Overview
Compiling and Makefiles
Programming in C

An Introduction to C
25011CT/7421ICTNathan

René Hexel

School of Information and Communication Technology
Griffith University

Semester 1, 2012

René Hexel An Introduction to C

Outline

o Overview
@ Motivation for C, C++, and Objective-C
@ The C Programming Language

9 Compiling and Makefiles
@ Using the Command Line compiler
@ Creating and using Makefiles

e Programming in C
@ Comments and Documentation
@ C Data Types and Functions
@ The Preprocessor

René Hexel An Introduction to C

Ovepicy Motivation for C/C++/ObjC

The C Language

A New Programming Language?

@ Broaden your Experience
e Look beyond Java
e Ultimately: “Been there, done that”
@ Get a feeling of “It's easy”
e Hard yards ahead, but eventually get rewarded
@ Syntax stumbling block becomes smaller
e “They are all the same”
@ Learn how to program (for real)
e Needs lots of practice!
@ Learn from your own mistakes!
e Don’t copy/paste or memorise!

e Divide a complex problem into simple parts
e Know were to look (and what to look for)

@ Programming Language reference
@ API reference

René Hexel An Introduction to C

Overview [i ation for G/G++/ObiG

The C Language

Why C?

@ Most frequently used language
e Tons of reusable code
@ The Systems Programming language
o Most Kernels are written in C
e Insight into underlying concepts
@ Procedural part of Objective-C and C++
@ Predecessor of Java, C++, C#, Objective-C, ...

e Very similar syntax
e Concepts help you with these languages
e But: no language concept of Classes and Objects!

René Hexel An Introduction to C

Ovepicy Motivation for C/C++/ObjC

The C Language

Why Objective-C?

@ Object oriented additions to C
@ Supports Classes and Objects (in addition to low level C)
e Complex data types are easier to manage than in plain C
@ Object oriented additions are plain and simple
e Much simpler language than C++ and even Java
e No burden from multiple inheritance, templates, operator
overloading, etc.
@ Powerful, dynamic object concept

o Classes are first class objects
e Fully dynamic dispatcher
e Solid basis for OO concepts

@ Primary language for iPhone, iPod Touch, Mac OS X.

René Hexel An Introduction to C

Ovepicy Motivation for C/C++/ObjC

The C Language

Why C++7?

@ Object oriented additions to C
e Supports Classes and Objects (in addition to low level C)
e Complex data types are easier to manage than in plain C
@ Lots of language additions over C

e Templates, multiple inheritance, operator overloading
e Powerful concepts in the right hands

@ But: easy to get it wrong!
@ Requires skilful programming
= hard to come by well-written C++ code

@ Popular programming language
o Still used heavily in industry
e Used in 3622ICT Interactive Entertainment

René Hexel An Introduction to C

Orelviey Motivation for G/G++/ObjC

The C Language

C Overview — Core Properties

@ Procedural Language
o Global functions instead of Methods that are local to
classes
@ Low level language
e Use of Pointers for references
e “Assembly language in disguise”
= Great for looking behind the scenes
@ Standard C Library
e Easy to write cross-platform (non-GUI) programs!
@ ANSI/ISO-C functions (supported everywhere)

@ Memory allocation, Input/output, string processing,
mathematics, ...

e POSIX functions (supported almost everywhere)
@ Multitasking, networking, distributed compuiting, ...

René Hexel An Introduction to C

Orelviey Motivation for C/C++/ObjC

The C Language

Hello World

public class HellowWorld
{
public static void main (String[] args)

{
System.out .println("Hello World!");

}
}

@ Function Definition — int main (void)
e returns an int (0 for U it ("Hello World!\n");
success) | retumos
@ void means “no
parameters”

René Hexel An Introduction to C

Ovepicy Motivation for C/C++/ObjC

The C Language

Migrating from Java to C

@ Functions in C work like Methods in Java

o take parameters
e return values
e are global (do not belong to objects)

@ There can only be one global function with a given name
e E.g., onlyonemain () function

@ In Cthemain () function returns int
@ return 0 to indicate that your program was successful

René Hexel An Introduction to C

Orelviey Motivation for G/G++/ObjC

The C Language

printf()

