Hierarchical Collections: Trees 2501ICT/7421ICTNathan

René Hexel

School of Information and Communication Technology Griffith University

Semester 1, 2012

Outline

(2) Expressions and Grammar Parsing

Hierarchical Collections

- Tree definition
- Types of Trees
- Binary Expressions
 - expression trees
 - tree traversals: pre-, in-, postorder
- Examples
 - generating Postfix
 - parsing

Tree Definition

- Each node has at most one predecessor
 - Parent
- Many Successors
 - Children
- Siblings
 - nodes sharing the same parent (eg, D₂ and D₃)

Expressions and Grammar Parsing Search Trees

Tree Definition (2)

- Topmost Node
 - root
- Childred, children of children, ...
 - Descendants
 - Successors
- ⇒ All nodes are successors of root

Expressions and Grammar Parsing Search Trees

Tree Definition (3)

- Leaf Nodes
 - nodes without successors
 - $\rightarrow D_3$ and D_4
- Frontier
 - set of all leaf nodes

Expressions and Grammar Parsing Search Trees

Tree Definition (4)

- Interior Nodes
 - nodes with at least one successor
 - $\rightarrow D_1$ and D_2
- Ancestors
 - immediate or indirect predecessors
 - $\rightarrow D_1$ is an ancestor of D_2 , D_3 , and D_4

Expressions and Grammar Parsing Search Trees

Tree Definition (5)

- Levels are numbered from 0
 - ightarrow level 0 is always the root
- This tree has 3 Levels
 - Level 0: D₁
 - Level 1: D₂ and D₃
 - Level 2: D₄

Binary Trees

Binary Trees

- → allow at most *two* children per node
- Generic Trees
 - allow any number of children per node

Generic Trees

- Order of the Tree
 - maximum number of children allowed for any given node
 - \rightarrow e.g. Order 3

Expressions and Grammar Parsing Search Trees

Tree Applications

Parsing Languages

- Computer Languages, Mathematical Formulae
- Natural Languages
- Searchable Data Structures
 - Databases (e.g., B-Trees)
 - Heaps and Balanced Trees
- Sorting and organising Data

Parsers

Read in Expressions

 \rightarrow (2+3) * 5

- Check Syntactical Correctness
 - is everything where it should be?
- Create Parse Tree
 - evaluator checks semantic meaning and processes the data in the Tree to produce meaningful output

Binary Expressions

- Stored in Binary Trees
 - \rightarrow 3+5
- Numbers
 - leaf nodes
- Operators
 - interior nodes
- Operands
 - contained in a subtree of the expression

Example Expression

3 * 4 + 5

Operator Precedence

3 * (4 + 5)

- The *higher* the precedence, the *lower* in the tree
 - \rightarrow overridden by parentheses

Operator Precedence (2)

3 + 4 + 5

 if operators have equal precedence, the ones on the left appear lower in the tree when parsed from left to right!

Evaluating an Expression Tree

- Begin at the root Node
- If a number, return it, otherwise
- Run the operator with the results of
 - evaluating its left and right subtrees, and
 - return this value

Evaluating Example

3*(4+5)

- Evaluation starts at the top
- is an operator
 - ⇒ evaluate left and right subtrees first!
- 3 is a number
 - \Rightarrow return 3
- + is an operator
 - ⇒ evaluate left and right subtrees first!
- 4 is a number
 - \Rightarrow return 4
- 5 is a number
 - \Rightarrow return 5

René Hexel

Hierarchical Collections: Trees

Evaluation Pseudocode

Pseudo code for tree evaluation

```
evaluate (node)
   if node is a number
     return number;
   else
     left = evaluate(node.left);
     right = evaluate(node.right);
     return compute(node, left, right);
```

Binary Tree Traversals

Preorder

 \rightarrow visit node, then go left, then go right

Inorder

 \rightarrow go left, then visit node then go right

• Postorder: Depth First

ightarrow go left, then go right, then visit node

Breadth First

 $\rightarrow~$ level 0, then level 1, then level 2, etc.

Equivalence between Traversal and Notation

Preorder, Inorder, and Postorder

 $\rightarrow\,$ correspond with Prefix, Infix, and Postfix notations of an expression

٩	Infi	x:								3	+	5
	_		_			· · · ·						

- Prefix = Polish notation (PN): + (3, 5)
- Postfix = reverse Polish notation (RPN): 3 5 +

\Rightarrow use the same generic recursive algorithm!

