
3515ICT: Theory of Computation

Regular languages

Notation and concepts concerning alphabets, strings and languages, and identification of lan-
guages with problems (H, 1.5).

Regular expressions (H, 3.1, 3.3–4; S, 1.3)

Definitions of regular expressions and regular languages: A regular expression over a finite
alphabet Σ is composed from the expressions ∅, ε, a (a ∈ Σ), S (S ⊆ Σ) using union (E1 +E2

or E1 ∪ E2), concatenation (E1E2), iteration (E∗, where E∗ = {ε} ∪ E ∪ E2 ∪ · · ·), and
parentheses. Precedence: Iteration > concatenation > union. Definition of the language L(E)
defined by a regular expression E. Abbreviations: (a − z) = {a, b, . . . , z}, E? = (E + ε),
E+ = EE∗.

A language is regular if it is the language defined by some regular expression.

Examples of regular languages: strings of even length (M, Ex. 3.1); strings of odd length;
strings in {0, 1}∗ containing at least one 1 (M, Ex. 3.2); strings in {0, 1}∗ of length at most 6
(M, Ex. 3.4); strings in {0, 1}∗ that end in 1 and do not contain the substring 00 (M, Ex. 3.5);
Java floating point constants (M, Ex. 3.6); Java identifiers; strings in {0, 1}∗ denoting integers
divisible by 3 (best postponed until finite automata have been introduced).

The same regular language may be defined by different regular expressions, e.g., 0∗1(0 + 1)∗,
(0 + 1)∗1(0 + 1)∗ and (0 + 1)∗10∗ (M, Ex. 3.3), or (0 + 1)∗ and 0∗(10∗)∗.

Every finite language is regular. Informal proof and proof by induction (on size of language,
and length of string in language).

Examples of nonregular languages: { ssR | s ∈ Σ∗ }, where sR = rev(s); the set of all
palindromes in {0, 1}∗ (M, Thm 4.3); { anbn | n ≥ 0 }; legal arithmetic expressions using the
identifier a, the operator +, and left and right parentheses.

Applications of regular expressions: compilers, editors, Web servers, information retrieval (H,
3.3).

Algebraic laws can be used to simplify regular expressions, treated lightly (H, 3.4.1–3.4.5):
∅+L = L+∅ = L, εL = Lε = L, ∅L = L∅ = ∅, L+M = M+L, (L+M)+N = L+(M+N),
(LM)N = L(MN), L(M+N) = LM+LN , (L+M)N = LM+LN ,L+L = L, (L∗)∗ = L∗,
(L∗M∗)∗ = (L+M)∗, ∅∗ = ε, ε∗ = ε, L+ = LL∗ = L∗L, L∗ = L+ + ε, [L] = L+ ε.

Kozen’s axiom system can be used to prove equivalence of regular expressions (omitted).

Deterministic finite automata (H, 1.1, 2.1–2; S, 1.1)

Example: Finite automaton for the regular expression (1 + 01)+.

Definition of (deterministic) finite automata (DFA). A DFA has a set of states Q, an alphabet
Σ, an initial state q0 ∈ Q, a transition function δ : Q × Σ → Q, and a set of accepting (or
final) states F ⊆ Q. Often a DFA is drawn as a transition diagram, with each state having a
transition for each element of Σ. The transition function can also be presented as a table, with

1

rows indexed by states and columns by symbols. (In programs, the transition function δ of a
DFA is represented by a state transition matrix.)

Examples of DFAs: DFA for the regular expression {0, 1}∗10 (M, Ex. 4.4); DFA for the regular
expression 0 + 1(0 + 1)∗0; DFA for the binary numbers evenly divisible by 3.

Definition of the extended transition function δ∗ : Q × Σ∗ → Q: δ∗(q, ε) = q, δ∗(q, as) =
δ∗(δ(q, a), s).

A string s ∈ Σ∗ is accepted by a DFA if s leads from the initial state to an accepting state, i.e.,
if δ∗(q0, s) ∈ F . The language L(M) accepted, or recognised, by a DFAM is the set of strings
in Σ∗ that are accepted by M .

