
Calculator example

We wish to write a program that reads a sequence of simple arithmetic

expressions from standard input terminating at end of file (or from a

BreezyGUI text field), evaluates each expression in turn, and prints their

values.

Sample input

100

123 + 4.5

123 + 2*4 + 100/2

Sample output

100.0

127.5

300.0

(For simplicity, we apply operators from left to right, with no relative

precedence, and no parentheses allowed. Here, as usual, each line is

evaluated as soon as it is read.)

Calculator example (cont.)

Initial design

For each line, exp, of input

 Let val = evaluate(exp);

 Print val

Note that this design does not specify whether the expressions to

evaluate are read from standard input or from a text field, nor

whether the output is written to standard output or to a text area. So

the design applies to both console and graphical applications.

The interesting part of this program is method evaluate. (Including its

use of a string tokenizer. And the conversion of tokens to numbers.

And...)

Calculator example (cont.)

Initial design of method evaluate()

Let val be the first token in exp;

while there are more tokens in exp

 Let op be the next token;

 Let num be the following token;

 Let val be the result of applying op to val and num;

return val

Now, with input 3 + 4*5, a trace of the method would be:

 Val op Num Remaining tokens

3 + 4 * 5

 3 + 4 * 5

 7 * 5

 35

(Note that we can – and should – test our ideas at this design stage.)

Calculator example (cont.)

Outline implementation of this design

public static double evaluate(String exp) {

 StringTokenizer st =

 new StringTokenizer(exp, "+-*/", true);

 double val = number corresponding to first token in st;

 while (st.hasMoreTokens()) {

 char op =

 operator corresponding to next token in st;

 double num =

 number corresponding to next token in st;

 val = result of applying op to val and num;

 }

 return val;

}

The italicized constructs can be completed using methods described above.

Calculator example (cont.)

More detailed implementation

public static double evaluate(String exp) {

 StringTokenizer st =

 new StringTokenizer(exp, "+-*/", true);

 double val = Double.parseDouble(st.nextToken().trim());

 while (st.hasMoreTokens()) {

 char op = st.nextToken().charAt(0);

 double num =

 Double.parseDouble(st.nextToken().trim());

 switch (op) {

 case '+' : val += num; break;

 case '-' : val -= num; break;

 // ...

 }

 }

 return val;

}

Calculator example (cont.)

Why the following construction of the string tokenizer?

 StringTokenizer st = new StringTokenizer(exp, "+-*/", true);

Suppose we had used simply:

 StringTokenizer st = new StringTokenizer(exp);

This default uses spaces, tabs, etc., as token separators, so this could work

if every token was separated by white space, "100 + 200", but would fail to
separate the expression into tokens otherwise: "100+200".

So let's make the operator characters token separators:

 StringTokenizer st = new StringTokenizer(exp, "+-*/");

This string tokenizer now separates "100 + 200" into the two tokens "100 "

and " 200". The operator (like the spaces previously) is omitted.

The final version (at top), uses operator characters as separators and returns
separators as tokens : "100 + 200" => "100 ", "+", " 200".

Calculator example (cont.)

Hence, to convert a number token token to a number num, we must write

something like:

 double num = Double.parseDouble(token.trim());

and to convert an operator token token to a character op for use in the switch

statement, we must write something like:

 char op = token.charAt(0);

Exercise 1 (important) Complete this calculator program.

Exercise 2 (important) Rewrite the calculator program as a BreezySwing

application.

Exercise 3 Extend the calculator program so that it recognises operator

precedence and parentheses as in Java, i.e., so that the input expression

"1 + (3+3*4) / 5" evaluates to 4. (See over.)

Recursive descent parsing (solution to Ex. 3 above, not examinable)

Here is a grammar for the class of expressions to be evaluated:

 expression ! term { ('+' | '–') term }

 term ! factor { ('*' | '/') factor }

 factor ! number | '(' expression ')'

These grammar rules simply that say an expression is a sum (or difference)
of terms, a term is a product (or quotient) of factors, and a factor is a
number or a parenthesised expression.

Such a grammar generates sentences from the starting symbol expression
as follows:

 expression ! term
 ! factor * factor
 ! 3 * (expression)
 ! 3 * (term + term)
 ! 3 * (factor + factor)
 ! 3 * (4 + 5)

Recursive descent parsing (cont.)

To recognise (and evaluate) sentences generated from the nonterminal

symbol expression, we can do the following:

• Declare a global variable token

• Write a method of no arguments for each nonterminal symbol N to
recognise (and evaluate) sentences s generated from N.

• Each such method must have the following properties:

•On entry, the first token of s must already be assigned to the variable
token.

•On exit, the variable token must contain the first token following s.

The implementation of these rules is actually very mechanical! (See over.)

Recursive descent parsing (cont.)

For example, given the rule

 expression ! term { ('+' | '–') term }

we could define a method to read and evaluate an expression as follows:

 // On entry, token is the first token of the expression

 // On exit, token is the first token after the expression

 // and the value of the expression is returned

 double expression () {

 double val = term();

 // On exit, token is the first token after the term

 while (token.equals("+") || token.equals("-")) {

 char op = character corresponding to token;

 token = next token;

 double num = term();

 val = result of applying op to val and num;

 }

 return val;

 }

Recursive descent parsing (cont.)

We can define a method to read and evaluate a factor using the rule

 term ! factor { ('*' | '/') factor }

as follows:

 // On entry, token is the first token of the term

 // On exit, token is the first token after the term

 // and the value of the term is returned

 double term () {

 double val = factor();

 // On exit, token is the first token after the factor

 while (token.equals("*") || token.equals("/")) {

 char op = character corresponding to token;

 token = next token; // first token of next factor

 double num = factor();

 val = result of applying op to val and num;

 }

 return val;

 }

Recursive descent parsing (cont.)

We can define a method to read and evaluate a factor using the rule

 factor ! number | '(' expression ')'

as follows:

 // On entry, token is the first token of the factor

 // On exit, token is the first token after the factor

 // and the value of the factor is returned

 double factor () {

 if (token is a number) {

 val = number corresponding to the token;

 } else if (token.equals("("))) {

 token = next token; // first token of expression

 val = expression();

 if (token.equals(")")

 token = next token; // token following expression

 else

 Report an error; // expression not followed by ")"

 } else {

 Report an error; // factor doesn't start with number or ")"

 }

 return val;

 }

Exercises (also not examinable)

1. Here is a grammar for a part of the Java language. Write a recursive
descent parser to determine whether the input stream of tokens is a valid
statement or not.

 statement ! variable = expression ';'

 | 'if' '(' condition ')' statements ['else' statements]

 | 'while' '(' condition ')' statements

 statements ! statement | '{' statement { statement } '}'

 condition ! expression ('==' | '!=') expression

2. Write an alternative program to evaluate expressions using operator
precedence and parentheses without using recursive descent parsing!

Hint Assign an integer precedence to each operator, so that multiplication
(and division) have higher precedence than addition (and subtraction). Push
each number onto a stack (a FIFO list) as it is read. Compare the precedence
of an incoming operator with the precedence of the top operator on the stack
to decide whether to apply the operator on the stack or to push the new
operator onto the stack.

