
Title Slide
Contents

Object-Oriented Design

Object-Oriented Design
2501ICT Nathan

René Hexel

School of Information and Communication Technology
Griffith University

Semester 1, 2011

René Hexel Object-Oriented Design



Title Slide
Contents

Object-Oriented Design

Outline

1 Title Slide

2 Contents

3 Object-Oriented Design
Why Object Oriented Design?
Basics of Object Oriented Design
Design Patterns

René Hexel Object-Oriented Design



Title Slide
Contents

Object-Oriented Design

Why Object Oriented Design?
Basics of Object Oriented Design
Design Patterns

Object-Oriented Design

Object-Oriented Paradigms
and Design

René Hexel Object-Oriented Design



Title Slide
Contents

Object-Oriented Design

Why Object Oriented Design?
Basics of Object Oriented Design
Design Patterns

History and Motivation

In the 60s, programs started to become complex
Modules

sub-divide code into multiple modules
each module can contain several, related functions

→ problem: how to share data between these functions?
→ Without Global Variables!!!

Simula (1967)
programming language for performing simulations
idea: group different types of objects into classes

→ each class is responsible for its own data and behaviour
→ multiple instances of the same class can exist!

Smalltalk (1969)
introduction of the term Object Oriented

→ objects are independent of each other
→ messages are used to communicate between objects

René Hexel Object-Oriented Design



Title Slide
Contents

Object-Oriented Design

Why Object Oriented Design?
Basics of Object Oriented Design
Design Patterns

Basics of Object Orientation

Classes
abstract definition of things (objects), including

→ the object’s attributes (properties), and
→ the object’s behaviour (methods)

Objects (Instances)
concrete instantiations of classes, e.g.:

→ multiple individuals of the class Student
Inheritance: Subclasses

a subclass is a more specialised versions of a class
→ inherits all attributes and behaviours of their parent class
→ can introduce their own, new attributes and behaviours

René Hexel Object-Oriented Design



Title Slide
Contents

Object-Oriented Design

Why Object Oriented Design?
Basics of Object Oriented Design
Design Patterns

Basics of Object Orientation (2)

Methods
the ability of objects to perform an operation, e.g.:

→ a name method that returns a string representing the
Student’s name

Message passing
the process by which one object asks another object to
invoke a method

→ usually, a method corresponding to the message name is
invoked

→ can be delegated to other methods or even other objects!
Information Hiding and Encapsulation

reveal as little information about classes as necessary
→ no-one on the outside can rely on hidden information
→ only hidden information can be changed later

René Hexel Object-Oriented Design



Title Slide
Contents

Object-Oriented Design

Why Object Oriented Design?
Basics of Object Oriented Design
Design Patterns

Object Oriented Design

Divide and Conquer
repeatedly sub-divide a large problem into a hierarchy of
smaller problems

→ result: a large number of very small (and easy to solve)
sub-problems

→ solving each sub-problem is the responsibility of a class
Responsibility-driven Design

What actions is a class responsible for?
What information does this class represent?

Data-driven Design
What Abstract Data Types are required?
What concrete implementation should be used?

René Hexel Object-Oriented Design



Title Slide
Contents

Object-Oriented Design

Why Object Oriented Design?
Basics of Object Oriented Design
Design Patterns

High Level Design

Think about the problem first!
What classes are required?
How should they interact?

Class Diagrams
describe the structure of a system (program)
show the attributes and relationships between classes

UML (Unified Modeling Language)
general-purpose modeling language for software
engineering
allows modelling using diagrams

René Hexel Object-Oriented Design



Title Slide
Contents

Object-Oriented Design

Why Object Oriented Design?
Basics of Object Oriented Design
Design Patterns

UML Diagram Example

Page 1 of 1

Untitled 29/03/10 5:02 PM

Student
Properties

studentID:unsigned long 
Operations

setStudentID:(unsigned long)…
studentID

Person
Properties

firstName:NSString * 
lastName:NSString * 

Operations
firstName
lastName
name
setFirstName:(NSString *)…
setLastName:(NSString *)…

