
Overview
Compiling and Makefiles

Programming in C

An Introduction to C
2501ICT/7421ICTNathan

René Hexel

School of Information and Communication Technology
Griffith University

Semester 1, 2012

René Hexel An Introduction to C

Overview
Compiling and Makefiles

Programming in C

Outline

1 Overview
Motivation for C, C++, and Objective-C
The C Programming Language

2 Compiling and Makefiles
Using the Command Line compiler
Creating and using Makefiles

3 Programming in C
Comments and Documentation
C Data Types and Functions
The Preprocessor

René Hexel An Introduction to C

Overview
Compiling and Makefiles

Programming in C

Motivation for C/C++/ObjC
The C Language

A New Programming Language?

Broaden your Experience
Look beyond Java
Ultimately: “Been there, done that”

Get a feeling of “It’s easy”
Hard yards ahead, but eventually get rewarded
Syntax stumbling block becomes smaller
“They are all the same”

Learn how to program (for real)
Needs lots of practice!

Learn from your own mistakes!

Don’t copy/paste or memorise!
Divide a complex problem into simple parts
Know were to look (and what to look for)

Programming Language reference
API reference

René Hexel An Introduction to C

Overview
Compiling and Makefiles

Programming in C

Motivation for C/C++/ObjC
The C Language

Why C?

Most frequently used language
Tons of reusable code

The Systems Programming language
Most Kernels are written in C
Insight into underlying concepts

Procedural part of Objective-C and C++
Predecessor of Java, C++, C#, Objective-C, . . .

Very similar syntax
Concepts help you with these languages
But: no language concept of Classes and Objects!

René Hexel An Introduction to C

Overview
Compiling and Makefiles

Programming in C

Motivation for C/C++/ObjC
The C Language

Why Objective-C?

Object oriented additions to C
Supports Classes and Objects (in addition to low level C)
Complex data types are easier to manage than in plain C

Object oriented additions are plain and simple
Much simpler language than C++ and even Java
No burden from multiple inheritance, templates, operator
overloading, etc.

Powerful, dynamic object concept
Classes are first class objects
Fully dynamic dispatcher
Solid basis for OO concepts

Primary language for iPhone, iPod Touch, Mac OS X.

René Hexel An Introduction to C

Overview
Compiling and Makefiles

Programming in C

Motivation for C/C++/ObjC
The C Language

Why C++?

Object oriented additions to C
Supports Classes and Objects (in addition to low level C)
Complex data types are easier to manage than in plain C

Lots of language additions over C
Templates, multiple inheritance, operator overloading
Powerful concepts in the right hands

But: easy to get it wrong!
Requires skilful programming

⇒ hard to come by well-written C++ code

Popular programming language
Still used heavily in industry
Used in 3622ICT Interactive Entertainment

René Hexel An Introduction to C

Overview
Compiling and Makefiles

Programming in C

Motivation for C/C++/ObjC
The C Language

C Overview – Core Properties

Procedural Language
Global functions instead of Methods that are local to
classes

Low level language
Use of Pointers for references
“Assembly language in disguise”

⇒ Great for looking behind the scenes
Standard C Library

Easy to write cross-platform (non-GUI) programs!
ANSI/ISO-C functions (supported everywhere)

Memory allocation, Input/output, string processing,
mathematics, . . .

POSIX functions (supported almost everywhere)
Multitasking, networking, distributed computing, . . .

René Hexel An Introduction to C

Overview
Compiling and Makefiles

Programming in C

Motivation for C/C++/ObjC
The C Language

Hello World

Java
public class HelloWorld
{

public static void main(String[] args)
{

System.out.println("Hello World!");
}

}

Function Definition →
returns an int (0 for
success)
void means “no
parameters”

Function Definition →
Function Call →

takes a String (char *)
returns no parameters

C

int main(void)
{

printf("Hello World!\n");
return 0;

}

René Hexel An Introduction to C

Overview
Compiling and Makefiles

Programming in C

Motivation for C/C++/ObjC
The C Language

Migrating from Java to C

Functions in C work like Methods in Java
take parameters
return values
are global (do not belong to objects)

There can only be one global function with a given name
E.g., only one main() function

In C the main() function returns int
return 0 to indicate that your program was successful

René Hexel An Introduction to C

Overview
Compiling and Makefiles

Programming in C

Motivation for C/C++/ObjC
The C Language

printf()

