Subclasses, Access Control, and Class Methods
Advanced Topics

Object Oriented Programming in Objective-C
2501ICT/7421ICT Nathan

René Hexel

School of Information and Communication Technology
Griffith University

Semester 1, 2012

René Hexel Object Oriented Programming in Objective-C

Outline

0 Subclasses, Access Control, and Class Methods
@ Subclasses and Access Control
@ Class Methods

© Advanced Topics
@ Memory Management
@ Strings

René Hexel Object Oriented Programming in Objective-C

Subclasses, Access Control, and Class Methods Subclasses and Access Control
Class Methods

Objective-C Subclasses

Obijective-C Subclasses

René Hexel Object Oriented Programming in Objective-C

Subclasses, Access Control, and Class Methods Subclasses and Access Control
Class Methods

Subclasses in Objective-C

@ Classes can extend other classes

@ @interface AClass: NSObject

@ every class should extend at least NSOb ject, the root class

e to subclass a different class, replace NSob ject with the
class you want to extend

@ self
e references the current object
@ super
o references the parent class for method invocations

René Hexel Object Oriented Programming in Objective-C

Subclasses, Access Control, and Class Methods Subclasses and Access Control
Class Methods

Creating Subclasses: Point 3D

Parent Class: Point .h Child Class: Point3D.h

#import <Foundation/Foundation.h> #import
@interface Point: NSObject @interface Point3D: Point
{ {
int x; // member variak 5 int z; // add z dimension
int y; // protected by d 11t }
} - init; // constructor
- init; // constructor
- (void) setZ: (int) newz;
- (int) x; // access methods
- (void) setX: (int) newx
- (void) setX: (int) newx y: (int) newy
y: (int) newy; %9 (int) newz;
@end @end

René Hexel Object Oriented Programming in Objective-C

Subclasses, Access Control, and Class Methods

Subclasses and Access Control
Class Methods

Subclass Implementation: Point 3D

Parent Class: Point .m

Child Class: Point3D.m

#import #import
@implementation Point @implementation Point3D
- init // initialiser - init // initia
{ { if ([super init])
x = 0; z = 0;
y = 0; return self;
}
return self;
} - (void) setZ: (int) newz
{
- (int) x // get method Z = newz;
{ }
return x;
} - (void) setX: (int) nx
y: (int) ny
- (void) setX: (int) nx y: (int) ny %3 (int) nz
{ {
X = nx; y = ny; [super setX: nx y: nyl;
} [self setZ: nz];
}
@end @end
v '
René Hexel Object Oriented Programming in Objective-C

Subclasses, Access Control, and Class Methods Subclasses and Access Control
Class Methods

Access Control in Objective-C

Access Control in
bjective-C

René Hexel Object Oriented Programming in Objective-C

Subclasses, Access Control, and Class Methods Subclasses and Access Control
Class Methods

Access Control

@ (@public:
e everyone has access
e violates the principle of information hiding for member
variables = not usually a good idea!
@ (@private:
e nobody has access, except the defining class
o useful for variables that should not be accessed by
subclasses
@ (protected:
mix between @public and @private
only the defining class and subclasses have access
useful for most member variables
e default for Objective-C classes

@ In Objective-C, @public, @private, and @protected

applies to member variables only
e methods are always public

René Hexel Object Oriented Programming in Objective-C

Subclasses, Access Control, and Class Methods Subclasses and Access Control
Class Methods

Access Control Example

Example

#import <Foundation/Foundation.h>

@interface MyClass: MySuperClass
{
Qpublic // public vars
int a;
int b;

@private //
int c;
int d;

@protected //
int e;
int f;

- init; // constructor

René Hexel Object Oriented Programming in Objective-C

Subclasses, Access Control, and Class Methods Subclasses and Access Control
Class Methods

Which printf is wrong?

Example (Which line(s) will cause a compiler error?)