@ Print a formatted string
e Standard C output function
@ Prints to stdout
e Normally on screen
@ Can be redirected into a file
@ Takes a format string
e More than just a simple string like “hello world”
o Can take additional parameters
e How these parameters are formatted is determined by
place holders

René Hexel An Introduction to C

Orelviey Motivation for G/G++/ObjC

The C Language

Some Place Holders

%s string, e.g. "Hello"

$c single character, e.g. " x’

$d decimal signed integer, e.g. -2

decimal unsigned integer, e.g. 5

floating point value, e.g. 2.5

exponent value, e.g. 2.5e3

automatically formatted float, e.g. 2500. 3

o°
c

o\

o\

o\
Q D rh

René Hexel An Introduction to C

Orelviey Motivation for C/C++/ObjC

The C Language

Place Holder Examples

@ printf ("Hello, %s", "world");
@ Hello, world

@ printf ("The distance is %d km", 15);
@ The distance is 15 km

@ printf ("%u times %g is %g", 3, 2.5, 3%2.5);
@ 3 times 2.5 is 7.5

René Hexel An Introduction to C

Orelviey Motivation for G/G++/ObjC

The C Language

Place Holder Modifiers and Formatting

@ Place holders allow output formatting
@ The syntaxis s[-]J[0][n][. k][1]x
— left alignment (default: right)
0 leading zeros instead of spaces (numbers only)
n minimum number of digits
k cap at k digits maximum
1 long (e.g. long int)
x The actual place holder character (s, d, f, etc.)

@ E.g.: 54 decimal number with 5 digits

René Hexel An Introduction to C

Orelviey Motivation for G/G++/ObjC

The C Language

String Formatting Characters

@ Work almost exactly as in Javal!
\n new line
\t tabulator (indentation to the next multiple of 8)
\\\ the backslash character \ itself
\" double quote "
\" single quote ’
\0 end of string (ASCII 0)
\nnn Character with octal value nnn

René Hexel An Introduction to C

Orelviey Motivation for C/C++/ObjC

The C Language

Putting it together

Example (What does this program print?)
int main (void)

{
int 5;

=7
printf ("3 = %$03.3d\n", 3);

return 0;

<

j = 007

René Hexel An Introduction to C

Using the Command Line compiler

ey ensl (NEilee Creating and using Makefiles

Compiling C Programs

@ Integrated Development Environment (IDE)

Eclipse, XCode, Visual C++, Project Center, ...
Compiles programs at the press of a button (like BlueJ)
Often difficult to customise

Very rarely support multiple platforms and languages

@ Command Line

e Requires manual invocation

e Requires knowledge of command line parameters

e Can be tedious for large projects

e Cross-platform and -language compilers (e.g. clang)

@ Makefiles

e Combine the best of both worlds
e Recompile a complex project with a simple make command

René Hexel An Introduction to C

http://www.eclipse.org/
http://developer.apple.com/tools/xcode/
http://msdn2.microsoft.com/en-us/visualc/default.aspx
http://www.gnustep.org/experience/ProjectCenter.html

Using the Command Line compiler
Creating and using Makefiles

Getting a Command Line Interface

Compiling and Makefiles

@ Via Dwarf
@ ssh dwarf.ict.griffith.edu.au
e using putty (Windows)
@ Via a local Terminal
e Mac OS X: e.g. Applications / Utilities / Terminal.app
e Linux: e.g. through the Gnome program menu
e Windows: e.g. Start/ Programs / Programming Tools /
GNUstep / Shell
= Enter commands to compile your program
e Hit Return (or Enter) after every command!

René Hexel An Introduction to C

Using the Command Line compiler
Creating and using Makefiles

Compiling a C program using clang or gcc

Compiling and Makefiles

@ Once on the command line change to the directory (folder)
your program is in
@ cd /my/example/directory
@ Compile the source code (e.g. Hello.c)
@ clang Hello.c
e Compiles Hello.c into an executable called a . out (or
a.exe on Windows)
@ clang -o Hello Hello.c
o Compiles Hello.c into an executable called Hello
e On Windows always use Hello.exe instead of just Hello
® clang —-Wall -o Hello Hello.c
e Prints all warnings about possible problems
e Always use -Wall when compiling your programs!
@ ./Hello
@ Run the He1l1o command from the current directory

@ To use gcc, simply replace clang with gcc

René Hexel An Introduction to C

Using the Command Line compiler

ey ensl (NEilee Creating and using Makefiles

Makefiles

@ Save compile time
e only recompile what is necessary
@ Help avoiding mistakes
e prevent outdated modules from being linked together
@ Language independent
e work with any programming language
@ C, C++, Objective-C, Java, ...