Print a formatted string
Standard C output function

Prints to stdout
Normally on screen
Can be redirected into a file

Takes a format string
More than just a simple string like “hello world”
Can take additional parameters
How these parameters are formatted is determined by
place holders

René Hexel An Introduction to C

Overview
Compiling and Makefiles

Programming in C

Motivation for C/C++/ObjC
The C Language

Some Place Holders

%s string, e.g. "Hello"
%c single character, e.g. ’x’
%d decimal signed integer, e.g. -2
%u decimal unsigned integer, e.g. 5
%f floating point value, e.g. 2.5
%e exponent value, e.g. 2.5e3
%g automatically formatted float, e.g. 2500.3

René Hexel An Introduction to C

Overview
Compiling and Makefiles

Programming in C

Motivation for C/C++/ObjC
The C Language

Place Holder Examples

printf("Hello, %s", "world");
Hello, world

printf("The distance is %d km", 15);
The distance is 15 km

printf("%u times %g is %g", 3, 2.5, 3*2.5);
3 times 2.5 is 7.5

René Hexel An Introduction to C

Overview
Compiling and Makefiles

Programming in C

Motivation for C/C++/ObjC
The C Language

Place Holder Modifiers and Formatting

Place holders allow output formatting
The syntax is %[-][0][n][.k][l]x
- left alignment (default: right)
0 leading zeros instead of spaces (numbers only)
n minimum number of digits
k cap at k digits maximum
l long (e.g. long int)
x The actual place holder character (s, d, f, etc.)

E.g.: %5d decimal number with 5 digits

René Hexel An Introduction to C

Overview
Compiling and Makefiles

Programming in C

Motivation for C/C++/ObjC
The C Language

String Formatting Characters

Work almost exactly as in Java!
\n new line
\t tabulator (indentation to the next multiple of 8)
\\ the backslash character \ itself
\" double quote "
\’ single quote ’
\0 end of string (ASCII 0)

\nnn Character with octal value nnn

René Hexel An Introduction to C

Overview
Compiling and Makefiles

Programming in C

Motivation for C/C++/ObjC
The C Language

Putting it together

Example (What does this program print?)
int main(void)
{

int j;

j = 7;
printf("j = %03.3d\n", j);

return 0;
}

Answer
j = 007

René Hexel An Introduction to C

Overview
Compiling and Makefiles

Programming in C

Using the Command Line compiler
Creating and using Makefiles

Compiling C Programs

Integrated Development Environment (IDE)
Eclipse, XCode, Visual C++, Project Center, . . .
Compiles programs at the press of a button (like BlueJ)
Often difficult to customise
Very rarely support multiple platforms and languages

Command Line
Requires manual invocation
Requires knowledge of command line parameters
Can be tedious for large projects
Cross-platform and -language compilers (e.g. clang)

Makefiles
Combine the best of both worlds
Recompile a complex project with a simple make command

René Hexel An Introduction to C

http://www.eclipse.org/
http://developer.apple.com/tools/xcode/
http://msdn2.microsoft.com/en-us/visualc/default.aspx
http://www.gnustep.org/experience/ProjectCenter.html

Overview
Compiling and Makefiles

Programming in C

Using the Command Line compiler
Creating and using Makefiles

Getting a Command Line Interface

Via Dwarf
ssh dwarf.ict.griffith.edu.au
using putty (Windows)

Via a local Terminal
Mac OS X: e.g. Applications / Utilities / Terminal.app
Linux: e.g. through the Gnome program menu
Windows: e.g. Start / Programs / Programming Tools /
GNUstep / Shell

⇒ Enter commands to compile your program
Hit Return (or Enter) after every command!

René Hexel An Introduction to C

Overview
Compiling and Makefiles

Programming in C

Using the Command Line compiler
Creating and using Makefiles

Compiling a C program using clang or gcc

Once on the command line change to the directory (folder)
your program is in

cd /my/example/directory
Compile the source code (e.g. Hello.c)

clang Hello.c
Compiles Hello.c into an executable called a.out (or
a.exe on Windows)

clang -o Hello Hello.c
Compiles Hello.c into an executable called Hello
On Windows always use Hello.exe instead of just Hello

clang -Wall -o Hello Hello.c
Prints all warnings about possible problems
Always use -Wall when compiling your programs!

