
Subclasses, Access Control, and Class Methods
Advanced Topics

Object Oriented Programming in Objective-C
2501ICT/7421ICT Nathan

René Hexel

School of Information and Communication Technology
Griffith University

Semester 1, 2012

René Hexel Object Oriented Programming in Objective-C

Subclasses, Access Control, and Class Methods
Advanced Topics

Outline

1 Subclasses, Access Control, and Class Methods
Subclasses and Access Control
Class Methods

2 Advanced Topics
Memory Management
Strings

René Hexel Object Oriented Programming in Objective-C

Subclasses, Access Control, and Class Methods
Advanced Topics

Subclasses and Access Control
Class Methods

Objective-C Subclasses

Objective-C Subclasses

René Hexel Object Oriented Programming in Objective-C

Subclasses, Access Control, and Class Methods
Advanced Topics

Subclasses and Access Control
Class Methods

Subclasses in Objective-C

Classes can extend other classes
@interface AClass: NSObject
every class should extend at least NSObject, the root class
to subclass a different class, replace NSObject with the
class you want to extend

self
references the current object

super
references the parent class for method invocations

René Hexel Object Oriented Programming in Objective-C

Subclasses, Access Control, and Class Methods
Advanced Topics

Subclasses and Access Control
Class Methods

Creating Subclasses: Point3D

Parent Class: Point.h
#import <Foundation/Foundation.h>

@interface Point: NSObject
{

int x; // member variables
int y; // protected by default

}
- init; // constructor

- (int) x; // access methods

- (void) setX: (int) newx
y: (int) newy;

@end

Child Class: Point3D.h
#import "Point.h"

@interface Point3D: Point
{

int z; // add z dimension
}
- init; // constructor

- (void) setZ: (int) newz;

- (void) setX: (int) newx
y: (int) newy
z: (int) newz;

@end

René Hexel Object Oriented Programming in Objective-C

Subclasses, Access Control, and Class Methods
Advanced Topics

Subclasses and Access Control
Class Methods

Subclass Implementation: Point3D

Parent Class: Point.m
#import "Point.h"

@implementation Point

- init // initialiser
{

x = 0;
y = 0;

return self;
}

- (int) x // get method
{

return x;
}

- (void) setX: (int) nx y: (int) ny
{

x = nx; y = ny;
}

@end

Child Class: Point3D.m
#import "Point3D.h"

@implementation Point3D

- init // initialiser
{ if ([super init])

z = 0;
return self;

}

- (void) setZ: (int) newz
{

z = newz;
}

- (void) setX: (int) nx
y: (int) ny
z: (int) nz

{
[super setX: nx y: ny];
[self setZ: nz];

}
@end

René Hexel Object Oriented Programming in Objective-C

Subclasses, Access Control, and Class Methods
Advanced Topics

Subclasses and Access Control
Class Methods

Access Control in Objective-C

Access Control in
Objective-C

René Hexel Object Oriented Programming in Objective-C

Subclasses, Access Control, and Class Methods
Advanced Topics

Subclasses and Access Control
Class Methods

Access Control

@public:
everyone has access
violates the principle of information hiding for member
variables⇒ not usually a good idea!

@private:
nobody has access, except the defining class
useful for variables that should not be accessed by
subclasses

@protected:
mix between @public and @private
only the defining class and subclasses have access
useful for most member variables
default for Objective-C classes

In Objective-C, @public, @private, and @protected
applies to member variables only

methods are always public

René Hexel Object Oriented Programming in Objective-C

Subclasses, Access Control, and Class Methods
Advanced Topics

Subclasses and Access Control
Class Methods

Access Control Example

Example
#import <Foundation/Foundation.h>

@interface MyClass: MySuperClass
{

@public // public vars
int a;
int b;

@private // private vars
int c;
int d;

@protected // protected vars
int e;
int f;

}

- init; // constructor

// ... other class methods

@end

René Hexel Object Oriented Programming in Objective-C

Subclasses, Access Control, and Class Methods
Advanced Topics

Subclasses and Access Control
Class Methods

Which printf is wrong?

