
1

A first problem solving and programming example

Background Integer computation remains important for signal, image and video

compression, for encryption, and other applications.

Problem statement Write a program that reads an integer n > 1 from standard

input and writes all the (possibly repeated) prime factors of n to standard output

in nondecreasing order.

Sample inputs

84

17

Sample outputs

84 = 2 . 2 . 3 . 7

17 = 17

Question What is the output for inputs 30? 96? 777888?

Question What should the program do if the input is an integer <= 1, or not an

integer at all? 2

A first attempt to understand the problem and design a solution

Read integer n ;

Write string "n = ";

for (int c = 2; c <= n; c++) {

 if (c divides n) {

 Write string "c .";

 }

}

Write new line;

Sample inputs

84

17

Resulting outputs (by hand calculation)

84 = 2 . 3 . 4 . 6 . 7 . 12 . 14 . 21 . 28 . 42 . 84 .

17 = 17 .

This is obviously wrong (why?); we need to think a bit harder!

3

Understanding the problem better

The previous design seemed to consider each prime factor c repeatedly. So let's

try repeatedly dividing n by c for each candidate factor c in turn.

84 / 2 = 42

42 / 2 = 21

2 does not divide 21

21 / 3 = 7

3 does not divide 7

4 does not divide 7

5 does not divide 7

6 does not divide 7

7 / 7 = 1

Stop

Hmm, that may lead to a solution...

4

A second attempt to design a solution

Read integer n ;

Write string "n = " ;

c = 2;

while (n > 1) { // eliminate candidate c

 while (c divides n) { // eliminate all occurrences of c

 Write c;

 n = n / c;

 if (n > 1)

 Write ".";

 }

 c = c + 1;

}

Write new line;

Hand calculation suggests this is promising... It seems to generate all prime

factors (why only prime factors?) in nondecreasing order… Now, how to

implement the design in Java?

5

Implementation issues

1. How to read the integer n ?

 –!Using TerminalIO?

 –!Using standard Java input?

 – From an IntegerField using BreezySwing?

 –!From a command line argument? (Violating the specification)

2. How to tell whether or not c divides n ?

 –!Easy: n % c == 0 ?

3. What classes and methods should the program contain?

 –!Simple program, so single class should suffice.

 –!But the program will be clearer and more reusable if we separate

!!!!!!!reading the input from factorisation, i.e., do the factorisation in a

!!!!!!!separate method. (It is often good practice to separate i/o from

!!!!!!!computation. Later, I'll show how to do this for the current problem.)

6

Version using TerminalIO

import TerminalIO.*;

public class Factorise {

 public static void main(String[] args) {

 Factorise app = new Factorise();

 app.doit();

 }

 // Read and print the factors of a positive integer

 public void doit() {

 KeyboardReader in = new KeyboardReader();

 int n = in.readInt();

 factorise(n);

 }

 // (continued next slide)

7

Version using TerminalIO (cont.)

 // Print the factors of n to standard output

 public void factorise(int n) {

 ScreenWriter out = new ScreenWriter();

 int c = 2;

 out.print(n + " = ");

 while (n > 1) {

 while (n % c == 0) {

 out.print(c);

 n = n / c;

 if (n > 1)

 out.print(" . ");

 }

 c = c + 1;

 }

 out.println();

 }

}
8

Version using standard input/output

import java.io.*;

public class Factorise {

 public static void main(String[] args)

 throws IOException {

 Factorise app = new Factorise();

 app.doit();

 }

 private void doit() throws IOException {

 BufferedReader in = new BufferedReader(

 new InputStreamReader(System.in));

 int n = Integer.parseInt(in.readLine());

 factorise(n);

 }

9

Version using standard input/output (cont.)

 private void factorise(int n) {

 int c = 2;

 System.out.print(n + " = ");

 while (n > 1) {

 while (n % c == 0) {

 System.out.print(c);

 n = n / c;

 if (n > 1)

 System.out.print(" . ");

 }

 c = c + 1;

 }

 System.out.println();

 }

}
10

Notes on standard input/output

1. Remember to import java.io.*.

2. Include a "throws IOException" clause in every method definition that

contains a call to a read method or that calls a method that contains a call to

a read method.

3. Declare the BufferedReader variable in the innermost scope (method or

class) that requires it.

4. Understand the difference between end of file (line == null) and an empty

line (line.equals("")). (See following example.)

11

Factorising a sequence of positive integers using standard I/O

import java.io.*;

public class Factorise {

 public static void main(String[] args)

 throws IOException {

 Factorise app = new Factorise();

 app.doit();

 }

 private void doit() throws IOException {

 BufferedReader in = new BufferedReader(

 new InputStreamReader(System.in));

 String line = in.readLine();

 while (line != null) { // line == null at eof

 int n = Integer.parseInt(line);

 factorise(n);

 line = in.readLine();

 }

 }
12

Factorising a sequence of positive integers using standard I/O (cont.)

 public void factorise(int n) {

 /* ... */

 }

}

In Windows, indicate end of input (end of file) by control-Z, in Unix (e.g., on
gucis), indicate end of input by control-D.