#import <Foundation/Foundation.h>

@interface ClassX: NSObject
{

@public int a;
@private int b;
@protected int c;
}
Qend

@interface ClassY: ClassX
- (void) print; // a print method
Qend

Qimplementation ClassY

— (void) print

{
printf("a = %d\n", a);
printf("b = %d\n", b);
printf("c = %d\n", c);

@end

René Hexel Object Oriented Programming in Objective-C

Subclasses, Access Control, and Class Methods Subclasses and Access Control
Class Methods

Class Methods in Objective-C

Class Methods in
Objective-C

René Hexel Object Oriented Programming in Objective-C

Subclasses, Access Control, and Class Methods Subclasses and Access Control

Class Methods
Class Methods

@ So far we only had Instance Methods
o refer to objects (instances) of a class

@ Class Methods

e sometimes it's good to have a method that can be invoked
without an instance

@ e.g. alloc which is needed to create an instance of a class
by allocating memory

@ in Java, these methods were called static
e in C, static means valid for a particular scope across
invocations

@ Objective-C Class Methods are simply denoted by a +
instead of a —

@ eg.+ alloc

René Hexel Object Oriented Programming in Objective-C

Subclasses, Access Control, and Class Methods

Class Method Example

Subclasses and Access Control
Class Methods

#import <Foundation/Foundation.h>

@interface Point: NSObject

{ int x, y; } //
+ (int) numberOflInstances; /
- init; // (e.qg
@end
@implementation Point
static int instanceCount = 0; // number of
+ (int) numberOfInstances // count
{
return instanceCount; // return the c
}
- init // construc implementation
{
if (! (self = [super init])) return nil;
instanceCount++;

return self;

@end

René Hexel

Object Oriented Programming in Objective-C

Subclasses, Access Control, and Class Methods Subclasses and Access Control
Class Methods

About 0, FALSE, NULL, and nil

@ In Java, null denoted an empty reference
@ null does not exist in C, Objective-C, C++
@ 0 in C denotes a number of things

e integer or floating point values of 0 (or 0.0)
o a false result of a boolean expression
e a null pointer or object reference

=- can be confusing what the actual meaning is
= better use FALSE, NULL, nil, etc. to express meaning

@ EXIT_SUCCESS — successful program completion
@ FALSE — a false boolean expression
@ NULL — a null pointer

@ nil —an empty object reference in Objective-C

@ e.g. nil does not exist in C/C++ (there, you should use
NULL instead

René Hexel Object Oriented Programming in Objective-C

Memory Management
Advanced Topics Strings

Objective-C Memory Management

Objective-C Memory
Management

René Hexel Object Oriented Programming in Objective-C

Memory Management
Advanced Topics Strings

Memory Management

@ Memory needs to be handled explicitly in C, Objective-C,
and C++
e How is memory allocated, how is it released?
e When should | release memory?
@ Java Memory Management reviewed
e new operator allocates memory
e object references are automatically counted and tracked
e a a Garbage Collector periodically releases unused objects
=- convenient, but no direct control by the programmer
@ C providesmalloc () and free () functions
= completely manual memory management
@ C++ has new and delete operators
= completely manual memory management
@ Objective-C has +alloc and —-dealloc methods
o Obijective-C uses reference counting
@ allows to keep track of how often objects are referenced
= semi-automatic memory management

René Hexel Object Oriented Programming in Objective-C

Memory Management
Advanced Topics Strings

Objective-C Memory Management

@ + alloc
e allocates memory for an object, sets reference count to 1
@ init needs to be called then for initialisation
@ — release
e releases an object
— decrements reference count, if 0 then calls dealloc
@ - dealloc
e deallocates memory for an object
— never call dealloc directly (release calls dealloc when
needed
@ - retain
e increments reference counter
— call whenever you need the same object in multiple places
@ — copy
e creates a new object by copying everything
@ copy has retain count of 1 (needs to be released later on)
— expensive (but needed if objects will be modified)

René Hexel Object Oriented Programming in Objective-C

Memory Management
Advanced Topics Strings

Person Record Interface Example

Example (Interface)

#import <Foundation/Foundation.h>

@interface Person: NSObject // an object referencing a person
{

int yearOfBirth; // the year the

NSString *name; // name of t

Person *mother, =xfather; // parents of

// access methods:

- (void) setYearOfBirth: (int) born;
- (void) setName: (NSString %) newName;
— (void) setMother: (Person) theMother
father: (Person x) theFather;
- (int) yearOfBirth; // needed in Obj €

NSString =) name;
Person x) mother;

(
(
(
(Person) father;

- (void) dealloc; // needed for memory management!