René Hexel An Introduction to C

Using the Command Line compiler

ey ensl (NEilee Creating and using Makefiles

How do Makefiles work?

Example (A simple Makefile)

Hello: Hello.c
clang -Wall -o Hello Hello.c

@ First Line: Dependency Tree

e Target and Sources
o Target: the module to be built (e.g. Hel1lo)
e Sources: pre-requisites (e.g. Hello.c)

René Hexel An Introduction to C

Using the Command Line compiler

ey ensl (NEilee Creating and using Makefiles

Make Rules

Example (A simple Makefile)

Hello: Hello.c
clang -Wall -o Hello Hello.c

@ Second Line: Make rule
e command to execute
@ clang -Wall -o Hello Hello.c
@ requires a tab character (not spaces) for indentation

René Hexel An Introduction to C

Using the Command Line compiler

ey ensl (NEilee Creating and using Makefiles

Multiple Targets

Example (Makefile for compiling multiple Modules)

Program: modulel.o module2.o
clang -o Program modulel.o moduleZ2.o

modulel.o: modulel.c
clang —c¢ -Wall -o modulel.o modulel.c

module2.o0: module2Z2.c module2.h
clang —-c¢c -Wall -o module2.o module2.c

@ Default Target: first target (Program)
e link two object files (modulel.o and module?2. o) into one
program (Program)

René Hexel An Introduction to C

Using the Command Line compiler

ey ensl (NEilee Creating and using Makefiles

Multiple Targets (2)

Example (Makefile for compiling multiple Modules)

Program: modulel.o module2.o
clang -o Program modulel.o moduleZ2.o

modulel.o: modulel.c
clang —c¢ -Wall -o modulel.o modulel.c

module2.o0: module2Z2.c module2.h
clang —-c¢c -Wall -o module2.o module2.c

@ Second Target: modulel.o
e rule to compile object file modulel.o from modulel.c
@ clang —c compiles a single module (not a full executable)

René Hexel An Introduction to C

Using the Command Line compiler

ey ensl (NEilee Creating and using Makefiles

Multiple Targets (3)

Example (Makefile for compiling multiple Modules)

Program:

modulel.

module?.

modulel.o module2.o
clang —-o Program modulel.o module2.o

o: modulel.c
clang —-c¢ -Wall -o modulel.o modulel.c

o: module2.c module2.h
clang —-c¢c -Wall -o moduleZ.o module2.c

@ Third Target: module2.o
e compile module2. o from source module?2.c
o also depends on module2.h (header file)

René Hexel An Introduction to C

Using the Command Line compiler

ey ensl (NEilee Creating and using Makefiles

Multiple Programs

Example (Makefile for compiling multiple Programs)

all: Programl Program2

Programl: modulel.o
clang -o Program modulel.o

Program2: module2.o module3.o
clang -o Program module2.o module3.o

modulel.o: modulel.c
clang -c¢ -Wall -o modulel.o modulel.c

module2.0: module2.c module2.h
clang -¢ -Wall -o module2.o module2.c

module3.o: module3.c module3.h
clang -c -Wall -o module3.o module3.c

@ ’all’ target:
e compiles all programs (Programl and Program?)
e does not have any compiler comands itself!

