
Multitasking Review
Concurrency and Synchronisation

Deadlock and Starvation

Task Synchronisation
2501ICT/7421ICTNathan

René Hexel

School of Information and Communication Technology
Griffith University

Semester 1, 2012

René Hexel Task Synchronisation



Multitasking Review
Concurrency and Synchronisation

Deadlock and Starvation

Outline

1 Multitasking Review
Threads and Processess Reviewed

2 Concurrency and Synchronisation
Concurrency
Task Synchronisation
Typical Problems

3 Deadlock and Starvation
Deadlocks
Strategies
Dining Philosophers

René Hexel Task Synchronisation



Multitasking Review
Concurrency and Synchronisation

Deadlock and Starvation
Threads and Processess Reviewed

Multitasking Review

Multitasking allows programs to do more than one thing at
a time

Multiprocessing: multiple CPUs
Timesharing: single CPU

Processes vs. Threads
Processes: memory protection, heavyweight
Threads: no protection, lightweight

Scheduling and Dispatching
Scheduler: high-level queuing algorithms
Dispatcher: low-level CPU assignment

René Hexel Task Synchronisation



Multitasking Review
Concurrency and Synchronisation

Deadlock and Starvation

Concurrency
Task Synchronisation
Typical Problems

Concurrency Problems

Two Tasks accessing common resources (e.g. memory)
→ no problem as long as both tasks only read

what happens if one task writes while the other task reads?
what happens if both tasks try writing?

→ Let’s look at some examples!

René Hexel Task Synchronisation



Multitasking Review
Concurrency and Synchronisation

Deadlock and Starvation

Concurrency
Task Synchronisation
Typical Problems

Concurrency Example (1)

Example (two tasks modifying shared data)
int shared = 0;

void task1(void)
{

shared = 1;
}

extern int shared;

void task2(void)
{

shared = 2;
}

No concurrency problem!
shared is either 0, 1, or 2

→ Both tasks use Atomic Operations

René Hexel Task Synchronisation



Multitasking Review
Concurrency and Synchronisation

Deadlock and Starvation

Concurrency
Task Synchronisation
Typical Problems

Concurrency Example (2)

Example (two tasks modifying shared data)
int shared = 0;

void task1(void)
{

shared++;
shared++;

}

extern int shared;

void task2(void)
{

shared += 2;

}

Inconsistencies can occur!
tasks can interrupt each other at critical points
Read-Modify-Write operations are not Atomic

⇒ shared can suddenly end up with an odd value

René Hexel Task Synchronisation



Multitasking Review
Concurrency and Synchronisation

Deadlock and Starvation

Concurrency
Task Synchronisation
Typical Problems

Avoiding Inconsistencies

Always use Atomic Actions
not always possible for certain operations
hard to tell if an operation is atomic
→ depends on compiler and system implementation

Protect Critical Regions
use synchronisation constructs before accessing shared
resources

→ transforms operations into atomic actions

René Hexel Task Synchronisation



Multitasking Review
Concurrency and Synchronisation

Deadlock and Starvation

Concurrency
Task Synchronisation
Typical Problems

Mutual Exclusion, Attempt #1

Example (turn-based mutual exclusion)
int turn = 0;
int shared = 0;

void task1(void)
{

while (turn != 0)
; // do nothing

// critical section
shared++;
shared++;

turn = 1;
}

extern int turn;
extern int shared;

void task2(void)
{

while (turn != 1)
; // do nothing

// critical section
shared += 2;
// end critical section

turn = 0;
}

René Hexel Task Synchronisation



Multitasking Review
Concurrency and Synchronisation

Deadlock and Starvation

Concurrency
Task Synchronisation
Typical Problems

Analysis of Attempt #1

Guarantees Mutual Exclusion
Drawbacks

tasks are forced to strictly alternate their use of the shared
resource
⇒ pace is dictated by the slower process

if one Task fails even outside the critical region, the other
Task is stuck forever
Waiting Task consumes 100% CPU time
→ Busy Waiting

René Hexel Task Synchronisation



Multitasking Review
Concurrency and Synchronisation

Deadlock and Starvation

Concurrency
Task Synchronisation
Typical Problems

Attempt #2

Example (flag-based mutual exclusion)
int flag[2] = {FALSE, FALSE};
int shared = 0;

void task1(void)
{

while (flag[1])
; // do nothing

flag[0] = TRUE;
// critical section
shared++;
shared++;
flag[0] = FALSE;

}

extern int flag[2];
extern int shared;

void task2(void)
{

while (flag[0])
; // do nothing

flag[1] = TRUE;
// critical section
shared += 2;
// end critical section
flag[1] = FALSE;

}

René Hexel Task Synchronisation



Multitasking Review
Concurrency and Synchronisation

Deadlock and Starvation

Concurrency
Task Synchronisation
Typical Problems

Analysis of Attempt #2

Task failing outside Critical Section
→ no longer affects the other task!