Consider the DFA with Q = {A, 0, D, 1, B}, Σ = {0, 1}, q0 = A, δ = {(A, 0, 0), (A, 1, 1),
(0, 0, A), (0, 1, D), (D, 0, D), (D, 1, D), (1, 0, D), (1, 1, B), (B, 0, D), (B, 1, 1)},A = {A,B}
(M, Ex. 4.5). What languages does this DFA recognise?

Another example of a DFA: Strings in {0, 1}∗ with an even number of 0s and an even number
of 1s (H, Ex. 2.4).

Programs to recognise languages accepted by DFAs are very efficient.

Kleene’s theorem A language is regular (has a regular expression) if and only if it is recognised
by some DFA. (See below.)

Nondeterministic finite automata (H, 2.35; S, 1.2)

DFAs may have “unnecessary” states and transitions. Consider the DFA for (1 + 01)+ (M,
Ex. 5.1). We could omit one state, and say that if the machine has no transition it can quit
immediately and not accept the string.

DFAs may be unnecessarily complex. Consider the DFA for (0 + 1)∗(000 + 111)(0 + 1∗ and
the nondeterministic finite automaton that corresponds directly to the regular expression (M,
Ex. 5.2). We say the machine accepts a string if there is some sequence of transitions that leads
to an accepting state.

Definition of a nondeterministic finite automaton (NFA). An NFA has a set of states Q, an
alphabet Σ, an initial state q0 ∈ Q, a transition function δ : Q × Σε → 2Q, and a set of
accepting states F ⊆ Q. Here, Σε = Σ ∪ {ε}.
Example of an NFA for { s ∈ {0, 1}∗ | |s| ≥ N and the third symbol from the right is 1 }, for
N ≥ 1 (M, Ex. 5.3; H, Ex. 2.13).

Example: NFAs for L(01∗ + 0∗1) and L(01∗0∗1).

Example: NFA for decimal numbers (H, Ex. 2.16).

Definition of the extended transition function δ∗ : Q× Σ∗ → 2Q for NFAs:

1. δ∗(q, ε) = E({q}), for q ∈ Q

2. δ∗(q, sa) =
⋃
p∈δ∗(q,s)E(δ(p, a)), for q ∈ Q, s ∈ Σ∗, a ∈ Σ

That is, δ∗(q, s) is the set of states that the machine can reach from state q with input string s,
following ε-transitions without reading input at any time.

2

Here, E(S) is the set of all states that can be reached from S using a sequence of zero or
more ε-transitions. Formally, E(S) is the least set S ′ such that S ⊆ S ′ and, for all q ∈ S ′,
δ(q, ε) ∈ S ′. (This set can be computed by breadth-first graph traversal.)

Example (M, Ex.4.6): Consider NFA for L((0∗101∗ + 1∗000∗)∗). Construct δ∗(q0, 010).

A string s ∈ Σ∗ is accepted by an NFA if δ∗(q0, s)∩F 6= ∅, i.e., if some sequence of transitions
leads from q0 to an accepting state. The language L(M) accepted, or recognised, by an NFA
M is the set of strings in Σ∗ that are accepted by M .

NFAs may have many fewer states than the corresponding DFA. Consider the above NFA for
{ s ∈ {0, 1}∗ | |s| ≥ N and the N th symbol from the right is 1 }. This has N + 1 states; the
corresponding DFA has 2N states.

Equivalence of DFAs and NFAs by subset construction (H, 2.3.5–6; S, 1.2).

To construct a DFA D equivalent to an NFA N , let D = (QD,Σ, δD, {q0}, FD), where

1. QD = 2QN , i.e., QD is the set of subsets of QN .

2. For each set S in QD and symbol a in Σ,

δD(S, a) =
⋃
p∈S

E(δN(p, a)).

I.e., δD(S, a) is the union of all the states that N can go to from states in S with input a.