René Hexel An Introduction to C

Using the Command Line compiler

ey ensl (NEilee Creating and using Makefiles

Generic Rules

@ Save lots of typing
e avoid repeating the same compiler call over and over again
@ Help with consistency
e what if you want to change the compiler invocation?
@ Simply list suffixes to convert from one file type to another
@ e.g. .c.otocompilea .ctoa .ofile

René Hexel An Introduction to C

Using the Command Line compiler

ey ensl (NEilee Creating and using Makefiles

Generic Rule Example

Example (Makefile containing a generic rule)
cC©o0O5

clang —-c¢ -Wall -o $x.0 S$S+*.c

Program: modulel.o module2.o
clang -o Program modulel.o moduleZ.o

module2.0: module2.c module2.h

@ .c.o:

e how to compile a .cinto a .o file
e $« gets replaced by the file name (without extension)

René Hexel An Introduction to C

Using the Command Line compiler

ey ensl (NEilee Creating and using Makefiles

Generic Rule Example (2)

Example (Makefile containing a generic rule)
cCo0O5

clang -c¢ -Wall -o $*x.0 $x*.cC

Program: modulel.o moduleZ2.o
clang -o Program modulel.o module2.o

module2.0: module2.c module2.h

@ No need for a modulel.o: rule!

e compiler already knows how to compile .cinto .o
@ But: module2.o needs arule (also depends on .h)

René Hexel An Introduction to C

Using the Command Line compiler

ey ensl (NEilee Creating and using Makefiles

Generic Rules for Languages other than C

@ The make utility by default only knows about C
e “what if | want to compile a different language?”
@ Suffixes can be specified

@ using the .SUFFIXES: command, e.g.:
@ .SUFFIXES: .o .m

@ “a .o file can also be compiled from a .m (Objective-C) file”

René Hexel An Introduction to C

Using the Command Line compiler

ey ensl (NEilee Creating and using Makefiles

Make Variables

@ Allow more flexible make files
e “what if the compiler is not called c1ang?”
@ Variables allow assigning a value, e.g:
@ CC=gcc
@ Varables can be used using s (variable) , e.g.:

@ $(CC) —c —-Wall -o $*.0 S$*.cC
o will replace $ (cc) with gcc

René Hexel An Introduction to C

Using the Command Line compiler
Creating and using Makefiles

Mixed Makefile Example: Objective-C

Compiling and Makefiles

Example (Makefile for a mixed C/Objective-C program)

A mixed makefile example for C and O

W

CC=clang

.SUFFIXES: .o .cC
.SUFFIXES: .o .m

0@ @8
$(CC) -c -Wall -o $+.0 S$x.c

$(CC) -c -Wall -o $x.0 $x.m

Program: cmodule.o objcmodule.o
$(CC) -o Program cmodule.o objcmodule.o —framework Foundation

objcmodule.o: objcmodule.m objcmodule.h

René Hexel An Introduction to C

Using the Command Line compiler
Creating and using Makefiles

Mixed Makefile Example: C++

Compiling and Makefiles

Example (Makefile for a mixed C/C++ program)

A mixed makefile example for C and

4 4 3

CC=clang
CPLUS=g++

.SUFFIXES: .o .c
.SUFFIXES: .o .cCC

2@o®8
$(CC) -c -Wall -o $x.0 $x.c

.CC.o:
$ (CPLUS) -c -Wall -o $x.0 $x.CC

Program: cmodule.o cppmodule.o
$ (CPLUS) -o Program cmodule.o cppmodule.o

cppmodule.o: cppmodule.CC cppmodule.h

René Hexel An Introduction to C

Comments and Documentation
C Data Types and Functions
Programming in C The Preprocessor

Comments

@ Plain C allows comments between /x and «/

@ /* this i1s a valid C comment =/
@ Comments may not be nested

@ /* this /x is not a valid C comment =%/ */
@ C99 also allows double-slash // end-of-line comments

@ // this is a valid comment
e no closing sequence needed — the comment ends at the
end of the line

René Hexel An Introduction to C

Programming in C

Comment Example

Comments and Documentation
C Data Types and Functions
The Preprocessor

Example (Prog

int main (void)
{
int §;

j=7

printf ("j = %03.3d\n",

return 0;

and returns 0

with Comments)

/x main function definition */

nt variable to play with

// sign a
3)i // print value w
// everything is fine, exit program

René Hexel

An Introduction to C

Comments and Documentation
C Data Types and Functions
Programming in C The Preprocessor

Where to put comments?