Mutual Exclusion not guaranteed:
Task 0 enters and exits while() because flag[1] is
FALSE
Task 1 enters and exits while() because flag[0] is
FALSE
both set their flags and enter critical section!
⇒ flags are set too late!

René Hexel Task Synchronisation



Multitasking Review
Concurrency and Synchronisation

Deadlock and Starvation

Concurrency
Task Synchronisation
Typical Problems

Attempt #3

Example (setting flags first)
int flag[2] = {FALSE, FALSE};
int shared = 0;

void task1(void)
{

flag[0] = TRUE;
while (flag[1])

; // do nothing

// critical section
shared++;
shared++;
flag[0] = FALSE;

}

extern int flag[2];
extern int shared;

void task2(void)
{

flag[1] = TRUE;
while (flag[0])

; // do nothing

// critical section
shared += 2;
// end critical section
flag[1] = FALSE;

}

René Hexel Task Synchronisation



Multitasking Review
Concurrency and Synchronisation

Deadlock and Starvation

Concurrency
Task Synchronisation
Typical Problems

Analysis of Attempt #3

Mutual Exclusion guaranteed
only one Task enters critical section at a time

Deadlock can occur:
both tasks set their flags to TRUE
both tasks enter their while() loops and wait
indefinitely for the other task to clear its flag!
no task will ever be able to do anything useful again.

René Hexel Task Synchronisation



Multitasking Review
Concurrency and Synchronisation

Deadlock and Starvation

Concurrency
Task Synchronisation
Typical Problems

Attempt #4

Example (backing off)
int flag[2] = {FALSE, FALSE};
int shared = 0;

void task1(void)
{

flag[0] = TRUE;
while (flag[1]) {

flag[0] = FALSE;
// delay a bit
flag[0] = TRUE;

}
// critical section
shared++;
shared++;
flag[0] = FALSE;

}

extern int flag[2];
extern int shared;

void task2(void)
{

flag[1] = TRUE;
while (flag[0]) {

flag[1] = FALSE;
// delay a bit
flag[1] = TRUE;

}
// critical section
shared += 2;
// end critical section
flag[1] = FALSE;

}

René Hexel Task Synchronisation



Multitasking Review
Concurrency and Synchronisation

Deadlock and Starvation

Concurrency
Task Synchronisation
Typical Problems

Analysis of Attempt #4

Close to a correct solution
mutual exclusion guaranteed, no Deadlock

Livelock can occur:
both tasks set their flags to TRUE
both tasks check the their task’s flag (TRUE)
both tasks release their flag and start again

→ endless loop grabbing and releasing their flag, consuming
100% of (useless) CPU time

René Hexel Task Synchronisation



Multitasking Review
Concurrency and Synchronisation

Deadlock and Starvation

Concurrency
Task Synchronisation
Typical Problems

Peterson’s Algorithm

Example (backing off)
int flag[2] = {FALSE, FALSE};
int turn = 0;

void task1(void)
{

flag[0] = TRUE, turn = 1;
while (flag[1] && turn==0)

; // do nothing

// critical section
shared++;
shared++;

flag[0] = FALSE;
}

extern int flag[2];
extern int turn;

void task2(void)
{

flag[1] = TRUE, turn = 0;
while (flag[0] && turn==1)

; // do nothing

// critical section
shared += 2;
// end critical section

flag[1] = FALSE;
}

René Hexel Task Synchronisation



Multitasking Review
Concurrency and Synchronisation

Deadlock and Starvation

Concurrency
Task Synchronisation
Typical Problems

Peterson’s Algorithm (2)

Correct solution
mutual Exclusion, no Dead-/Livelocks

Not a generic solution
works only for two tasks

→ still uses Busy Waiting
Solution: Hardware and/or OS-Support

atomic Test-And-Set (TAS) CPU instructions
blocking a task w/o consuming CPU time

