1. Remember: A finite state machine cannot count to arbitrarily high numbers, let alone do complex arithmetic:
 (a) yes, (b) no, (c) no, (d) yes
 (e) Yes: use the product construction (parallel execution) to construct a DFA for $L_1 \cap L_2$
 from the DFAs for L_1 and L_2 (explanation not required).
 (f) Yes: simple structural induction on regular expression for L (explanation not re-
 quired).
 (g) Yes. The question is asking whether $L(M_1) \cap L(M_2)$ is nonempty. But the intersection
 of two regular languages is regular, and the test whether a regular language is (non)empty
 is decidable.
 (h) Yes. $L_1 \subseteq L_2$ iff $L_1 \cap \overline{L}_2$ is empty. But the complement of a regular language
 is regular, the intersection of two regular languages is regular, and the test whether a
 regular language is empty is decidable.

2. (a) There are several possible expressions:

 \[
 (1 + 01)^* (\varepsilon + 0) \\
 1^* (01^+)^* (\varepsilon + 0) \\
 (\varepsilon + 0) (1 + 10)^*
 \]

 (b) Eliminating state r gives:

 \[
 \begin{align*}
 p & \xrightarrow{a+b} q \\
 q & \xrightarrow{a+ba} q \\
 q & \xrightarrow{bb} p
 \end{align*}
 \]

 An equivalent regular expression is:

 \[
 (a + b)(a + ba)^*bb^* (a + b)(a + ba)^*
 \]

 (c) Eliminating state q from the initial automaton gives:

 \[
 \begin{align*}
 p & \xrightarrow{(a+b)a^*b} r \\
 r & \xrightarrow{a+b} r \\
 r & \xrightarrow{b} p
 \end{align*}
 \]

 An equivalent regular expression is:

 \[
 ((a + b)a^* b(a+b)^*b)^* (a + b) a^*b(a+b)^*
 \]

 The final equivalent regular expression is thus:

 \[
 (a + b)(a + ba)^*bb^* (a + b)(a + ba)^* + ((a + b)a^*b(a+b)^*b)^* (a + b)a^*b(a+b)^*
 \]
3. (a) \(\{q, s\} \)

<table>
<thead>
<tr>
<th>(a)</th>
<th>(b)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\rightarrow p)</td>
<td>(qr)</td>
</tr>
<tr>
<td>(*qr)</td>
<td>(r)</td>
</tr>
</tbody>
</table>

(b) \(\begin{array}{c|c|c|c|}
*qs & \emptyset & q & \emptyset \\
*q & \emptyset & q & \emptyset \\
r & r & s & \emptyset \\
* & \emptyset & \emptyset & \emptyset \\
\end{array} \)

4. **Proof**

Suppose that \(L \) is regular.

Let \(n > 0 \) be the pumping lemma constant.

Choose \(w = 1^n + 0^n = 1^n \) (or, \(w = 10^n + 10^n = 10^{n+1} \), or \ldots).

By the pumping lemma, \(w \) can be broken into \(w = xyz \), where (a) \(|xy| \leq n\), (b) \(|y| \geq 1\), and (c) for all \(k \geq 0 \), \(xy^kz \in L \).

As \(|xy| \leq n\) and \(|y| \geq 1\), \(y = 1^k \), for \(1 \leq k \leq n \).

By the pumping lemma, \(xy^0z \), which equals \(1^{n-k} + 0^n = 1^n \), is an element of \(L \).

But \(1^n \) is not the sum of \(1^{n-k} \) and \(0^n \), so \(1^{n-k} + 0^n = 1^n \) is **not** an element of \(L \).

But this contradicts the fact that we just showed it **is** an element of \(L \).

So \(L \) cannot be regular.