./Hello
Run the Hello command from the current directory

To use gcc, simply replace clang with gcc

René Hexel An Introduction to C

Overview
Compiling and Makefiles

Programming in C

Using the Command Line compiler
Creating and using Makefiles

Makefiles

Save compile time
only recompile what is necessary

Help avoiding mistakes
prevent outdated modules from being linked together

Language independent
work with any programming language

C, C++, Objective-C, Java, . . .

René Hexel An Introduction to C

Overview
Compiling and Makefiles

Programming in C

Using the Command Line compiler
Creating and using Makefiles

How do Makefiles work?

Example (A simple Makefile)

Hello: Hello.c
clang -Wall -o Hello Hello.c

First Line: Dependency Tree
Target and Sources
Target: the module to be built (e.g. Hello)
Sources: pre-requisites (e.g. Hello.c)

René Hexel An Introduction to C

Overview
Compiling and Makefiles

Programming in C

Using the Command Line compiler
Creating and using Makefiles

Make Rules

Example (A simple Makefile)

Hello: Hello.c
clang -Wall -o Hello Hello.c

Second Line: Make rule
command to execute

clang -Wall -o Hello Hello.c

requires a tab character (not spaces) for indentation

René Hexel An Introduction to C

Overview
Compiling and Makefiles

Programming in C

Using the Command Line compiler
Creating and using Makefiles

Multiple Targets

Example (Makefile for compiling multiple Modules)
Program: module1.o module2.o

clang -o Program module1.o module2.o

module1.o: module1.c
clang -c -Wall -o module1.o module1.c

module2.o: module2.c module2.h
clang -c -Wall -o module2.o module2.c

Default Target: first target (Program)
link two object files (module1.o and module2.o) into one
program (Program)

René Hexel An Introduction to C

Overview
Compiling and Makefiles

Programming in C

Using the Command Line compiler
Creating and using Makefiles

Multiple Targets (2)

Example (Makefile for compiling multiple Modules)
Program: module1.o module2.o

clang -o Program module1.o module2.o

module1.o: module1.c
clang -c -Wall -o module1.o module1.c

module2.o: module2.c module2.h
clang -c -Wall -o module2.o module2.c

Second Target: module1.o
rule to compile object file module1.o from module1.c
clang -c compiles a single module (not a full executable)

René Hexel An Introduction to C

Overview
Compiling and Makefiles

Programming in C

Using the Command Line compiler
Creating and using Makefiles

Multiple Targets (3)

Example (Makefile for compiling multiple Modules)
Program: module1.o module2.o

clang -o Program module1.o module2.o

module1.o: module1.c
clang -c -Wall -o module1.o module1.c

module2.o: module2.c module2.h
clang -c -Wall -o module2.o module2.c

Third Target: module2.o
compile module2.o from source module2.c
also depends on module2.h (header file)

René Hexel An Introduction to C

Overview
Compiling and Makefiles

Programming in C

Using the Command Line compiler
Creating and using Makefiles

Multiple Programs

Example (Makefile for compiling multiple Programs)
all: Program1 Program2

Program1: module1.o
clang -o Program module1.o

Program2: module2.o module3.o
clang -o Program module2.o module3.o

module1.o: module1.c
clang -c -Wall -o module1.o module1.c

module2.o: module2.c module2.h
clang -c -Wall -o module2.o module2.c

module3.o: module3.c module3.h
clang -c -Wall -o module3.o module3.c

’all’ target:
compiles all programs (Program1 and Program2)
does not have any compiler comands itself!

René Hexel An Introduction to C

Overview
Compiling and Makefiles

Programming in C

Using the Command Line compiler
Creating and using Makefiles

Generic Rules

Save lots of typing
avoid repeating the same compiler call over and over again

Help with consistency
what if you want to change the compiler invocation?

Simply list suffixes to convert from one file type to another
e.g. .c.o to compile a .c to a .o file

René Hexel An Introduction to C

Overview
Compiling and Makefiles

Programming in C

Using the Command Line compiler
Creating and using Makefiles

Generic Rule Example

Example (Makefile containing a generic rule)
.c.o:

clang -c -Wall -o $*.o $*.c

Program: module1.o module2.o
clang -o Program module1.o module2.o

module2.o: module2.c module2.h

.c.o:
how to compile a .c into a .o file
$* gets replaced by the file name (without extension)

René Hexel An Introduction to C

Overview
Compiling and Makefiles

Programming in C

Using the Command Line compiler
Creating and using Makefiles

Generic Rule Example (2)

Example (Makefile containing a generic rule)
.c.o:

clang -c -Wall -o $*.o $*.c

Program: module1.o module2.o
clang -o Program module1.o module2.o

module2.o: module2.c module2.h

No need for a module1.o: rule!
compiler already knows how to compile .c into .o
But: module2.o needs a rule (also depends on .h)

René Hexel An Introduction to C

Overview
Compiling and Makefiles

Programming in C

Using the Command Line compiler
Creating and using Makefiles

Generic Rules for Languages other than C

The make utility by default only knows about C
“what if I want to compile a different language?”