3. FD is the set of states S in QD (equivalently, subsets S of states in QN) such that S ∩
FN 6= ∅.

Example of subset construction (H, Exx. 2.6 and 2.9): Construction of DFA equivalent to 3-
state NFA (H, Fig. 2.9) accepting all strings in {0, 1}∗ that end with 01.

Example of subset construction for (N + 1)-state NFA (H, Fig. 2.15) accepting all strings in
{0, 1}∗ such that the N th symbol from the right is 1 (H, Ex. 2.13).

Example: Construction of a DFA equivalent to the natural NFA for L(0∗(01)∗0∗).

Example: Two-stage construction of a DFA equivalent to the four-state ε-NFA with δ =
{(q0, ε, q1), (q0, ε, q2), (q1, 0, q1), (q1, 1, q3), q2, 0, q3), (q2, 1, q2)} and F = {q3} (M, Ex. 5.6).

Application of DFAs and NFAs to text search (H, 2.4).

Kleene’s theorem

A language is regular (has a regular expression) if and only if it is recognised by some DFA if
and only if it is recongised by some NFA.

See Fig. 3.1 (H., p.91). See also Theorem 1.54 and Lemma 1.60 (S, 1.3). Our proof follows
Sipser’s proof, which seems to be the simplest.

1. Every DFA is equivalent to some regular expression, by the state elimination construction
(H, 3.2.2; S, Lemma 1.60).

2. Every regular expression is equivalent to some NFA, by a simple inductive construction
(H, 3.2.3; S, Lemma 1.55).

3

3. Every NFA is equivalent to some DFA, by the subset construction (H, 2.3.5; S, Theorem
1.39).

Example: Construct a regular expression from the following DFA that accepts all strings in
{0, 1}∗ containing at least one 0 (H, Ex. 3.5, but using a different construction):

0 1
→ p q p

*q q q

Example: Construct a regular expression from the following DFA that accepts all strings in
{0, 1}∗ containing the substring 00:

0 1
→ p q p

q r p
*r r r

Example: Construct a regular expression from the 3-state DFA that accepts all strings in {0, 1}∗
representing (binary) numbers evenly divisible by 3.

Example: Construct an NFA equivalent to the regular expression (0 + 1)∗1(0 + 1) (H, Ex. 3.8).
Construct a DFA equivalent to the resulting NFA.

Pumping lemma for regular languages (H, 4.1; S, 1.4)

This lemma allows us to prove that some languages are not regular.

The pumping lemma for regular languages (H, 4.1.1): Let L be a regular language. Then there
exists a constant p ≥ 1 such that, for every string w in L with |w| ≥ p, there exist strings x, y,
z such that w = xyz and:

1. |xy| ≤ p (the initial section is not too long).

2. |y| ≥ 1 (the string to pump is not empty).

3. For all k ≥ 0, the string xykz is in L (the string y may be pumped any number of times,
including 0, and the resulting string is still in L).

Proof outline: Every string in L with more symbols than states in the DFA for L must cause
some state to repeat in being recongised, which allows any number of cycles through that state.

Applications (H, 4.1.2; S, 1.4). The following languages are not regular:

1. { 0n1n | n ≥ 1 }. See the next item. (S, Ex. 1.73)

2. All strings in {0, 1}∗ with an equal number of 0s and 1s. Suppose L is regular Let p
be the pumping lemma for L. Choose w = 0p1p. Clearly |w| ≥ p. Let w = xyz,
where |xy| ≤ p and |y| ≥ 1. Then y = 0m for some m ≥ 1. By the pumping lemma,
xz = xy0z ∈ L. But xz has n − m 0s and n 1s, with m ≥ 1, so xz 6∈ L. This is a
contradiction, so L is not regular. (S, Ex. 1.75; H, Ex. 4.2)

3. { 0n1m | n ≤ m }.

4

4. The set of balanced parenthesis strings.

5. The set of arithmetic expressions over a and b using operators + and * and parentheses.
This set is proved non-regular in a similar way to the previous example. (Note that the
set of arithmetic expressions without parentheses is regular.)