@ At the beginning of each file (module)

e describe the name of the module, purpose, author, and
dates when first created and last modified

@ Before each function (method)
e describe the purpose of the function or method,
e input parameters (arguments),
e return values (output parameters), and
e pre- and postconditions (contract)
@ At the beginning of each class

e describe the purpose of the class, and
e things to keep in mind when using this class

René Hexel An Introduction to C

Comments and Documentation
C Data Types and Functions
Programming in C The Preprocessor

How to comment?

@ Use comments to document important parts of your code
@ Document key functionality
@ Don’t re-iterate the obvious!

Example (Bad comment)

i =7; // assign 7 to 1

\

Example (Better)

i =7; // seven iterations to go

N

René Hexel An Introduction to C

Comments and Documentation
C Data Types and Functions
Programming in C The Preprocessor

Extracting Documentation from your Program

@ Everybody hates writing documentation, right?
e can be lots of work
o duplicated efforts if all the information is already in the
source code
@ The good news: Tools that extract documentation from the
source

e JavaDoc (Java specific)
e HeaderDoc (http://developer.apple.com/
opensource/tools/headerdoc.html)

@ in the labs: can use JavaDoc syntax for C, C++, Objective-C

e Doxygen
(http://www.stack.nl/~dimitri/doxygen/)

@ similar, installed on dwarf
e AutoGSDoc
@ part of the GNUstep environment on Linux and Windows

René Hexel An Introduction to C

http://java.sun.com/j2se/javadoc/
http://developer.apple.com/opensource/tools/headerdoc.html
http://developer.apple.com/opensource/tools/headerdoc.html
http://www.stack.nl/~dimitri/doxygen/
http://www.gnustep.org/resources/documentation/Developer/Tools/Reference/autogsdoc.html

Comments and Documentation
C Data Types and Functions
Programming in C The Preprocessor

Automatic Documentation Example

[xk

The main ()

xits.

x
£ t
* returns 0 to indi
*/
int main (void)
{
printf ("Hello World!\n");
return 0;
}

René Hexel An Introduction to C

Comments and Documentation
C Data Types and Functions
Programming in C The Preprocessor

C Statements

@ C Statements use the same Syntax as in Java

@ There is only a small number of keywords
@ Let’s have a look at some of them!
Operators: +, —, ++, ...

Conditionals: if, case, ?

Loops: do, while, for

Control: return, break, continue, ...

René Hexel An Introduction to C

Comments and Documentation
C Data Types and Functions
Programming in C The Preprocessor

Increment/Decrement Example

Example (What does this program print?)

int main (void)

{
intx = 5;

// pre

——x;
printf ("x = %d\n", x++); // post

t

printf("x now is %d\n", x); // print final result
return 0;

4

Answer

x =4
X now is 5)

René Hexel An Introduction to C

Comments and Documentation
C Data Types and Functions
Programming in C The Preprocessor

If Statement Example

Example (What does this program print?)

int main (void)
{
intx = 5;

if (x < 2) // check if x < 2
{
printf("%d < 2\n", x);

else
{
printf("%d >= 2\n", x);

}

return 0;
}

4

5 >= 2

René Hexel An Introduction to C

Comments and Documentation
C Data Types and Functions
Programming in C The Preprocessor

Case Statement Example

Example (What does this program print?)

int main (void)
{ intx = 5;

switch (x) // let’s see what the value of x is
{
case 0:
printf("x is zero\n");
break;

case 5:
printf ("x is five\n");
default:
printf("x is %d\n", x);
}

return 0;
}

<

Answer

x is five
x 1s 5

N

René Hexel An Introduction to C

Comments and Documentation
C Data Types and Functions
Programming in C The Preprocessor

Question Mark Operator Example

Example (What does this program print?)

int main (void)
{
intx = 5;

printf ("x is %s\n", X > 2 ? I"greater than 2": "not greater 2");

return 0;
}

X 1s greater than 2

René Hexel An Introduction to C

Comments and Documentation
C Data Types and Functions
Programming in C The Preprocessor

For Loop Example

Example (What does this program print?)

int main (void)
{

intx =5, y =0, i; // declare multiple variables

for (i = 0; i < x; i++) // a ’'for’ 1
{

y += i; // add to
}
printf ("y = %d\n", y); // print the result
return 0;
}
4

René Hexel An Introduction to C

Comments and Documentation
C Data Types and Functions
Programming in C The Preprocessor