Suffixes can be specified
using the .SUFFIXES: command, e.g.:
.SUFFIXES: .o .m

“a .o file can also be compiled from a .m (Objective-C) file”

René Hexel An Introduction to C

Overview
Compiling and Makefiles

Programming in C

Using the Command Line compiler
Creating and using Makefiles

Make Variables

Allow more flexible make files
“what if the compiler is not called clang?”

Variables allow assigning a value, e.g:
CC=gcc

Varables can be used using $(variable), e.g.:
$(CC) -c -Wall -o $*.o $*.c
will replace $(CC) with gcc

René Hexel An Introduction to C

Overview
Compiling and Makefiles

Programming in C

Using the Command Line compiler
Creating and using Makefiles

Mixed Makefile Example: Objective-C

Example (Makefile for a mixed C/Objective-C program)
#
A mixed makefile example for C and Objective-C on Mac OS X
#
CC=clang

.SUFFIXES: .o .c

.SUFFIXES: .o .m

.c.o:
$(CC) -c -Wall -o $*.o $*.c

.m.o:
$(CC) -c -Wall -o $*.o $*.m

Program: cmodule.o objcmodule.o
$(CC) -o Program cmodule.o objcmodule.o -framework Foundation

objcmodule.o: objcmodule.m objcmodule.h

René Hexel An Introduction to C

Overview
Compiling and Makefiles

Programming in C

Using the Command Line compiler
Creating and using Makefiles

Mixed Makefile Example: C++

Example (Makefile for a mixed C/C++ program)
#
A mixed makefile example for C and C++
#
CC=clang
CPLUS=g++

.SUFFIXES: .o .c

.SUFFIXES: .o .cc

.c.o:
$(CC) -c -Wall -o $*.o $*.c

.cc.o:
$(CPLUS) -c -Wall -o $*.o $*.cc

Program: cmodule.o cppmodule.o
$(CPLUS) -o Program cmodule.o cppmodule.o

cppmodule.o: cppmodule.cc cppmodule.h

René Hexel An Introduction to C

Overview
Compiling and Makefiles

Programming in C

Comments and Documentation
C Data Types and Functions
The Preprocessor

Comments

Plain C allows comments between /* and */
/* this is a valid C comment */

Comments may not be nested
/* this /* is not a valid C comment */ */

C99 also allows double-slash // end-of-line comments
// this is a valid comment
no closing sequence needed – the comment ends at the
end of the line

René Hexel An Introduction to C

Overview
Compiling and Makefiles

Programming in C

Comments and Documentation
C Data Types and Functions
The Preprocessor

Comment Example

Example (Program with Comments)
/*
* This program prints "j = 007".

* It does not take any parameters and returns 0 on success.

*/
int main(void) /* main function definition */
{

int j; // our int variable to play with

j = 7; // assign a value to be printed
printf("j = %03.3d\n", j); // print value with leading zeroes

return 0; // everything is fine, exit program
}

René Hexel An Introduction to C

Overview
Compiling and Makefiles

Programming in C

Comments and Documentation
C Data Types and Functions
The Preprocessor

Where to put comments?

At the beginning of each file (module)
describe the name of the module, purpose, author, and
dates when first created and last modified

Before each function (method)
describe the purpose of the function or method,
input parameters (arguments),
return values (output parameters), and
pre- and postconditions (contract)

At the beginning of each class
describe the purpose of the class, and
things to keep in mind when using this class

René Hexel An Introduction to C

Overview
Compiling and Makefiles

Programming in C

Comments and Documentation
C Data Types and Functions
The Preprocessor

How to comment?

Use comments to document important parts of your code
Document key functionality
Don’t re-iterate the obvious!

