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Subclasses in Objective-C

Classes can extend other classes
@interface AClass: NSObject
every class should extend at least NSObject, the root class
to subclass a different class, replace NSObject with the
class you want to extend

self
references the current object

super
references the parent class for method invocations
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Creating Subclasses: Point3D

Parent Class: Point.h
#import <Foundation/Foundation.h>

@interface Point: NSObject
{

int x; // member variables
int y; // protected by default

}
- init; // constructor

- (int) x; // access methods

- (void) setX: (int) newx
y: (int) newy;

@end

Child Class: Point3D.h
#import "Point.h"

@interface Point3D: Point
{

int z; // add z dimension
}
- init; // constructor

- (void) setZ: (int) newz;

- (void) setX: (int) newx
y: (int) newy
z: (int) newz;

@end
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Subclass Implementation: Point3D

Parent Class: Point.m
#import "Point.h"

@implementation Point

- init // initialiser
{

x = 0;
y = 0;

return self;
}

- (int) x // get method
{

return x;
}

- (void) setX: (int) nx y: (int) ny
{

x = nx; y = ny;
}

@end

Child Class: Point3D.m
#import "Point3D.h"

@implementation Point3D

- init // initialiser
{ if ([super init])

z = 0;
return self;

}

- (void) setZ: (int) newz
{

z = newz;
}

- (void) setX: (int) nx
y: (int) ny
z: (int) nz

{
[super setX: nx y: ny];
[self setZ: nz];

}
@end
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Access Control

@public:
everyone has access
violates the principle of information hiding for member
variables⇒ not usually a good idea!

@private:
nobody has access, except the defining class
useful for variables that should not be accessed by
subclasses

@protected:
mix between @public and @private
only the defining class and subclasses have access
useful for most member variables
default for Objective-C classes

In Objective-C, @public, @private, and @protected
applies to member variables only

methods are always public
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Example
#import <Foundation/Foundation.h>

@interface MyClass: MySuperClass
{

@public // public vars
int a;
int b;

@private // private vars
int c;
int d;

@protected // protected vars
int e;
int f;

}

- init; // constructor

// ... other class methods

@end
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Which printf is wrong?

Example (Which line(s) will cause a compiler error?)
#import <Foundation/Foundation.h>

@interface ClassX: NSObject
{

@public int a;
@private int b;
@protected int c;

}
@end

@interface ClassY: ClassX
- (void) print; // a print method
@end

@implementation ClassY

- (void) print
{

printf("a = %d\n", a); // print a
printf("b = %d\n", b); // print b
printf("c = %d\n", c); // print c

}

@end
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Class Methods

So far we only had Instance Methods
refer to objects (instances) of a class

Class Methods
sometimes it’s good to have a method that can be invoked
without an instance

e.g. alloc which is needed to create an instance of a class
by allocating memory

in Java, these methods were called static
in C, static means valid for a particular scope across
invocations

Objective-C Class Methods are simply denoted by a +
instead of a −

e.g. + alloc
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Class Method Example

Example
#import <Foundation/Foundation.h>

@interface Point: NSObject
{ int x, y; } // member variables

+ (int) numberOfInstances; // a class method
- init; // an instance method (e.g. the constructor)
@end
@implementation Point

static int instanceCount = 0; // number of instances of the Point class

+ (int) numberOfInstances // count the number of instances
{

return instanceCount; // return the current instance count
}

- init // constructor implementation
{

if (!(self = [super init])) return nil;

instanceCount++; // we created a new instance

return self;
}
@end
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About 0, FALSE, NULL, and nil

In Java, null denoted an empty reference
null does not exist in C, Objective-C, C++

0 in C denotes a number of things
integer or floating point values of 0 (or 0.0)
a false result of a boolean expression
a null pointer or object reference
⇒ can be confusing what the actual meaning is
⇒ better use FALSE, NULL, nil, etc. to express meaning

EXIT_SUCCESS – successful program completion
FALSE – a false boolean expression
NULL – a null pointer
nil – an empty object reference in Objective-C

e.g. nil does not exist in C/C++ (there, you should use
NULL instead
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Memory Management

Memory needs to be handled explicitly in C, Objective-C,
and C++

How is memory allocated, how is it released?
When should I release memory?

