain this representation.

Exercise: Define a “queue machine”. Prove that if a language is accepted by some TM, and
hence by some 2-stack machine (see above), then it is also accepted by some queue machine.

4



Counter machines (not required). Very informally, the class of functions that can be computed
by finite state machines with just two non-negative integer counters (variables). Transitions
depend on the state, the input symbol and which if any of the counters is zero. each transition
changes the state, changes the input symbol, and may add or subtract one from either or both
of the counters. The resulting set of functions that can be computed is equivalent to the the
class of functions that can be computed by TMs.

Turing machines and recursive functions (not required). Very informally, the class of func-
tions over the natural numbers that can be computed by TMs is equivalent to the class of func-
tions that can be expressed by a set of recursive definitions (cf., Ackermann’s function above)
together with a minimisation (while-statement) operator. (See Martin or Minsky for details.)
This latter characterisation of the computable functions, due to Kleene, is a very important one.

Summary: Some restrictions of TMs still allow the same set of functions to be computed
(equivalently, allow the same set of languages to be recognised).

Turing machines and computers (Section 8.6)

Clearly, a TM can be simulated by a computer. It is only necessary to have an infinite supply
of disks (to simulate) the infinite tape and to manage them appropriately.

More interestingly, a computer can also be simulated by a multitape TM. The construction is
described in Section 8.6.2.

The time taken by a multitape TM to simulate n steps of a computer isO(n3), so the time taken
by a single-tape TM to simulate n steps is O(n6).

A language that is not c.e. (Section 9.1)

A language is computable if it is accepted by some Turing machine that always halts. Problems
correspond to languages; problem instances correspond to strings. A problem is decidable
(resp., undecidable) if the corresponding language is computable (resp., not computable).

A language is computably enumerable (c.e.) if it is accepted by some Turing machine. Clearly
every computable language is c.e.

Exercise: Prove that every context-free language is computable.

Establish a 1-1 mapping between (positive) integers and binary strings, so we can refer to the
ith string, wi.

Establish a coding for Turing machines as binary strings, so that a TM that is coded as wi is
called the ith TM. Note that the same TM may occur several times in this enumeration.

See Example 9.1 for the coding of a particular TM.

Establish a coding for pairs (M,w), where M is a TM and w is a binary string.

Define the diagonalisation language, Ld, as follows:

Ld = {wi | wi 6∈ L(Mi) } (1)

I.e., Ld is the set of binary strings w such that the TM whose code is w does not accept when
given w as input.

5



Theorem: Ld is not c.e., i.e., no TM accepts Ld.

Proof: Suppose Ld = L(M) for some TM M , i.e.,

Ld = L(Mi), for some i. (2)

Now, consider whether wi ∈ Ld.

• If wi ∈ Ld, then wi ∈ L(Mi) by (2), so wi 6∈ Ld by (1), which is a contradiction.

• If wi 6∈ Ld, i.e., wi 6∈ L(Mi) by (2), it follows that wi ∈ Ld by (1), which is again a
contradiction.

Since both possibilities lead to a contradiction, the assumption that Ld is c.e. is false.

A language that is c.e. but not computable (Section 9.2)

Theorem: If L is computable, then so is its complement, L′.

Proof by modifying the TM that accepts L to become a TM that accepts L′.

Theorem: If L and L′ are both c.e., then L is computable.

Proof by combining the TMs that accept L and L′ to become a TM that accepts L and always
halts.

Corollary: L′d is not computable (else Ld would be computable and hence c.e.)

Define the universal language, Lu, as follows:

Lu = { s | s is the code for (M,w), M is a TM, and M accepts w } (3)

We define a TM U that simulates the execution of a given TM M on a given input w. (Details
omitted, see pp. 378–379). I.e., U accepts the coded pair (M,w) if and only if M accepts w.

The TM U is hence called a universal Turing machine.

Theorem: Lu is c.e. but not computable.

Proof. Lu is clearly c.e., as Lu = L(U). Suppose Lu were computable. Then L′u would also
be computable. Let M be a TM that accepts L′u, i.e., L′u = L(M), where M always halts. We
can then construct a TM M ′ that accepts Ld as follows.

• Given input w, M ′ changes its input to w111w.

• M ′ simulates (behaves as) M on the new input. Suppose w is the ith string. Then M ′

determines whether or not Mi accepts wi. Since M accepts L′u, it accepts if and only if
Mi does not accept wi, i.e., if and only if wi ∈ Ld.

But no TM that accepts Ld exists, so Lu is not computable.

The class of computable languages is closed under complementation (above), union, intersec-
tion, concatenation, difference and iteration (star). (I think.)

The class of c.e. languages is closed under union, intersection, concatenation, and iteration. (I
think.)

6



Undecidable problems about Turing machines (Section 9.3)

Reduction between problems (languages). A reduction is an algorithm that transforms an in-
stance of problem P1 to an instance of problem P2 such that the two instances have the same
answer (“yes” or “no”). If P1 reduces to P2, then P2 is at least as hard as P1. Formally, a
reduction from P1 to P2 is a TM that takes an instance of P1 as input and halts with an instance
of P2 as output.

Theorem. If there is a reduction from P1 to P2, then:

• If P1 is undecidable (not computable), then so is P2.

• If P1 is not c.e., then neither is P2.

Proof. See Section 9.3.1.

Examples. Let Le = {M | L(M) = ∅ } be the set of (codings of) TMs whose language is
empty. Let Lne = L′e = {M | L(M) 6= ∅ } be the set of (codings of) TMs whose language is
nonempty. Then Lne is c.e. but not computable, and hence Le is not c.e. (Section 9.3.2)

A property of the c.e. languages is a subset of the c.e. languages. For example, the property
of being empty is the set consisting of the empty language. The property of being a regular
language is the set consisting of all regular languages. A property is trivial if it is either empty
(satisfied by no c.e. language) or is the set of all c.e. languages. Otherwise, it is nontrivial.

Rice’s Theorem: Every nontrivial property of the c.e. languages is undecidable. (Proof not
required.)

By Rice’s Theorem, the following properties are all undecidable:

1. Whether the language accepted by a TM is empty.

2. Whether the language accepted by a TM is finite.

3. Whether the language accepted by a TM is regular.

4. Whether the language accepted by a TM is context-free.

That is, for example, the set of codes of TMs that accept a regular language is not computable.

7