Example (Bad comment)

i = 7; // assign 7 to i

Example (Better)

i = 7; // seven iterations to go

René Hexel An Introduction to C

Overview
Compiling and Makefiles

Programming in C

Comments and Documentation
C Data Types and Functions
The Preprocessor

Extracting Documentation from your Program

Everybody hates writing documentation, right?
can be lots of work
duplicated efforts if all the information is already in the
source code

The good news: Tools that extract documentation from the
source

JavaDoc (Java specific)
HeaderDoc (http://developer.apple.com/
opensource/tools/headerdoc.html)

in the labs: can use JavaDoc syntax for C, C++, Objective-C
Doxygen
(http://www.stack.nl/~dimitri/doxygen/)

similar, installed on dwarf

AutoGSDoc
part of the GNUstep environment on Linux and Windows

René Hexel An Introduction to C

http://java.sun.com/j2se/javadoc/
http://developer.apple.com/opensource/tools/headerdoc.html
http://developer.apple.com/opensource/tools/headerdoc.html
http://www.stack.nl/~dimitri/doxygen/
http://www.gnustep.org/resources/documentation/Developer/Tools/Reference/autogsdoc.html

Overview
Compiling and Makefiles

Programming in C

Comments and Documentation
C Data Types and Functions
The Preprocessor

Automatic Documentation Example

Example
/**
* The main() function of this program prints "Hello World" and

* then exits. This function does not take any parameters and

* returns 0 to indicate success.

*/
int main(void)
{

printf("Hello World!\n");
return 0;

}

René Hexel An Introduction to C

Overview
Compiling and Makefiles

Programming in C

Comments and Documentation
C Data Types and Functions
The Preprocessor

C Statements

C Statements use the same Syntax as in Java
There is only a small number of keywords
Let’s have a look at some of them!

Operators: +, -, ++, . . .
Conditionals: if, case, ?
Loops: do, while, for
Control: return, break, continue, . . .

René Hexel An Introduction to C

Overview
Compiling and Makefiles

Programming in C

Comments and Documentation
C Data Types and Functions
The Preprocessor

Increment/Decrement Example

Example (What does this program print?)
int main(void)
{

int x = 5;

--x; // pre-decrement
printf("x = %d\n", x++); // post-increment

printf("x now is %d\n", x); // print final result

return 0;
}

Answer
x = 4
x now is 5

René Hexel An Introduction to C

Overview
Compiling and Makefiles

Programming in C

Comments and Documentation
C Data Types and Functions
The Preprocessor

If Statement Example

Example (What does this program print?)
int main(void)
{

int x = 5;

if (x < 2) // check if x < 2
{

printf("%d < 2\n", x);
}
else
{

printf("%d >= 2\n", x);
}

return 0;
}

Answer
5 >= 2

René Hexel An Introduction to C

Overview
Compiling and Makefiles

Programming in C

Comments and Documentation
C Data Types and Functions
The Preprocessor

Case Statement Example

Example (What does this program print?)
int main(void)
{ int x = 5;

switch (x) // let’s see what the value of x is
{

case 0:
printf("x is zero\n");
break;

case 5:
printf("x is five\n");

default:
printf("x is %d\n", x);

}

return 0;
}

Answer
x is five
x is 5

René Hexel An Introduction to C

Overview
Compiling and Makefiles

Programming in C

Comments and Documentation
C Data Types and Functions
The Preprocessor

Question Mark Operator Example

Example (What does this program print?)
int main(void)
{

int x = 5;

printf("x is %s\n", x > 2 ? "greater than 2": "not greater 2");

return 0;
}

Answer
x is greater than 2

René Hexel An Introduction to C

Overview
Compiling and Makefiles

Programming in C

Comments and Documentation
C Data Types and Functions
The Preprocessor

For Loop Example

Example (What does this program print?)
int main(void)
{

int x = 5, y = 0, i; // declare multiple variables

for (i = 0; i < x; i++) // a ’for’ loop
{

y += i; // add i to y
}

printf("y = %d\n", y); // print the result

return 0;
}

Answer
y = 10

René Hexel An Introduction to C

Overview
Compiling and Makefiles

Programming in C

Comments and Documentation
C Data Types and Functions
The Preprocessor

While Loop Example

Example (What does this program print – are you sure?)
int main(void)
{

int x = 5, y = 0, i = 5; // declare some variables

while (i < x) // a ’while’ loop
{

y += i++; // add i to y, then increment i
}

printf("y = %d\n", y); // print the result

return 0;
}

Answer
y = 0

René Hexel An Introduction to C

Overview
Compiling and Makefiles

Programming in C

Comments and Documentation
C Data Types and Functions
The Preprocessor

Do/While Loop Example

Example (What does this program print?)
int main(void)
{

int x = 5, y = 0, i = 5; // declare some variables

do // a ’do/while’ loop
{

y += i++; // add i to y, then increment i
}
while (i < x);