Note that end of file (null, which is not a string) is quite different from the empty
string ("").

13

A problem with all these solutions

Consider the factorisation of 101:

2 does not divide 101

3 does not divide 101

...

10 does not divide 101

11 does not divide 101

12 does not divide 101

...

100 does not divide 101

101 / 101 = 1

Stop.

These solutions are very inefficient. No candidate factor greater than 10 can

divide 101, because if it did, some smaller candidate would have already divided
101. We should stop testing immediately if c*c > n.

14

A more efficient factorisation method (for the standard I/O version)

 public void factorise(int n) {

 System.out.print(n + " = ");

 int c = 2;

 while (n > 1 && c*c <= n) { // Change!

 while (n % c == 0) {

 System.out.print(c); // String.valueOf(c);

 n = n / c;

 if (n > 1)

 System.out.print(" . ");

 }

 c = c + 1;

 }

 if (n > 1) // Change

 System.out.print(n); // String.valueOf(n);

 System.out.println();

 }

15

Separating input/output from computation

import java.io.*;

public class Factorise {

 public static void main (String[] args)

 throws IOException {

 Factorise app = new Factorise();

 app.doit();

 }

 private void doit() throws IOException {

 BufferedReader in = ...;

 String line = in.readLine();

 while (line != null) { // line == null at eof

 int n = Integer.parseInt(line);

 int[] factors = factorise(n); // list of factors

 print(factors, n);

 line = in.readLine();

 }

 }
16

Separating input/output from computation (cont.)

 public int[] factorise(int n) {

 // Create a (long) temporary array for factors

 int[] tmp = new int[log2(n)];

 int c = 2, nFactors = 0;

 while (n > 1 && c*c <= n) {

 while (n % c == 0) {

 tmp[nFactors] = c; nFactors++;

 n = n / c;

 }

 c = c + 1;

 }

 if (n > 1) {

 tmp[nFactors] = n; nFactors++;

 }

 // continued...

17

Separating input/output from computation (cont.)

 public int[] factorise(int n) {

 // continued from previous slide…

 // Create a shorter results array

 int[] result = new int[nFactors];

 // Copy temporary array to results array

 for (int k = 0; k < result.length; k++)

 result[k] = tmp[k];

 return result;

 }

 // Returns log to the base 2 of n

 // Uses the formula log_2(n) = log_e(n) / log_e(2)

 // (Could have used repeated division by 2)

 public int log2(int n) {

 double log2n = Math.log(n) / Math.log(2);

 return (int) Math.floor(log2n);

 }
18

Separating input/output from computation (cont.)

 public void print(int[]factors, int n) {

 System.out.print(n + " = ");

 for (int k = 0; k < factors.length; k++) {

 System.out.print(factors[k]);

 if (k < factors.length-1)

 System.out.print(" . ");

 }

 System.out.println();

 }

}

19

Reading several integers from a single line (see notes on classes and objects)

import java.io.*;

import java.util.*;

public class Factorise {

 ...

 private void doit() throws IOException {

 BufferedReader in = ...;

 String line = in.readLine();

 while (line != null) { // line == null at eof

 StringTokenizer t = new StringTokenizer(line);

 while (t.hasMoreTokens()) { // there is another token

 String s = t.nextToken(); // get next token

 int n = Integer.parseInt(s);

 int[] factors = factorise(n);

 print(factors, n);

 }

 line = in.readLine();

 }

 }

} 20

What has this example illustrated

1. Problem solving can require both experiment and reasoning to find a solution.

2. Problem understanding and design should precede implementation. Designs
should be tested by reasoning and hand calculation.

3. Simple patterns can be used repeatedly, for example, to read every line in an
input file.

4. It is straightforward to modify programs using TerminalIO to use standard
input/output:

–! Import java.io.* instead of TerminalIO.*

–! KeyboardReader in = new keyboardReader();

 is transformed to:

 BufferedReader in =

 new BufferedReader(

 new InputStreamReader(System.in));

–! in.readInt()

 is transformed to:

 Integer.parseInt(in.readLine());

– Other transformations are similar, and are described later.

21

What has this example illustrated (cont.)

5. It is also fairly straightforward to transform BreezySwing applications to GUI
applications using AWT/Swing!

–!(Described later)

6. Analysis and simple changes can lead to very significant improvements in
performance.

7. Programs should be written without using static methods (except for method
main).

8. It is desirable and usually straightforward to separate input/output and
computation, here using methods, more generally using separate classes.

22

What remains to be done?

All these solutions have several faults:

1. They do not test that integer n is in fact positive.

2. They may not be properly defined when n == 1.

3. They do not test whether errors occur when trying to read (and write), for

example if the data entered is not actually an integer.

4. They do not conform to the specified coding conventions. In particular, they

do not contain comments. (Justification? Otherwise they would not fit on

these tiny slides.)

5. No evidence of program testing has been provided.

6. They are still not efficient enough for actually breaking real encryption

systems! :-(