Java Memory Management reviewed
new operator allocates memory
object references are automatically counted and tracked
a a Garbage Collector periodically releases unused objects
⇒ convenient, but no direct control by the programmer

C provides malloc() and free() functions
⇒ completely manual memory management

C++ has new and delete operators
⇒ completely manual memory management

Objective-C has +alloc and -dealloc methods
Objective-C uses reference counting

allows to keep track of how often objects are referenced
⇒ semi-automatic memory management
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Objective-C Memory Management

+ alloc
allocates memory for an object, sets reference count to 1
init needs to be called then for initialisation

- release
releases an object
→ decrements reference count, if 0 then calls dealloc

- dealloc
deallocates memory for an object

→ never call dealloc directly (release calls dealloc when
needed

- retain
increments reference counter
→ call whenever you need the same object in multiple places

- copy
creates a new object by copying everything

copy has retain count of 1 (needs to be released later on)
→ expensive (but needed if objects will be modified)
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Person Record Interface Example

Example (Interface)
#import <Foundation/Foundation.h>

@interface Person: NSObject // an object referencing a person
{

int yearOfBirth; // the year the person was born
NSString *name; // the name of the person
Person *mother, *father; // the parents of the person

}
// access methods:

- (void) setYearOfBirth: (int) born;
- (void) setName: (NSString *) newName;
- (void) setMother: (Person *) theMother

father: (Person *) theFather;
- (int) yearOfBirth; // no ’get’ needed in Objective-C
- (NSString *) name;
- (Person *) mother;
- (Person *) father;

- (void) dealloc; // needed for memory management!

@end
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Person Record Implementation, Part 1

Example (Implementation part 1)
#import "Person.h"

@implementation Person

- (int) yearOfBirth // yearOfBirth getter method
{ return yearOfBirth; } // return yearOfBirth member variable

- (NSString *) name // name getter method
{

return name; // return name member variable
}

- (Person *) mother // mother getter method
{

return mother; // return mother member variable
}

- (Person *) father // father getter method
{ return father; } // return father member variable

- (void) setYearOfBirth: (int) born // a simple setter method
{

yearOfBirth = born; // just assign the ’int’
}
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Person Record Implementation (continued)

Example (Implementation part 2)
- (void) setName: (NSString *) newName
{

[name release]; // release the old name
name = [newName copy]; // copy the new name

}

- (void) setMother: (Person *) theMother
father: (Person *) theFather

{
[theMother retain]; [theFather retain]; // retain references
[mother release]; // release the old mother and
[father release]; // father references (if any)
mother = theMother; father = theFather; // store references

}

/*
* every class that retains other objects needs a dealloc method!

*/
- (void) dealloc
{
[name release]; // release all objects held!
[mother release];
[father release];

[super dealloc]; // call super class dealloc last
}

@end
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Autorelease Pools

Object Ownership Reviewed
→ any entity that uses an object needs to retain it
→ release can become difficult with collections

e.g., an object that gets removed from a List but used
elsewhere:
list would need to release object before it gets retained
again

⇒ danger of using an expired pointer!

- autorelease
marks an object for later release
→ puts the object on an autorelease pool

Autorelease Pools
are just lists of objects to be released

→ objects actually get released when the pool gets
deallocated
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Autorelease Pool Example

Example (What does this program print?)
#import <Foundation/Foundation.h>

int main(int argc, char *argv[])
{

NSAutoreleasePool *pool = [[NSAutoreleasePool alloc] init];

NSString *str1 = [[NSString alloc] initWithUTF8String: "self managed string"];
NSString *str2 = [NSString stringWithUTF8String: "autorelease managed string"];

printf("str1 is a %s\n", [str1 UTF8String]);
printf("str2 is a %s\n", [str2 UTF8String]);