printf("y = %d\n", y); // print the result

return 0;
}

Answer
y = 5

René Hexel An Introduction to C

Overview
Compiling and Makefiles

Programming in C

Comments and Documentation
C Data Types and Functions
The Preprocessor

Break/Continue Example

Example (What does this program print?)
int main(void)
{

int x = 5, y = 0, i = 0; // declare some variables

while (i++ < x)
{

if (i == 1) continue; // continue if i is 1
if (i == 3) break; // break if i is 3
y += i;

}

printf("y = %d\n", y); // print the result

return 0;
}

Answer
y = 2

René Hexel An Introduction to C

Overview
Compiling and Makefiles

Programming in C

Comments and Documentation
C Data Types and Functions
The Preprocessor

Primitive data types

Primitive data types
char, short, int, long, long long

integer data types (e.g. 5 or -7)
can be prefixed with unsigned (no negative numbers) or
signed
sizes are compiler specific (e.g. 4 bytes for an int), but:
char ≤ short ≤ int ≤ long ≤ long long
unless unsigned is specified, all types (except char) are
always signed
whether char is unsigned or signed by default is
compiler specific

float, double, long double
floating point (real) numbers
e.g. 3.5, -7.2e4

René Hexel An Introduction to C

Overview
Compiling and Makefiles

Programming in C

Comments and Documentation
C Data Types and Functions
The Preprocessor

Primitive Data Type Example

Example (What does this program print?)
int main(void)
{

int x = -2; // a signed integer variable
unsigned y = 3; // an unsigned integer variable
float f = 2.5; // a floating point variable
double r, d = -2.5e3; // two double variables ’r’ and ’d’

r = d / f * x + y; // let’s do some maths
printf("r = %lg\n", r); // and print the result

return 0; // exit main() and report success
}

Answer
r = 2003

René Hexel An Introduction to C

Overview
Compiling and Makefiles

Programming in C

Comments and Documentation
C Data Types and Functions
The Preprocessor

C Arrays

Square brackets [] denote a fixed-size array
The size of an array is static and cannot be changed!

Example

long a[5] array of 5 long integers
unsigned u[4] array of 4 unsigned integers

unsigned long u[4] array of 4 unsigned, long integers
float v[3] array of 3 floats (e.g. a 3D vector)

double m[4][5] a 2-dimensional 4-by-5 array
(matrix) of doubles

char s[5] array of 5 characters
⇒ a string!

René Hexel An Introduction to C

Overview
Compiling and Makefiles

Programming in C

Comments and Documentation
C Data Types and Functions
The Preprocessor

String Example using Arrays

Example (What does this program print?)
int main(void)
{

char s1[5] = "to C"; // a string ’s1’ of five characters
char s2[8] = "Welcome"; // a string ’s2’ of eight characters

printf("%s %s\n", s2, s1); // print s2 followed by s1

return 0; // exit main() and report success
}

Answer
Welcome to C
Does anyone notice anything strange? Each string has an
invisible character \0 at the end to denote the end of the string!
Strings need space for one more character in addition to their
length!

René Hexel An Introduction to C

Overview
Compiling and Makefiles

Programming in C

Comments and Documentation
C Data Types and Functions
The Preprocessor

Indexing Arrays

Example (What does this program print?)
int main(void)
{

int years[3]; // an array of three ints

years[0] = 2006; // first element
years[1] = 2007; // second element
years[2] = 2008; // third element

int year = years[2]; // pick element at index two

printf("The year is %d\n", year); // print the year

return 0;
}

Answer
The year is 2008

René Hexel An Introduction to C

Overview
Compiling and Makefiles

Programming in C

Comments and Documentation
C Data Types and Functions
The Preprocessor

Static Initialisation of Arrays

Example (What does this program print?)
int main(void)
{

int i = 1; // array index to use
int years[3] = { 2006, 2007, 2008 }; // an array of three ints
int year = years[i]; // pick the year with index ’i’

printf("The year at index %d is %d\n", i, year);

return 0;
}

Answer
The year at index 1 is 2007

René Hexel An Introduction to C

Overview
Compiling and Makefiles

Programming in C

Comments and Documentation
C Data Types and Functions
The Preprocessor

Properties of C Arrays

Multiple elements of the same kind
laid out contiguously in memory

Can contain any data type
Fixed (maximum) size
Single or multi dimensional

René Hexel An Introduction to C

Overview
Compiling and Makefiles

Programming in C

Comments and Documentation
C Data Types and Functions
The Preprocessor

Compound Data Types

Structures, Unions, and Bit Fields
Can contain multiple different data types
Look very similar to classes in Java
Member variables, but no methods!