@end

René Hexel Object Oriented Programming in Objective-C

Advanced Topics

Memory Management
Strings

Person Record Implementation, Part 1

Example (Imple
#import
@implementation Person

- (int) yearOfBirth

{ return yearOfB
- (NSString x) name
{

return name;
}
- (Person *) mother
{

return mother;
}
- (Person) father
{ return father;
- (void) setYearOfBirt
{

yearOfBirth =
}

irth; }

h: (int) born

born;

just

arOfBirth get
rn yearOfBi

ter method

variable

1 name member

getter met

n mother member variable

r getter meth
irn father

od
member va

simple setter method

5ign the ’int’

René Hexel

Object Oriented Programming in Objective-C

Memory Management
Advanced Topics Strings

Person Record Implementation (continued)

Example (Imple

tation p

- (void) setName: (NSString *) newName

[name release];

name = [newName copy];
}
- (void) setMother: (Person) theMother
father: (Person) theFather

[theMother retain]; [theFather retain]; //
[mother release]; //
[father release]; // father
mother = theMother; father = theFather; // store ref

retain

elease t her and

(i1f any)

- (void) dealloc

[name release];
[mother release];
[father release];

[super dealloc]; // call super cl dealloc last

René Hexel Object Oriented Programming in Objective-C

Memory Management
Advanced Topics Strings

Autorelease Pools

@ Object Ownership Reviewed
— any entity that uses an object needs to retain it
— release can become difficult with collections
@ e.g., an object that gets removed from a List but used
elsewhere:
@ list would need to release object before it gets retained
again
= danger of using an expired pointer!
@ - autorelease
e marks an object for later release
— puts the object on an autorelease pool

@ Autorelease Pools

e are just lists of objects to be released
— objects actually get released when the pool gets
deallocated

René Hexel Object Oriented Programming in Objective-C

Memory Management
Advanced Topics Strings

Autorelease Pool Example

Example (What does this program prin

h>

#import <Foundation/Foundation.

int main(int argc, char xargv([])
{

NSAutoreleasePool *pool = [[NSAutoreleasePool alloc] init];

NSString xstrl =
NSString xstr2

[[NSString alloc] initWithUTF8String: "self managed string"];
[NSString stringWithUTF8String: "autorelease managed string"];

printf ("strl is a %s\n", [strl UTF8String]);

printf ("str2 is a %s\n", [str2 UTF8String]);

[strl releasel; string

[pool releasel]; eleases the autoreleased str2

return EXIT_SUCCESS;

Answer

strl is a self managed string
str2 is a autorelease managed string

René Hexel Object Oriented Programming in Objective-C

Memory Management
Advanced Topics Strings

Autorelease Pool Example 2

Example (What does this program prin

#import <Foundation/Foundation.h>
int main(int argc, char xargv([])
{
NSAutoreleasePool *pool = [[NSAutoreleasePool alloc] init];
NSString xstring = [[NSString alloc] initWithCString: "self managed string"];

printf ("string retain count is %d\n", [string retainCount]);

[string autorelease]; // put the string on the autorelease poo
printf ("string retain count now is %d\n", [string retainCount]);

[pool releasel]; // release the pool (also releases string)

return EXIT_SUCCESS;

Answer

string retain count is 1
string retain count now is 1

René Hexel Object Oriented Programming in Objective-C

Memory Management
Advanced Topics Strings

When to use Autorelease Pools

@ In Convenience Methods
— stringWithCString allocates an NSString, then
autoreleases it
— any method thad does alloc, then init..., then
autorelease
@ Any collection method that removes then returns an object
@ return [object autorelease];
@ Temporary Variables
e variables that you only use briefly and would release
almost straight away
@ Don'’t use Autorelease Pools as “poor man’s garbage
collector”!

@ no replacement for proper memory management!
— where should Pools be created?