René Hexel Object-Oriented Design



Title Slide
Contents

Object-Oriented Design

Why Object Oriented Design?
Basics of Object Oriented Design
Design Patterns

Design Patterns

Design Pattern Definition
recurring solution to a common problem in software design
description of how to solve a problem that appears in many
different situations

→ documents a solution to a particular design problem
→ scheme that can be reused over and over again

Advantages
speed up the development process
provide tested solutions and proven development
paradigms

Challenges
creating flexible, universal design patterns is complex
often evolve over time as understanding grows

René Hexel Object-Oriented Design



Title Slide
Contents

Object-Oriented Design

Why Object Oriented Design?
Basics of Object Oriented Design
Design Patterns

Iterator Design Pattern

Problem: provide a way of accessing collection elements
without exposing an underlying representation
→ e.g.: how can a linear collection be enumerated if I don’t

know if it is implemented as an array or a linked list?
E.g.: NSEnumerator

abstract class that allows traversing collections
concrete subclass comes from the collection class
implementation
Examples

NSArray -objectEnumerator method
NSDictionary -keyEnumerator method

René Hexel Object-Oriented Design



Title Slide
Contents

Object-Oriented Design

Why Object Oriented Design?
Basics of Object Oriented Design
Design Patterns

Delegation Design Pattern

An object that forwards a
task to a different object
instead of performing the
task itself.

Example
@interface SomeClass: NSObject
{

id delegate;
}
- (void) finishedProcessing;
@end

@implementation SomeClass
- (void) finishedProcessing
{

if ([delegate respondsToSelector:
@selector(finishedProcessing)])

{
[delegate finishedProcessing];

}
}
@end

René Hexel Object-Oriented Design



Title Slide
Contents

Object-Oriented Design

Why Object Oriented Design?
Basics of Object Oriented Design
Design Patterns

Target-Action Mechanism

Extension of the delegation design pattern
→ instead of registering a single delegate, a target object

registers its interest in a particular action
allows multiple targets to be registered for different events

e.g. a GUI Button Widget allows separate registration for
when the button was pressed and when it was released

Target
→ object to be notified

Action
→ method that should be invoked (method selector)

René Hexel Object-Oriented Design



Title Slide
Contents

Object-Oriented Design

Why Object Oriented Design?
Basics of Object Oriented Design
Design Patterns

Mediator Design Pattern

A Class that encapsulates how objects interact
→ promotes loose coupling
→ objects do not need to know anything about each other
→ (only the mediator needs to know about the objects)

Model-View-Controller (MVC) paradigm
GUI Design: data models should be independent of the
user interface
Problem: how to connect different GUIs to underlying
models?

→ Controller
sits in the middle between the Model and the View

→ mediates between the two
→ model does not need to know anything about the view and

vice versa

René Hexel Object-Oriented Design



Title Slide
Contents

Object-Oriented Design

Why Object Oriented Design?
Basics of Object Oriented Design
Design Patterns

Factory Methods

Problem: creating objects without specifying the exact
class of object that will be created
→ subclasses can override the factory method

Class Cluster
Abstract class factory method instatiates a concrete
subclass

Examples
NSString *s = [NSString
stringWithUTF8String: "foo"];
NSString *t = [NSString
stringWithContentsOfFile: @"file.txt"];

René Hexel Object-Oriented Design



Title Slide
Contents

Object-Oriented Design

Why Object Oriented Design?
Basics of Object Oriented Design
Design Patterns

Lazy initialisation

Tactics of delaying the
creation of an object until it
is actually needed. This is
particularly useful if
creating such an object is
very expensive (e.g.
loading from disk, or
downloading from the
network).

Example
@interface SomeClass: NSObject
{

NSMutableArray *array;
}
@end

@implementation SomeClass
- addWord: (NSString *) word
{

if (!array)
array = [NSMutableArray new];

[array addObject: word];
}

- (void) dealloc
{

[array release];
[super dealloc];

}
@end

René Hexel Object-Oriented Design


	Title Slide
	Contents
	Object-Oriented Design
	Why Object Oriented Design?
	Basics of Object Oriented Design
	Design Patterns