Example (Which line(s) will cause a compiler error?)
#import <Foundation/Foundation.h>

@interface ClassX: NSObject
{

@public int a;
@private int b;
@protected int c;

}
@end

@interface ClassY: ClassX
- (void) print; // a print method
@end

@implementation ClassY

- (void) print
{

printf("a = %d\n", a); // print a
printf("b = %d\n", b); // print b
printf("c = %d\n", c); // print c

}

@end

René Hexel Object Oriented Programming in Objective-C

Subclasses, Access Control, and Class Methods
Advanced Topics

Subclasses and Access Control
Class Methods

Class Methods in Objective-C

Class Methods in
Objective-C

René Hexel Object Oriented Programming in Objective-C

Subclasses, Access Control, and Class Methods
Advanced Topics

Subclasses and Access Control
Class Methods

Class Methods

So far we only had Instance Methods
refer to objects (instances) of a class

Class Methods
sometimes it’s good to have a method that can be invoked
without an instance

e.g. alloc which is needed to create an instance of a class
by allocating memory

in Java, these methods were called static
in C, static means valid for a particular scope across
invocations

Objective-C Class Methods are simply denoted by a +
instead of a −

e.g. + alloc

René Hexel Object Oriented Programming in Objective-C

Subclasses, Access Control, and Class Methods
Advanced Topics

Subclasses and Access Control
Class Methods

Class Method Example

Example
#import <Foundation/Foundation.h>

@interface Point: NSObject
{ int x, y; } // member variables

+ (int) numberOfInstances; // a class method
- init; // an instance method (e.g. the constructor)
@end
@implementation Point

static int instanceCount = 0; // number of instances of the Point class

+ (int) numberOfInstances // count the number of instances
{

return instanceCount; // return the current instance count
}

- init // constructor implementation
{

if (!(self = [super init])) return nil;

instanceCount++; // we created a new instance

return self;
}
@end

René Hexel Object Oriented Programming in Objective-C

Subclasses, Access Control, and Class Methods
Advanced Topics

Subclasses and Access Control
Class Methods

About 0, FALSE, NULL, and nil

In Java, null denoted an empty reference
null does not exist in C, Objective-C, C++

0 in C denotes a number of things
integer or floating point values of 0 (or 0.0)
a false result of a boolean expression
a null pointer or object reference
⇒ can be confusing what the actual meaning is
⇒ better use FALSE, NULL, nil, etc. to express meaning

EXIT_SUCCESS – successful program completion
FALSE – a false boolean expression
NULL – a null pointer
nil – an empty object reference in Objective-C

e.g. nil does not exist in C/C++ (there, you should use
NULL instead

René Hexel Object Oriented Programming in Objective-C

Subclasses, Access Control, and Class Methods
Advanced Topics

Memory Management
Strings

Objective-C Memory Management

Objective-C Memory
Management

René Hexel Object Oriented Programming in Objective-C

Subclasses, Access Control, and Class Methods
Advanced Topics

Memory Management
Strings

Memory Management

Memory needs to be handled explicitly in C, Objective-C,
and C++

How is memory allocated, how is it released?
When should I release memory?

Java Memory Management reviewed
new operator allocates memory
object references are automatically counted and tracked
a a Garbage Collector periodically releases unused objects
⇒ convenient, but no direct control by the programmer

C provides malloc() and free() functions
⇒ completely manual memory management

C++ has new and delete operators
⇒ completely manual memory management

Objective-C has +alloc and -dealloc methods
Objective-C uses reference counting

allows to keep track of how often objects are referenced
⇒ semi-automatic memory management

René Hexel Object Oriented Programming in Objective-C

Subclasses, Access Control, and Class Methods
Advanced Topics

Memory Management
Strings

Objective-C Memory Management

+ alloc
allocates memory for an object, sets reference count to 1
init needs to be called then for initialisation

- release
releases an object
→ decrements reference count, if 0 then calls dealloc

- dealloc
deallocates memory for an object

→ never call dealloc directly (release calls dealloc when
needed

- retain
increments reference counter
→ call whenever you need the same object in multiple places

- copy
creates a new object by copying everything

copy has retain count of 1 (needs to be released later on)
→ expensive (but needed if objects will be modified)

René Hexel Object Oriented Programming in Objective-C

Subclasses, Access Control, and Class Methods
Advanced Topics

Memory Management
Strings

Person Record Interface Example

Example (Interface)
#import <Foundation/Foundation.h>

@interface Person: NSObject // an object referencing a person
{

int yearOfBirth; // the year the person was born
NSString *name; // the name of the person
Person *mother, *father; // the parents of the person

}
// access methods:

- (void) setYearOfBirth: (int) born;
- (void) setName: (NSString *) newName;
- (void) setMother: (Person *) theMother

father: (Person *) theFather;
- (int) yearOfBirth; // no ’get’ needed in Objective-C
- (NSString *) name;
- (Person *) mother;
- (Person *) father;

- (void) dealloc; // needed for memory management!