6. {ww | w ∈ {0, 1}∗ } (S, Ex. 1.75)

7. { 1n
2 | n ≥ 0 } (S, Ex. 1.76)

Closure properties of regular languages (H, 4.2; S, 1.2)

The class of regular languages is closed under union, concatenation and iteration, complement,
intersection, difference and reversal. The first three are immediate from regular expression
construction (H, Thm 4.3). Complement (L̄ = Σ∗ − L) follows from reversing the roles
accepting and non-accepting states in a DFA for L (H, Thm 4.5). Intersection follows from
union and complement using De Morgan’s law, or by constructing a DFA for L1 ∩ L2 from
the DFAs for L1 and L2 using a product construction (H, Thm 4.8). This product construction
can also be used to show that regular languages are closed under union and difference. Closure
under difference also follows from L1 − L2 = L1 ∩ L̄2).

Example: Construct the DFA that accepts the language with an even number of 0s and an even
number of 1s as the intersection of two simpler languages.

Example: Construct the DFA that accepts the set of binary strings that are evenly divisble by 6
as the intersection of the sets of binary strings that are evenly divisible by 2 and by 3.

The class of regular languages is closed under symmetric difference (L1∆L2 = (L1 − L2) ∪
(L2 − L1)).

The class of regular languages is also closed under reversal — if L is regular, then LR = {wR |
w ∈ L } is regular — either by NFA construction (reverse the transitions and the roles of initial
and accepting states), or by induction on their regular expression definition (H, Thm 4.11).

Example: The language { 0m1n | m 6= n ≥ 0 } is not regular. This is not possible to prove
using the pumping lemma alone. (Try.) However, suppose the language { 0m1n | m 6= n ≥ 0 }
were regular. Then

{ 0m1m | m ≥ 0 } = { 0m1n | m = n ≥ 0 }
= { 0m1n | m,n ≥ 0 } − { 0m1n | m 6= n ≥ 0 }
= L(0∗1∗)− { 0m1n | m 6= n ≥ 0 }

would be regular. But it’s not, so neither is { 0m1n | m 6= n ≥ 0 }.
Example: Prove the set of strings in {0, 1} with different numbers of 0s and 1s is not regular.
This is also not possible to prove using the pumping lemma alone. (Try.)

Decision problems for regular languages (H, 4.3)

What questions about regular languages can be answered and how long does it take to an-
swer them? In answering such questions, we are free to convert the given description of the
language(s) to any other representation of the language, though this conversion takes time.

The following problems are all decidable for regular languages.

5

1. (Emptiness) Is a given language empty, i.e., does L = ∅?

(a) Use structural induction on a regular expression for L: ∅ is empty; ε and a ∈ Σ are
not empty; E1 +E2 is empty iff both E1 and E2 are empty; E1E2 is empty iff either
E1 or E2 is empty; E∗ is not empty.

(b) Use reachability in a DFA for L: L is empty iff there is no path from the initial state
to an accepting state. This can be checked by a breadth-first traversal of the DFA
from q0.

2. (Finiteness) Is the given language finite?

(a) Use structural induction on a regular expression for L. (More complex than finite-
ness.)

(b) Let n be the pumping-lemma constant for L. Then L is finite iff it contains no string
whose length is between n and 2n − 1. This requires testing O(|Σ|2n) strings for
membership in L.
(If L has a string whose length is at least n, then, by the pumping lemma, L is
infinite. If the shortest string w whose length is at least n is at least 2n, then by
the pumping lemma again, w = xyz, where |xy| ≤ n and |y| ≥ 1, xz ∈ L. But
n ≤ |xz| < |xyz| = |w|, which is a contradiction.)

3. (Membership) Does a given string belong to the given language, i.e., does w ∈ L?

Convert the representation of L to a DFA M , if necessary. Then apply M to w, and
see whether M accepts w, requiring time O(|w|). But the time to convert a regular
expression (or NFA) to a DFA can be exponential in the size of the regular expression
(or NFA).

We can also simulate an NFA directly, maintaining the current set of possible states,
requiring time O(|w| × |Q|2), which is what is done in practice.