While Loop Example

Example (What does this program print — are you sure?)

int main (void)
{
intx =5, y=0, i = 5;

while (1 < x)
{

y += i++; // add to y, then increment i
}
printf ("y = %d\n", y); // print the result
return 0;

René Hexel An Introduction to C

Comments and Documentation
C Data Types and Functions
Programming in C The Preprocessor

Do/While Loop Example

Example (What does this program print?)

int main (void)

{
intx =5, y =0, i =5; // declare some variables
do // a 'do/while’ loop
{
y += i++; // add i to y, then increment i
}
while (i < x);
printf("y = %d\n", y); // print the result
return 0;

René Hexel An Introduction to C

Comments and Documentation
C Data Types and Functions
Programming in C The Preprocessor

Break/Continue Example

Example (What does this program print?)

int main (void)

{
intx =5, y =0, i =0; // declare some v

while (i++ < x)
{

if (1 == 1) continue; /1 1
if (i == 3) break; /
y *= i;
}
printf ("y = %d\n", y); // print the result
return 0;

}

René Hexel An Introduction to C

Comments and Documentation
C Data Types and Functions
Programming in C The Preprocessor

Primitive data types

@ Primitive data types
@ char, short, int, long, long long

integer data types (e.g. 5 or -7)

can be prefixed with unsigned (no negative numbers) or
signed

sizes are compiler specific (e.g. 4 bytes for an int), but:
char < short < int < long < long long

unless unsigned is specified, all types (except char) are
always signed

whether char is unsigned or signed by default is
compiler specific

@ float, double, long double

floating point (real) numbers
eg. 3.5 -7.2e4

René Hexel An Introduction to C

Comments and Documentation
C Data Types and Functions
Programming in C The Preprocessor

Primitive Data Type Example

Example (What does this program print?)

int main (void)
{

intx = -2; // a si

unsignedy = 3; //

float £ = 2.5; // a

double r, d = -2.5e3; //

r=d/ f x x + y; // let’s do

printf("r = %1g\n", 1); // and print tk

return 0; // exit main() and repo
}

V.

r = 2003

René Hexel An Introduction to C

Comments and Documentation
C Data Types and Functions
Programming in C The Preprocessor

C Arrays

@ Square brackets [] denote a fixed-size array
@ The size of an array is static and cannot be changed!

a[5] array of 5 long integers
unsigned u[4] array of 4 unsigned integers
unsigned long ul[4] array of 4 unsigned, long integers
v[3]
1151

long

float array of 3 floats (e.g. a 3D vector)
double m[4 a 2-dimensional 4-by-5 array
(matrix) of doubles
char s[5] array of 5 characters
= a string!

René Hexel An Introduction to C

Comments and Documentation
C Data Types and Functions
Programming in C The Preprocessor

String Example using Arrays

Example (What does this program print?)

int main (void)
{

chars1[5] = "to C"; 1’ of

char s2[8] = "Welcome"; of

printf ("$s %s\n", s2, sl); // print s2 followed by sl
return 0; // exit main() and report success

}

Welcome to C

Does anyone notice anything strange? Each string has an
invisible character \ 0 at the end to denote the end of the string!
Strings need space for one more character in addition to their
length!

René Hexel An Introduction to C

Comments and Documentation
C Data Types and Functions
Programming in C The Preprocessor

Indexing Arrays

Example (What does this program prin

int main (void)
{

int years[3]; // an array of three ints
years[0] = 2006; / st element

years[1l] = 2007; // 1 element

years[2] = 2008; // third element

int year = years([2]; // pick element at index two
printf ("The year is %d\n", year); // print the year

return 0;

The year is 2008

René Hexel An Introduction to C

Comments and Documentation
C Data Types and Functions
Programming in C The Preprocessor

Static Initialisation of Arrays

Example (What does this program print?)

int main (void)
{

inti = 1; 1) ewmey
int years[3] = { 2006, 2007, 2008 }; // an
int year = years[i]; // pick t rir

printf ("The year at index %d is %d\n", i, year);

return 0;

The year at index 1 is 2007

René Hexel An Introduction to C

Comments and Documentation
C Data Types and Functions
Programming in C The Preprocessor

Properties of C Arrays

@ Multiple elements of the same kind
e laid out contiguously in memory

@ Can contain any data type
@ Fixed (maximum) size
@ Single or multi dimensional

René Hexel An Introduction to C

Comments and Documentation
C Data Types and Functions
Programming in C The Preprocessor

Compound Data Types

@ Structures, Unions, and Bit Fields

@ Can contain multiple different data types
@ Look very similar to classes in Java

@ Member variables, but no methods!