@end

René Hexel Object Oriented Programming in Objective-C

Subclasses, Access Control, and Class Methods
Advanced Topics

Memory Management
Strings

Person Record Implementation, Part 1

Example (Implementation part 1)
#import "Person.h"

@implementation Person

- (int) yearOfBirth // yearOfBirth getter method
{ return yearOfBirth; } // return yearOfBirth member variable

- (NSString *) name // name getter method
{

return name; // return name member variable
}

- (Person *) mother // mother getter method
{

return mother; // return mother member variable
}

- (Person *) father // father getter method
{ return father; } // return father member variable

- (void) setYearOfBirth: (int) born // a simple setter method
{

yearOfBirth = born; // just assign the ’int’
}

René Hexel Object Oriented Programming in Objective-C

Subclasses, Access Control, and Class Methods
Advanced Topics

Memory Management
Strings

Person Record Implementation (continued)

Example (Implementation part 2)
- (void) setName: (NSString *) newName
{

[name release]; // release the old name
name = [newName copy]; // copy the new name

}

- (void) setMother: (Person *) theMother
father: (Person *) theFather

{
[theMother retain]; [theFather retain]; // retain references
[mother release]; // release the old mother and
[father release]; // father references (if any)
mother = theMother; father = theFather; // store references

}

/*
* every class that retains other objects needs a dealloc method!

*/
- (void) dealloc
{
[name release]; // release all objects held!
[mother release];
[father release];

[super dealloc]; // call super class dealloc last
}

@end
René Hexel Object Oriented Programming in Objective-C

Subclasses, Access Control, and Class Methods
Advanced Topics

Memory Management
Strings

Autorelease Pools

Object Ownership Reviewed
→ any entity that uses an object needs to retain it
→ release can become difficult with collections

e.g., an object that gets removed from a List but used
elsewhere:
list would need to release object before it gets retained
again

⇒ danger of using an expired pointer!

- autorelease
marks an object for later release
→ puts the object on an autorelease pool

Autorelease Pools
are just lists of objects to be released

→ objects actually get released when the pool gets
deallocated

René Hexel Object Oriented Programming in Objective-C

Subclasses, Access Control, and Class Methods
Advanced Topics

Memory Management
Strings

Autorelease Pool Example

Example (What does this program print?)
#import <Foundation/Foundation.h>

int main(int argc, char *argv[])
{

NSAutoreleasePool *pool = [[NSAutoreleasePool alloc] init];

NSString *str1 = [[NSString alloc] initWithUTF8String: "self managed string"];
NSString *str2 = [NSString stringWithUTF8String: "autorelease managed string"];

printf("str1 is a %s\n", [str1 UTF8String]);
printf("str2 is a %s\n", [str2 UTF8String]);

[str1 release]; // release the self-managed string
[pool release]; // release the pool (also releases the autoreleased str2)

return EXIT_SUCCESS;
}

Answer
str1 is a self managed string
str2 is a autorelease managed string

René Hexel Object Oriented Programming in Objective-C

Subclasses, Access Control, and Class Methods
Advanced Topics

Memory Management
Strings

Autorelease Pool Example 2

Example (What does this program print?)
#import <Foundation/Foundation.h>

int main(int argc, char *argv[])
{

NSAutoreleasePool *pool = [[NSAutoreleasePool alloc] init];
NSString *string = [[NSString alloc] initWithCString: "self managed string"];

printf("string retain count is %d\n", [string retainCount]);

[string autorelease]; // put the string on the autorelease pool

printf("string retain count now is %d\n", [string retainCount]);

[pool release]; // release the pool (also releases string)

return EXIT_SUCCESS;
}

Answer
string retain count is 1
string retain count now is 1

René Hexel Object Oriented Programming in Objective-C

Subclasses, Access Control, and Class Methods
Advanced Topics

Memory Management
Strings

When to use Autorelease Pools

In Convenience Methods
− stringWithCString allocates an NSString, then

autoreleases it
→ any method thad does alloc, then init. . . , then

autorelease

Any collection method that removes then returns an object
return [object autorelease];

Temporary Variables
variables that you only use briefly and would release
almost straight away

Don’t use Autorelease Pools as “poor man’s garbage
collector”!

no replacement for proper memory management!
→ where should Pools be created?