René Hexel An Introduction to C

Overview
Compiling and Makefiles

Programming in C

Comments and Documentation
C Data Types and Functions
The Preprocessor

Structure example

Example (What does this program print?)
struct Profit // definition of a ’Profit’ structure
{

int year; // the year this profit is reported for
double dollars; // the actual profit in dollars

};

int main(void) // here starts the actual program (main)
{

struct Profit myProfit; // a ’myProfit’ variable of type ’Profit’

myProfit.year = 2007; // myProfit is for the year 2007
myProfit.dollars = 1234.5; // with a bottom line of 1234.5 dollars

printf("In %d, I made %g dollars\n", myProfit.year, myProfit.dollars);

return 0;
}

Answer
In 2007, I made 1234.5 dollars

René Hexel An Introduction to C

Overview
Compiling and Makefiles

Programming in C

Comments and Documentation
C Data Types and Functions
The Preprocessor

Static Initialisation of Structures

Example (What does this program print?)
struct Profit // last example’s ’Profit’ structure
{

int year;
double dollars;

};

int main(void)
{

/*
* initialise myProfit statically

*/
struct Profit myProfit = { 2007, 1234.5 };

printf("In %d, I made %g dollars\n", myProfit.year, myProfit.dollars);

return 0;
}

Answer
In 2007, I made 1234.5 dollars

René Hexel An Introduction to C

Overview
Compiling and Makefiles

Programming in C

Comments and Documentation
C Data Types and Functions
The Preprocessor

C Functions

Similar to Java methods
syntax for parameters and return values is the same

Functions are global rather than local
no two global functions can have the same name!

René Hexel An Introduction to C

Overview
Compiling and Makefiles

Programming in C

Comments and Documentation
C Data Types and Functions
The Preprocessor

Function Example

Example (What does this program print?)
/**
* a simple calc function that takes a signed and an unsigned integer

* and returns a double

*/
double calc(int x, unsigned y)
{

float f = 2.5;
double d = 2.5e3;

return d / f * x + y; // let’s do some maths
}

int main(void)
{

double r = calc(2, 3); // invoke calc and store result in r

printf("r = %lg\n", r); // and print the result

return 0; // exit main() and report success
}

Answer
r = 2003

René Hexel An Introduction to C

Overview
Compiling and Makefiles

Programming in C

Comments and Documentation
C Data Types and Functions
The Preprocessor

Function Declarations

C Compiler only knows code it has already seen
Functions need to be declared for the compiler to know
them
Forward declarations allow function calls before the actual
function gets defined
Syntax: function header followed by ; – e.g.:

int main(void);
int myFunction(int, double);
double average(double, double);

René Hexel An Introduction to C

Overview
Compiling and Makefiles

Programming in C

Comments and Documentation
C Data Types and Functions
The Preprocessor

Function Declaration Example

Example
double calc(int, unsigned); // function declaration of calc()

int main(void)
{

double r = calc(2, 3); // invoke calc and store result in r

printf("r = %lg\n", r); // print the result

return 0;
}

double calc(int x, unsigned y) // the actual calc() function
{

float f = 2.5;
double d = 2.5e3;

return d / f * x + y;
}

René Hexel An Introduction to C

Overview
Compiling and Makefiles

Programming in C

Comments and Documentation
C Data Types and Functions
The Preprocessor

Remember this Example?