René Hexel An Introduction to C

Comments and Documentation
C Data Types and Functions
Programming in C The Preprocessor

Structure example

Example (What does this program print?)

struct Profit // de
{

ition of a ’Profit’ structure

int year; //

this profit
double dollars; // 1

1 profit in

i

int main (void) //
{

actual program (main)

struct Profit myProfit; // a "my: e of type ’Profit’

the

myProfit.year = 2007; // y
ne of 1

myProfit.dollars = 1234.5; //

printf ("In %d, I made $%g dollars\n", myProfit.year, myProfit.dollars);

return 0;

In 2007, I made 1234.5 dollars

René Hexel An Introduction to C

Comments and Documentation
C Data Types and Functions
Programming in C The Preprocessor

Static Initialisation of Structures

Example (What does this program print?)

struct Profit // last example’s ’'Profit’ structure
{

int year;
double dollars;
bi

int main (void)
{

x
* initialise myProfit statically
x

struct Profit myProfit = { 2007, 1234.5 };
printf ("In %d, I made %g dollars\n", myProfit.year, myProfit.dollars);

return 0;
}

In 2007, I made 1234.5 dollars

René Hexel An Introduction to C

Comments and Documentation
C Data Types and Functions
Programming in C The Preprocessor

C Functions

@ Similar to Java methods

e syntax for parameters and return values is the same
@ Functions are global rather than local

@ no two global functions can have the same name!

René Hexel An Introduction to C

Comments and Documentation
C Data Types and Functions
Programming in C The Preprocessor

Function Example

Example (What does this program prin

| that takes a signed and an unsigned inte

double calc (int x, unsigned y)
{
float £

= 2.5;
doubled = 2.

5e3;

returnd / £ » x + y; // let’s do some maths
}

int main (void)
double r = calc(2, 3); // invoke calc and store result in r
printf ("r = %lq\n", r); // and print the result

return 0; // exit main() and re
}

René Hexel An Introduction to C

Comments and Documentation
C Data Types and Functions
Programming in C The Preprocessor

Function Declarations

@ C Compiler only knows code it has already seen
@ Functions need to be declared for the compiler to know
them
@ Forward declarations allow function calls before the actual
function gets defined
@ Syntax: function header followed by ; —e.qg.:
@ int main (void) ;

@ int myFunction (int, double);
@ double average (double, double);

René Hexel An Introduction to C

Comments and Documentation
C Data Types and Functions
Programming in C The Preprocessor

Function Declaration Example

double calc (int, unsigned); // function declaration of calc()

int main (void)

{
double r = calc(2, 3); // invoke calc and store result in r
printf("r = %1g\n", 1); // print the result
return 0;
}
double calc (int x, unsignedy) // the actual calc() function
{
floatf = 2.5;
double d = 2.5e3;

returnd / £ * x + y;
}

René Hexel An Introduction to C

Comments and Documentation
C Data Types and Functions
Programming in C The Preprocessor

Remember this Example?

Example (What is wrong with this program?)

int main (void)

{
printf ("Hello World!\n");
return 0;

Hello.c: In function ’'main’: Hello.c:3: warning:
implicit declaration of function ’printf’ Hello.c:3:

warning: incompatible implicit declaration of built-in
function ’'printf’

René Hexel An Introduction to C

Comments and Documentation
C Data Types and Functions
Programming in C The Preprocessor

Error-Free version of “Hello World”

Example (Using the Pre-processor)

#include <stdio.h> // include the declaration for printf ()

int main (void)

{
printf ("Hello World!\n");
return 0;

}

@ #include <...>includes a header file

@ #include <stdio.h> includes the relevant declaration
for print £ ()

@ similar functionality to “import” in Java

René Hexel An Introduction to C

Comments and Documentation
C Data Types and Functions
Programming in C The Preprocessor

#include

@ Includes global or local header files

@ #include <stdio.h> // include a global header file

@ #include "hello.h" // include a local header file

@ Header files are just files that get inserted instead of the
#include statement

e could be any C code
@ by convention, only contains declarations but no definitions!
@ use a .h extension

@ API defines a set of standard header files (include files)

René Hexel An Introduction to C

Comments and Documentation
C Data Types and Functions
Programming in C The Preprocessor

ISO C Standard Include Files

@ #include <stdio.h>

e Standard Input/Output header
o printf() for formatted output
e scanf() for formatted input, . ..