4. (Equality) Do two language descriptions define the same language, i.e., does L1 = L2?

Clearly, L1 = L2 iff L1 ⊆ L2 and L2 ⊆ L1. But L1 ⊆ L2 iff L1 ∩ L̄2 = ∅. We can
compute the regular language L1∩ L̄2 and we can decide whether or not it is empty. And
similarly for L2 ⊆ L1. So the problem is decidable.

A more efficient decision procedure for equality of regular languages follows from the
discussion below.

Myhill-Nerode theorem and minimisation of DFAs

Let L be any subset of Σ∗. For u, v ∈ Σ∗, define u ≡L v if and only if uw ∈ L iff vw ∈ L, for
any w in Σ. The equivalence relation≡L induces a partition of Σ∗ into disjoint components (or
equivalence classes).

Examples: Construct the equivalence classes for the following languages:

1. L = { 0n1n | n ≥ 0 }

2. P = {w ∈ {0, 1}∗ | w = wR }

6

3. T = {w ∈ {0, 1}∗ | w represents a binary integer divisible by 3 }

Theorem (Myhill-Nerode): A language L is regular if and only if the number of equivalence
classes of ≡L is finite. If L is regular, the number of equivalence classes of ≡L equals the
number of states in the minimal DFA that recognises L. (S, Problems 1.51–1.52)

Corollary: Every regular language has a unique minimal DFA (up to state renaming). (H, 4.4)

Clearly, the Myhill-Nerode theorem can be used to prove languages are not regular.

Given a DFA for a regular language L, we can construct the minimal DFA for L either by
first computing the set of distinguishable pairs (H, 4.4) or by computing the set of equivalence
classes directly (Martin, 5.1–5.2). The second algorithm can be expressed as follows.

Let M = (Q,Σ, δ, q0, F) be a DFA for a regular language L as above. (If M has any unreach-
able states, delete them.)

For every partition P of Q, define splits(C0, C1, a) ≡ ∃ p, q ∈ C0 s.t. δ(p, a) ∈ C1

and δ(q, a) 6∈ C1, for C0, C1 ∈ P and a ∈ Σ.

Now, compute the set P of equivalence classes of states in Q.

P := {Q \ F, F};
while ∃C0, C1 ∈ P , a ∈ Σ s.t.splits(C0, C1, a) do

let C0, C1 ∈ P , a ∈ Σ s.t splits(C0, C1, a);
C ′0 := { p ∈ C0 | δ(p, a) ∈ C1 };
P := P \ {C0} ∪ {C0 \ C ′0, C ′0}

end while

(Of course, in practice, we don’t repeat the search for C0, C1 ∈ P , a ∈ Σ s.t. splits(C0, C1, a).)

Finally, construct the minimal DFA ML for L from P .

Let ML = (Q′,Σ, δ′, q′0, F
′), where Q′ = { [q]P | q ∈ Q }, q′0 = [q0]P , F ′ = { [q]P | q ∈ F },

and δ′([p]P , a) = [q]P , where δ(p, a) = q, for each p ∈ Q and a ∈ Σ.

Examples: Hopcroft et al., Fig. 4.8; Martin, Fig. 5.3(a).

Because the minimal DFA for a regular language is unique, two regular languages are equal iff
their minimal DFAs are identical (up to state renaming).

Slightly more efficiently, two regular languages are equal iff the initial states of their DFAs are
equivalent after taking the union of the two DFAs (and choosing one initial state as the initial
state of the union). This avoids computing the minimal DFA.

‘H’ or ‘IALC’ or ‘Hopcroft et al.’ refers to Introduction to Automata Theory, Languages
and Computation, Second Edition, by J.E. Hopcroft,, R. Motwani and J.D. Ullman, Addison-
Wesley, 2001.

‘S’ or ‘Sipser’ refers to Introduction to the Theory of Computation, Second Edition, by M.
Sipser, Thomson, 2006.

‘M’ or ‘Martin’ refers to Introduction to Languages and the Theory of Computation, Third
Edition, by J. Martin, McGraw-Hill, 2003.

7