René Hexel Object Oriented Programming in Objective-C

Memory Management
Advanced Topics Strings

Where to create Autorelease Pools

@ Always create a pool first thing after main ()
— release that pool at the very end of your program (right
before return EXIT_SUCCESS;)
@ Around areas that use or create temporary objects
e within long loops
e around short loops
e within methods

for (int i = 0; i < 100; i++)
{

NSAutoreleasePool *innerpool = [[NSAutoreleasePool alloc] init];
NSString xstring = [NSString stringWithInt: i]; // temporary string
// do iething useful with ’string’

printf ("string is %s\n", [string UTF8String]);

[innerpool release]; // release the pool (releases all autor

sed strings)

}

René Hexel Object Oriented Programming in Objective-C

Subclasses, Access Control, and Class Methods

Advanced Topics

Object Lifecycle

Memory Management
Strings

C++ C++

Task Objective-C Java Heap Stack
allocate + alloc new new entry
initialise - init constr. constr. constr.
hold object | - retain automatic - -

let go - release automatic = s
destroy final - release G.C. delete | fnexit
clean up - dealloc finalise () | destr. destr.
deallocate | [super dealloc] | G.C. delete | return

René Hexel

Object Oriented Programming in Objective-C

Memory Managemen t
Advanced Topics Strings

Strings

String Objects in
Objective-C

René Hexel Object Oriented Programming in Objective-C

Memory Management
Advanced Topics Strings

Objective-C Strings

@ NSString
@ basic string class
e class cluster with concrete classes optimized for different
string sources
e much nicer than having to use char =
@ NSMutableString
e subclass of NSString for strings that can be modified
@ String Constants
e embeddedin@""
@ e.9. @"Hello, Objective-C Strings"
— don’t mix up with C Strings embedded in ""

René Hexel Object Oriented Programming in Objective-C

Memory Management
Advanced Topics Strings

Objective-C String Examples

Example (

NSString xsl = [NSString new];
NSString xs2 = [NSString stringWithString: @"Hello, void"];
NSString xs3 = [NSString stringWithUTF8String: "Hello, void"];
NSString *s4 = [NSString stringWithFormat:

@"Hi, it’s %d degrees", 28];

me NSString methods)

NSString *s5 = [s4 stringByAppendingString: @" celsius"];

NSString xs6 = @"12345"; // a stri

int len4 = [s4 length]; //

int val6é = [s6 intValue]; /

if ([sl isEqualToString: s2]) // same content?
printf("sl is equal to s2 -- how come?\n");

else if ([sl compare: s2] == NSOrderedAscending) // irs

printf ("sl comes before sZ\n");
else
printf ("s2 comes before sl\n");

printf("s2 is: %s\n", [s2 UTF8String]); //

ring for printf

NSLog (@"s3 is: %@\n", s3); // NSLog() prints

// %@ = pla

matted NSStrings

for ObjC objects

[sl release]; // don’t forget proper memory ma

agement !

René Hexel Object Oriented Programming in Objective-C

Memory Management
Advanced Topics Strings

Other Useful Methods

+ stringWithContentsOfFile:

e convenience method
e reads the whole content of a file into a string
e most efficient way of reading files

- rangeOfString:

e searches for a string within another String
- substringWithRange:

e returns a substring within a given range
- mutableCopy

e returns a mutable copy of a string

— See NsString and NSMutableString in the Foundation
API

René Hexel Object Oriented Programming in Objective-C

http://www.cit.griffith.edu.au/teaching/2501ICT/7421ICT/archive/resources/documentation/Developer/Base/Reference/NSString.html%23class\protect \T1\textdollar NSString
http://www.cit.griffith.edu.au/teaching/2501ICT/7421ICT/archive/resources/documentation/Developer/Base/Reference/NSString.html%23class\protect \T1\textdollar NSMutableString
http://www.cit.griffith.edu.au/teaching/2501ICT/7421ICT/foundation.shtml
http://www.cit.griffith.edu.au/teaching/2501ICT/7421ICT/foundation.shtml

	Subclasses, Access Control, and Class Methods
	Subclasses and Access Control
	Class Methods

	Advanced Topics
	Memory Management
	Strings