René Hexel Object Oriented Programming in Objective-C

Subclasses, Access Control, and Class Methods
Advanced Topics

Memory Management
Strings

Where to create Autorelease Pools

Always create a pool first thing after main()
→ release that pool at the very end of your program (right

before return EXIT_SUCCESS;)
Around areas that use or create temporary objects

within long loops
around short loops
within methods

Example
for (int i = 0; i < 100; i++)
{

NSAutoreleasePool *innerpool = [[NSAutoreleasePool alloc] init];

NSString *string = [NSString stringWithInt: i]; // temporary string

// do something useful with ’string’
printf("string is %s\n", [string UTF8String]);

[innerpool release]; // release the pool (releases all autoreleased strings)
}

René Hexel Object Oriented Programming in Objective-C

Subclasses, Access Control, and Class Methods
Advanced Topics

Memory Management
Strings

Object Lifecycle

C++ C++
Task Objective-C Java Heap Stack

allocate + alloc new new entry
initialise - init constr. constr. constr.

hold object - retain automatic - -
let go - release automatic - -

destroy final - release G.C. delete fn exit
clean up - dealloc finalise() destr. destr.

deallocate [super dealloc] G.C. delete return

René Hexel Object Oriented Programming in Objective-C

Subclasses, Access Control, and Class Methods
Advanced Topics

Memory Management
Strings

Strings

String Objects in
Objective-C

René Hexel Object Oriented Programming in Objective-C

Subclasses, Access Control, and Class Methods
Advanced Topics

Memory Management
Strings

Objective-C Strings

NSString
basic string class
class cluster with concrete classes optimized for different
string sources
much nicer than having to use char *

NSMutableString
subclass of NSString for strings that can be modified

String Constants
embedded in @""

e.g. @"Hello, Objective-C Strings"

→ don’t mix up with C Strings embedded in ""

René Hexel Object Oriented Programming in Objective-C

Subclasses, Access Control, and Class Methods
Advanced Topics

Memory Management
Strings

Objective-C String Examples

Example (Some NSString methods)
NSString *s1 = [NSString new]; // empty string
NSString *s2 = [NSString stringWithString: @"Hello, void"]; // from ObjC or
NSString *s3 = [NSString stringWithUTF8String: "Hello, void"]; // C string
NSString *s4 = [NSString stringWithFormat: // printf-style

@"Hi, it’s %d degrees", 28]; // format
NSString *s5 = [s4 stringByAppendingString: @" celsius"]; // appending
NSString *s6 = @"12345"; // a string constant
int len4 = [s4 length]; // get length of s4
int val6 = [s6 intValue]; // convert s6 to int

if ([s1 isEqualToString: s2]) // same content?
printf("s1 is equal to s2 -- how come?\n");

else if ([s1 compare: s2] == NSOrderedAscending) // which one comes first?
printf("s1 comes before s2\n");

else
printf("s2 comes before s1\n");

printf("s2 is: %s\n", [s2 UTF8String]); // convert s2 to a C string for printf

NSLog(@"s3 is: %@\n", s3); // NSLog() prints formatted NSStrings
// %@ = place holder for ObjC objects

[s1 release]; // don’t forget proper memory management!

René Hexel Object Oriented Programming in Objective-C

Subclasses, Access Control, and Class Methods
Advanced Topics

Memory Management
Strings

Other Useful Methods

+ stringWithContentsOfFile:
convenience method
reads the whole content of a file into a string
most efficient way of reading files

- rangeOfString:
searches for a string within another String

- substringWithRange:
returns a substring within a given range

- mutableCopy
returns a mutable copy of a string

→ See NSString and NSMutableString in the Foundation
API

René Hexel Object Oriented Programming in Objective-C

http://www.cit.griffith.edu.au/teaching/2501ICT/7421ICT/archive/resources/documentation/Developer/Base/Reference/NSString.html%23class\protect \T1\textdollar NSString
http://www.cit.griffith.edu.au/teaching/2501ICT/7421ICT/archive/resources/documentation/Developer/Base/Reference/NSString.html%23class\protect \T1\textdollar NSMutableString
http://www.cit.griffith.edu.au/teaching/2501ICT/7421ICT/foundation.shtml
http://www.cit.griffith.edu.au/teaching/2501ICT/7421ICT/foundation.shtml

	Subclasses, Access Control, and Class Methods
	Subclasses and Access Control
	Class Methods

	Advanced Topics
	Memory Management
	Strings