[str1 release]; // release the self-managed string
[pool release]; // release the pool (also releases the autoreleased str2)

return EXIT_SUCCESS;
}

Answer
str1 is a self managed string
str2 is a autorelease managed string
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Autorelease Pool Example 2

Example (What does this program print?)
#import <Foundation/Foundation.h>

int main(int argc, char *argv[])
{

NSAutoreleasePool *pool = [[NSAutoreleasePool alloc] init];
NSString *string = [[NSString alloc] initWithCString: "self managed string"];

printf("string retain count is %d\n", [string retainCount]);

[string autorelease]; // put the string on the autorelease pool

printf("string retain count now is %d\n", [string retainCount]);

[pool release]; // release the pool (also releases string)

return EXIT_SUCCESS;
}

Answer
string retain count is 1
string retain count now is 1
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When to use Autorelease Pools

In Convenience Methods
− stringWithCString allocates an NSString, then

autoreleases it
→ any method thad does alloc, then init. . . , then

autorelease

Any collection method that removes then returns an object
return [object autorelease];

Temporary Variables
variables that you only use briefly and would release
almost straight away

Don’t use Autorelease Pools as “poor man’s garbage
collector”!

no replacement for proper memory management!
→ where should Pools be created?
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Where to create Autorelease Pools

Always create a pool first thing after main()
→ release that pool at the very end of your program (right

before return EXIT_SUCCESS;)
Around areas that use or create temporary objects

within long loops
around short loops
within methods

Example
for (int i = 0; i < 100; i++)
{

NSAutoreleasePool *innerpool = [[NSAutoreleasePool alloc] init];

NSString *string = [NSString stringWithInt: i]; // temporary string

// do something useful with ’string’
printf("string is %s\n", [string UTF8String]);

[innerpool release]; // release the pool (releases all autoreleased strings)
}
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Object Lifecycle

C++ C++
Task Objective-C Java Heap Stack

allocate + alloc new new entry
initialise - init constr. constr. constr.

hold object - retain automatic - -
let go - release automatic - -

destroy final - release G.C. delete fn exit
clean up - dealloc finalise() destr. destr.

deallocate [super dealloc] G.C. delete return
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Strings

String Objects in
Objective-C
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Objective-C Strings

NSString
basic string class
class cluster with concrete classes optimized for different
string sources
much nicer than having to use char *

NSMutableString
subclass of NSString for strings that can be modified

String Constants
embedded in @""

e.g. @"Hello, Objective-C Strings"

→ don’t mix up with C Strings embedded in ""
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Objective-C String Examples

Example (Some NSString methods)
NSString *s1 = [NSString new]; // empty string
NSString *s2 = [NSString stringWithString: @"Hello, void"]; // from ObjC or
NSString *s3 = [NSString stringWithUTF8String: "Hello, void"]; // C string
NSString *s4 = [NSString stringWithFormat: // printf-style

@"Hi, it’s %d degrees", 28]; // format
NSString *s5 = [s4 stringByAppendingString: @" celsius"]; // appending
NSString *s6 = @"12345"; // a string constant
int len4 = [s4 length]; // get length of s4
int val6 = [s6 intValue]; // convert s6 to int

if ([s1 isEqualToString: s2]) // same content?
printf("s1 is equal to s2 -- how come?\n");

else if ([s1 compare: s2] == NSOrderedAscending) // which one comes first?
printf("s1 comes before s2\n");

else
printf("s2 comes before s1\n");

printf("s2 is: %s\n", [s2 UTF8String]); // convert s2 to a C string for printf

NSLog(@"s3 is: %@\n", s3); // NSLog() prints formatted NSStrings
// %@ = place holder for ObjC objects

[s1 release]; // don’t forget proper memory management!
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Other Useful Methods

+ stringWithContentsOfFile:
convenience method
reads the whole content of a file into a string
most efficient way of reading files

- rangeOfString:
searches for a string within another String

- substringWithRange:
returns a substring within a given range

- mutableCopy
returns a mutable copy of a string

→ See NSString and NSMutableString in the Foundation
API
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