René Hexel Task Synchronisation



Multitasking Review
Concurrency and Synchronisation

Deadlock and Starvation

Concurrency
Task Synchronisation
Typical Problems

Semaphores

Simple Signalling Mechanism
synchronisation of multiple Tasks

Shared Integer Variable
usually initialised to nonnegative value
Wait() operation: P()

block task while semaphore ≤ 0, decrement value
Signal() operation: V()

increment value, unblock task(s) on waiting queue

René Hexel Task Synchronisation



Multitasking Review
Concurrency and Synchronisation

Deadlock and Starvation

Concurrency
Task Synchronisation
Typical Problems

Semaphore Algorithm

Semaphore Operations
int semaphore = 1;

P()
{

while (semaphore <= 0)
BLOCK;

semaphore--;
}

extern int semaphore;

V()
{

semaphore++;

WAKEUP;
}

P() and V() cannot be interrupted!
BLOCK enqueues a Task on the waiting queue
WAKEUP removes the first Task from the waiting queue

René Hexel Task Synchronisation



Multitasking Review
Concurrency and Synchronisation

Deadlock and Starvation

Concurrency
Task Synchronisation
Typical Problems

Semaphore Advantages

→ Flexibility!
Multiple tasks

more than two tasks can be synchronised
If initialised to an n > 1

n tasks can enter critical region!
If initialised to an n < 1

−n + 1 V() operations are required before first task can
enter critical region!

René Hexel Task Synchronisation



Multitasking Review
Concurrency and Synchronisation

Deadlock and Starvation

Concurrency
Task Synchronisation
Typical Problems

Semaphores in C

Create and initialise a Semaphore
sem_open()

→ sem_t *s = sem_open("mysemaphore", O_CREAT,
0600, 1);

P()
sem_wait()

V()
sem_post()

René Hexel Task Synchronisation



Multitasking Review
Concurrency and Synchronisation

Deadlock and Starvation

Concurrency
Task Synchronisation
Typical Problems

Task Synchronisation

Semaphores
means for protecting critical regions
flexible method, handling more than one task

NSLock Objective-C class
simple binary semaphore (0 and 1 values only)

→ always initialised to 1
-lock

P() operation (set semaphore to 0)
-unlock

V() operation (set semaphore to 1)
→ needs to be called by the task that called lock
→ lock must have been called before unlock

René Hexel Task Synchronisation



Multitasking Review
Concurrency and Synchronisation

Deadlock and Starvation

Concurrency
Task Synchronisation
Typical Problems

The Producer/Consumer Problem

Consider the following scenario:
Infinite Array (buffer)
Producer: Adds to buffer at position out
Consumer: Reads from position in

Let’s look at a simple implementation

René Hexel Task Synchronisation



Multitasking Review
Concurrency and Synchronisation

Deadlock and Starvation

Concurrency
Task Synchronisation
Typical Problems

Producer/Consumer Code

Example (Producer)
for(;;) // loop forever
{

produce item v;
buffer[in++] = v;

}

Example (Consumer)
for(;;) // loop forever
{

while (out >= in) ; // wait for buffer data
consume(buffer[out++]);

}

René Hexel Task Synchronisation



Multitasking Review
Concurrency and Synchronisation

Deadlock and Starvation

Concurrency
Task Synchronisation
Typical Problems

Binary Semaphore Attempt

Binary Semaphore
Protect Critical Region

Integer n
n = in - out
Keeps Track of available buffer positions

Straightforward Solution?
→ Let’s look at the algorithm

René Hexel Task Synchronisation



Multitasking Review
Concurrency and Synchronisation

Deadlock and Starvation

Concurrency
Task Synchronisation
Typical Problems

Attempt #1

BinarySemaphore s = 1, d = 0;
int n = 0;

Producer
for(;;) {

P(s);
append();
n++;
if (n == 1)

V(d);
V(s);

}

Consumer
P(d);
for(;;) {

P(s);
take();
n--;
V(s);
if (n == 0)

P(d);
}

René Hexel Task Synchronisation



Multitasking Review
Concurrency and Synchronisation

Deadlock and Starvation

Concurrency
Task Synchronisation
Typical Problems

Analysis of Attempt #1

Consider the following
Consumer has consumed all items: n = 0 d = 0
Producer adds another item: n = 1 d = 1
Consumer checks if n == 0 false d = 1
Consumer consumes new item n = 0 d = 1
Consumer checks if n == 0 true d = 1
Consumer: P(d) returns immediately n = 0 d = 0
Consumer reads non-existent item n = -1

René Hexel Task Synchronisation



Multitasking Review
Concurrency and Synchronisation

Deadlock and Starvation

Concurrency
Task Synchronisation
Typical Problems

Problems

V(d) of Producer is not matched by P(d) of Consumer!
Testing n and then waiting is not atomic
Moving the test into the critical section

Makes it atomic
But introduces the possibility of a Deadlock!