@ finclude <string.h>
e String functions
@ #include <math.h>
e Mathematics functions
@ #include <stdlib.h>
e Memory management, data conversion, exit (), etc.
e Defined in the C Language standard

@ http://std.dkuug.dk/JTC1/SC22/WG1l4/www/docs/
n843.htm (draft, section 7.1.2 and Annex B)

@ API defines a set of standard header files (include files)

René Hexel An Introduction to C

http://std.dkuug.dk/JTC1/SC22/WG14/www/docs/n843.htm
http://std.dkuug.dk/JTC1/SC22/WG14/www/docs/n843.htm

Comments and Documentation
C Data Types and Functions
Programming in C The Preprocessor

#define Macros

@ All the C preprocessor does is text replacement
o before the actual compiler kicks in
e but it is very good at that!
@ #define AB
e replaces A with B in the code
e Aand B can be complex text
@ e.g. Constants
@ #define EXIT_SUCCESS 0

@ replaces EXIT_SUCCESS with 0 in the code

@ e.g. return EXIT_SUCCESS; instead of return 0;

@ the purpose of the return statement is explained in code
@ makes the code more readable

René Hexel An Introduction to C

Comments and Documentation
C Data Types and Functions
Programming in C The Preprocessor

#define Functional Macros

@ More sophisticated than simple constants
@ #define ERROR(x) printf ("Error %d\n", x)
@ replaces ERROR () with the complex printf () statement

e replaces x with the text parameter given to ERROR ()
@ ERROR (5) ; gets translated to

@ printf ("Error %d\n", 5)
@ prints “Error 5”

René Hexel An Introduction to C

Comments and Documentation
C Data Types and Functions
Programming in C The Preprocessor

Macro Side Effects

@ #define is very powerful
@ Lets you replace functions with macros

@ can increase code readability
e can increase code efficiency
e can reduce errors for repetitive code sequences

@ use macros instead of copy/paste
e Don't overdo it!

@ use functions/methods where you can
@ only use macros where it increases code readability

@ Beware of side effects!

@ Macro invocations ar not actual method invocations!
o All #define does it text replacement!

René Hexel An Introduction to C

Comments and Documentation
C Data Types and Functions
Programming in C The Preprocessor

Macro Pitfalls

Example (What does this code print?)

#define TRIPLE (x) printf (b oy E s 3)
intj = 4;
TRIPLE(§ + 1); // prints "5 % 3 = 15", right?

Answer

5 %« 3 =7

Because TRIPLE (i + 1) gets expanded to:
printf ("%d 3 = &%d", i + 1, 1 + 1 %= 3);

| A

Important

= Always put Macro arguments in brackets ()
@ e.g. #define TRIPLE (x) printf ("$d ~ 3 = %d",
(x), (x) * 3);

| \

A\

René Hexel An Introduction to C

Comments and Documentation
C Data Types and Functions
Programming in C The Preprocessor

Side Effect Example

Example (Do the brackets help here?)

#define TEST (x) if ((x) < 0) printf(\n s (%))
inti = -1;

TEST (i++) ; // what does this statement yield?
printf("i = %d\n", i); // what does this statement print?

| A

Answer
0 <0
i =1

| A\

Why?
Because TEST (i++) gets expanded to:
if ((i++) < 0) printf("%d < 0\n", (i++));

N

René Hexel An Introduction to C

	Overview
	Motivation for C, C++, and Objective-C
	The C Programming Language

	Compiling and Makefiles
	Using the Command Line compiler
	Creating and using Makefiles

	Programming in C
	Comments and Documentation
	C Data Types and Functions
	The Preprocessor