Example (What is wrong with this program?)
int main(void)
{
printf("Hello World!\n");
return 0;

}

Answer
Hello.c: In function ’main’: Hello.c:3: warning:
implicit declaration of function ’printf’ Hello.c:3:
warning: incompatible implicit declaration of built-in
function ’printf’

René Hexel An Introduction to C

Overview
Compiling and Makefiles

Programming in C

Comments and Documentation
C Data Types and Functions
The Preprocessor

Error-Free version of “Hello World”

Example (Using the Pre-processor)
#include <stdio.h> // include the declaration for printf()

int main(void)
{

printf("Hello World!\n");
return 0;

}

#include <...> includes a header file
#include <stdio.h> includes the relevant declaration
for printf()
similar functionality to “import” in Java

René Hexel An Introduction to C

Overview
Compiling and Makefiles

Programming in C

Comments and Documentation
C Data Types and Functions
The Preprocessor

#include

Includes global or local header files
#include <stdio.h> // include a global header file

#include "hello.h" // include a local header file

Header files are just files that get inserted instead of the
#include statement

could be any C code
by convention, only contains declarations but no definitions!
use a .h extension

API defines a set of standard header files (include files)

René Hexel An Introduction to C

Overview
Compiling and Makefiles

Programming in C

Comments and Documentation
C Data Types and Functions
The Preprocessor

ISO C Standard Include Files

#include <stdio.h>
Standard Input/Output header
printf() for formatted output
scanf() for formatted input, . . .

#include <string.h>
String functions

#include <math.h>
Mathematics functions

#include <stdlib.h>
Memory management, data conversion, exit(), etc.

Defined in the C Language standard
http://std.dkuug.dk/JTC1/SC22/WG14/www/docs/
n843.htm (draft, section 7.1.2 and Annex B)

API defines a set of standard header files (include files)

René Hexel An Introduction to C

http://std.dkuug.dk/JTC1/SC22/WG14/www/docs/n843.htm
http://std.dkuug.dk/JTC1/SC22/WG14/www/docs/n843.htm

Overview
Compiling and Makefiles

Programming in C

Comments and Documentation
C Data Types and Functions
The Preprocessor

#define Macros

All the C preprocessor does is text replacement
before the actual compiler kicks in
but it is very good at that!

#define A B
replaces A with B in the code
A and B can be complex text

e.g. Constants
#define EXIT_SUCCESS 0

replaces EXIT_SUCCESS with 0 in the code
e.g. return EXIT_SUCCESS; instead of return 0;
the purpose of the return statement is explained in code
makes the code more readable

René Hexel An Introduction to C

Overview
Compiling and Makefiles

Programming in C

Comments and Documentation
C Data Types and Functions
The Preprocessor

#define Functional Macros

More sophisticated than simple constants
#define ERROR(x) printf("Error %d\n", x)

replaces ERROR() with the complex printf() statement
replaces x with the text parameter given to ERROR()
ERROR(5); gets translated to

printf("Error %d\n", 5)
prints “Error 5”

René Hexel An Introduction to C

Overview
Compiling and Makefiles

Programming in C

Comments and Documentation
C Data Types and Functions
The Preprocessor

Macro Side Effects

#define is very powerful
Lets you replace functions with macros

can increase code readability
can increase code efficiency
can reduce errors for repetitive code sequences

use macros instead of copy/paste
Don’t overdo it!

use functions/methods where you can
only use macros where it increases code readability

Beware of side effects!
Macro invocations ar not actual method invocations!
All #define does it text replacement!

René Hexel An Introduction to C

Overview
Compiling and Makefiles

Programming in C

Comments and Documentation
C Data Types and Functions
The Preprocessor

Macro Pitfalls

Example (What does this code print?)
#define TRIPLE(x) printf("%d * 3 = %d", x, x * 3)

int j = 4;
TRIPLE(j + 1); // prints "5 * 3 = 15", right?

Answer
5 * 3 = 7
Because TRIPLE(i + 1) gets expanded to:
printf("%d * 3 = %d", i + 1, i + 1 * 3);

Important
⇒ Always put Macro arguments in brackets ()

e.g. #define TRIPLE(x) printf("%d * 3 = %d",
(x), (x) * 3);

René Hexel An Introduction to C

Overview
Compiling and Makefiles

Programming in C

Comments and Documentation
C Data Types and Functions
The Preprocessor

Side Effect Example

Example (Do the brackets help here?)
#define TEST(x) if ((x) < 0) printf("%d < 0\n", (x))

int i = -1;
TEST(i++); // what does this statement yield?
printf("i = %d\n", i); // what does this statement print?

Answer
0 < 0
i = 1

Why?
Because TEST(i++) gets expanded to:
if ((i++) < 0) printf("%d < 0\n", (i++));

René Hexel An Introduction to C

	Overview
	Motivation for C, C++, and Objective-C
	The C Programming Language

	Compiling and Makefiles
	Using the Command Line compiler
	Creating and using Makefiles

	Programming in C
	Comments and Documentation
	C Data Types and Functions
	The Preprocessor