Solution
Set auxiliary variable m inside critical region

René Hexel Task Synchronisation



Multitasking Review
Concurrency and Synchronisation

Deadlock and Starvation

Concurrency
Task Synchronisation
Typical Problems

Attempt #2

BinarySemaphore s = 1, d = 0;
int n = 0;

Producer
for(;;) {

P(s);
append();
n++;
if (n == 1)

V(d);
V(s);

}

Consumer
P(d);
for(;;) {

P(s);
take();
int m = --n;
V(s);
if (m == 0)

P(d);
}

René Hexel Task Synchronisation



Multitasking Review
Concurrency and Synchronisation

Deadlock and Starvation

Concurrency
Task Synchronisation
Typical Problems

Analysis of Attempt #2

Correct Solution
No deadlocks can occur
m was modified within the critical section

Atomic Action
Producer will not modify m
Test for m is safe

Not very Elegant Solution
Easy to mess up, requires a lot of helper variables

Better: Use Counting Semaphores

René Hexel Task Synchronisation



Multitasking Review
Concurrency and Synchronisation

Deadlock and Starvation

Concurrency
Task Synchronisation
Typical Problems

Using Counting Semaphores

Semaphore s = 1, n = 0;

Producer
for(;;) {

P(s);
append();
V(s);
V(n);

}

Consumer
for(;;) {

P(n);
P(s);
take();
V(s);

}

René Hexel Task Synchronisation



Multitasking Review
Concurrency and Synchronisation

Deadlock and Starvation

Concurrency
Task Synchronisation
Typical Problems

Counting Semaphores Analysis

Elegant Solution
No extra counters required

No Deadlocks
Principle: grab Semaphores in same order
Release in reverse order
“Protector” Semaphore is innermost Semaphore
Each P() must be matched by a V()
→ but match can be within another Task!

René Hexel Task Synchronisation



Multitasking Review
Concurrency and Synchronisation

Deadlock and Starvation

Concurrency
Task Synchronisation
Typical Problems

Counting Extensions

Arrays are not infinite
Add another counting Semaphore
Initialise to capacity of Array

Minimum fill level
Consumer must wait until reached
Initialise counting Semaphore to negative value

-n is the minimum fill level
Beware traditional semaphore implementations!

Allow only non-negative values!

René Hexel Task Synchronisation



Multitasking Review
Concurrency and Synchronisation

Deadlock and Starvation

Concurrency
Task Synchronisation
Typical Problems

Full Extended Example

Semaphore s = 1, mini = -1, maxi = 10;

Producer
for(;;) {

P(maxi);
P(s);
append();
V(s);
V(mini);

}

Consumer
for(;;) {

P(mini);
P(s);
take();
V(s);
V(maxi);

}

René Hexel Task Synchronisation



Multitasking Review
Concurrency and Synchronisation

Deadlock and Starvation

Concurrency
Task Synchronisation
Typical Problems

The Reader/Writer Problem

Shared Data Area
Writer(s) write to the area
Reader(s) read from the area, but don’t consume

Any number of Readers may simultaneously read
Only one Writer may write at a time
While a Writer is writing, no Reader may read

René Hexel Task Synchronisation



Multitasking Review
Concurrency and Synchronisation

Deadlock and Starvation

Concurrency
Task Synchronisation
Typical Problems

Reader/Writer Attempt #1

Semaphore r = 1, w = 1;
int nread = 0;

Reader
for(;;) {

P(r);
if (++nread == 1)

P(w);
V(r);
READ();
P(r);
if (--nread == 0)

V(w);
V(r);

}

Writer
for(;;) {

P(w);
WRITE();
V(w);

}

René Hexel Task Synchronisation



Multitasking Review
Concurrency and Synchronisation

Deadlock and Starvation

Concurrency
Task Synchronisation
Typical Problems

Analysis of Attempt #1

Mutual Exclusion
Writer or first Reader grabs writing semaphore

Readers can access simultaneously
Only first Reader needs to wait on w

Readers have Priority
Writers will block until there are no readers

⇒ Starvation of Writers

René Hexel Task Synchronisation



Multitasking Review
Concurrency and Synchronisation

Deadlock and Starvation

Concurrency
Task Synchronisation
Typical Problems

Writer Priority

Semaphore x, y, z, w, r;
int nread = 0, nwrite = 0;

Reader
for(;;) {

P(z); P(r); P(x);
if (++nread == 1)

P(w);
V(x); V(r); V(z);
READ();
P(x);
if (--nread == 0)

V(w);
V(x);

}

Writer
for(;;) {

P(y);
if (++nwrite == 1)

P(r);
V(y);
P(w);
WRITE();
V(w);
P(y);
if (--nwrite == 0)

V(r);
V(y);

}

René Hexel Task Synchronisation



Multitasking Review
Concurrency and Synchronisation

Deadlock and Starvation

Concurrency
Task Synchronisation
Typical Problems

Writer Priority Analysis

Readers still block writers
P(w)

Waiting Writer blocks new Readers
P(r)
Outer Semaphore: takes precedence over P(w)

No Starvation
⇒ Writers take Precedence

René Hexel Task Synchronisation



Multitasking Review
Concurrency and Synchronisation

Deadlock and Starvation

Deadlocks
Strategies
Dining Philosophers

Deadlock and Starvation

Deadlock
Permanent (cyclic) blocking of a set of tasks competing for
shared resources

Starvation
A condition in which a task gets delayed indefinitely (or for a
significant period of time) because other tasks are always
given preference

René Hexel Task Synchronisation



Multitasking Review
Concurrency and Synchronisation

Deadlock and Starvation

Deadlocks
Strategies
Dining Philosophers

Deadlock Conditions

1 Mutual Exclusion
Only one task may enter a critical section

2 Hold and Wait
A task holds allocated resources while awaiting assignment
of other resources

3 No Preemption
No resource can be forcibly removed from a task

4 Circular Wait
Closed chain of tasks, such that each task holds at least
one resource needed by the next task in the chain

René Hexel Task Synchronisation



Multitasking Review
Concurrency and Synchronisation

Deadlock and Starvation

Deadlocks
Strategies
Dining Philosophers

Deadlock Occurrence

A Deadlock Occurs . . .
. . . if all four conditions are met at the same time

⇒ Strategies need to tackle at least one of these conditions
Deadlock Prevention
Deadlock Avoidance
Deadlock Detection

René Hexel Task Synchronisation



Multitasking Review
Concurrency and Synchronisation

Deadlock and Starvation

Deadlocks
Strategies
Dining Philosophers

Deadlock Prevention

Excludes Deadlock Possibility
Mutual Exclusion

cannot be disallowed!
Hold and Wait

task must request all resources at once
No Preemption

forcefully take away resources
Circular Wait

Define a linear ordering of resource types

René Hexel Task Synchronisation



Multitasking Review
Concurrency and Synchronisation

Deadlock and Starvation

Deadlocks
Strategies
Dining Philosophers

Deadlock Avoidance

Task Initiation Denial
Do not start a task if its resource requirements do not meet
available resources (and thus may cause a deadlock)

Resource Allocation Denial
Banker’s Algorithm

Allows more Concurrency than Deadlock Prevention
Dynamic Avoidance vs. static Prevention

René Hexel Task Synchronisation



Multitasking Review
Concurrency and Synchronisation

Deadlock and Starvation

Deadlocks
Strategies
Dining Philosophers

Deadlock Detection

Check for Deadlocks
At each resource allocation

Less Conservative
better Resource Utilisation
after-the-fact detection of deadlocks

Requires Recovery Strategy
abort all or some deadlocked tasks
checkpointing
preempt resources until Deadlock goes away

René Hexel Task Synchronisation



Multitasking Review
Concurrency and Synchronisation

Deadlock and Starvation

Deadlocks
Strategies
Dining Philosophers

Dining Philosophers

René Hexel Task Synchronisation



Multitasking Review
Concurrency and Synchronisation

Deadlock and Starvation

Deadlocks
Strategies
Dining Philosophers

Dining Philosophers (2)

Each Philosopher needs two chopsticks to eat
Deadlock:

Everybody picks up one chopstick and waits for the other
Solution: Deadlock Prevention

Number the chopsticks (linear ordering)
Pick up chopstick with lower number first

René Hexel Task Synchronisation


	Multitasking Review
	Threads and Processess Reviewed

	Concurrency and Synchronisation
	Concurrency
	Task Synchronisation
	Typical Problems

	Deadlock and Starvation
	Deadlocks
	Strategies
	Dining Philosophers