Prefix Pseudocode

Prefix Evaluation

```
String prefix(node)
{
    if (node == NULL)
        return "";
    else
        return node +
            prefix(node.left) +
                prefix(node.right);
}
```

Infix Pseudocode

Infix Evaluation

Postfix Pseudocode

Postfix Evaluation

```
String postfix(node)
{
    if (node == NULL)
        return "";
    else
        return postfix(node.left) +
            postfix(node.right) +
            node;
}
```

Grammar Parsing

Infix Expressions

```
Expression = Term { + | - Term }
Term = Factor { * | / Factor }
Factor = number | ( Expression )
```

• Represents standard maths formulas

● e.g.: 3 + 4 * (5 - (6/7))

- can be used to create a parse tree!
 - \rightarrow recursive descent parsing

Recursive Descent Parsing

Expression = Term { + | - Term }

```
Expression()
{
   Term();
   while (token == '+'||
        token == '-')
   {
      get_token();
      Term();
   }
}
```

Recursive Descent Parsing

Term = Factor { * | / Factor }

```
Term()
{
   Factor();
   while (token == '*'||
        token == '/')
   {
      get_token();
      Factor();
   }
}
```

Recursive Descent Parsing

Factor = number | (Expression)

```
Factor() {
  switch (token) {
    case number: get_token(); break;
    case ' (': get_token(); Expression();
    if (token != ')')
        error("No closing ')'");
    get_token();
  break;
```

default:

```
error("Error '%s'\n", token);
```

Binary Search Tree

- "Sorted Array" stored in a tree
 - left to right order
 - e.g. **A B C**

Binary Tree Search

- Start at the root node n
 - searching for an object s
- 2 if s == n then we are finished
- (a) if s < n then n := left child
- ④ if s > n then n := right child
- repeat from step 2 until finished
 - ... either s has been found
 - ... a leaf node has been reached, but s has not been found

Recursive Pseudocode

Recursive Pseudocode

Search Tree Complexity

- Depends on the Balance of the Tree
- Unbalanced Tree:
 - *O*(*n*)
- Balanced Tree
 - *O*(log *n*)
 - equivalent to Binary Search in Sorted Array

Balanced Trees

- Balanced Tree
 - Difference in height of both subtrees of any node in the tree is either 0 or 1
- Unbalanced Tree:
 - Difference of subtree heights > 1
- Perfectly Balanced Tree
 - Balanced Tree with leaves only on one or two levels

Creating a Search Tree

Incrementally

- Sort in a new Node n
- Search if n already exists
 - Finished if *n* exists (do nothing)
 - Otherwise add n as the left or right child of the last node searched (depending on whether n was smaller or bigger than the last node)
- Produces an ad-hoc Search Tree
 - Not guaranteed to be balanced!

Balancing a Complete Tree

Write out the Search Tree in sorted order

- e.g. in alphabetical order
- \rightarrow write to sorted array/list
- → write to file
- Pread back the sorted data, creating a Balanced Tree
 - Recursively create Left Children, Root, then Right Children for each subtree
 - Creates a perfectly balanced tree!

Balancing ReadTree Algorithm

Balancing ReadTree Algorithm

}

```
BTNode *readTree(BufferedReader *file, int n)
        if (n <= 0) return nil;
        BTNode *node = [BTNode new];
        [node setLeft: readTree(file, n/2)];
        [node setValue: [file readLine]];
        [node setRight: readTree(file,
(n-1)/2)];
        return node;
```

Self-Balancing Trees

• Problem: writing out and reading back

- \rightarrow takes time
- \rightarrow requires space
 - Read back the sorted data, creating a Balanced Tree
 - Sorted data are available in 3 places (original tree, file/array, and final, balanced tree)
- Alternative: keep the tree balanced
 - insertion operation needs to check if tree is still balanced
 - re-balance if adding a node breaks balance

Red-Black Tree

- Every node is either red or black
- 2 The root node is *black*
- All leaves are black
 - leaves are dummy empty nodes at the end of the tree
- Both children of red nodes are black
- All paths from any given node to its descendant leaves contain the same number of black nodes

Red-Black Tree Definitions

Grandparent

- the parent of the parent node
- Uncle
 - the "other child" of the grandparent, i.e.

- Both children of red nodes are black
- All paths from any given node to its descendant leaves contain the *same number* of *black* nodes

- Add node as in a binary search tree
 - → default colour is red
- Case 1: new node n is root
 - \rightarrow repaint as *black*
- Case 2: parent p of n is black
 - ⇒ everything is fine!

- Case 3: both parent and uncle are red
 - \rightarrow repaint parent and uncle as *black*
 - \rightarrow repaint grandparent as *red* (property 5)
 - may now violate property 2 (root is *black*) or property 4 (both children of red nodes are *black*)
 - \Rightarrow therefore recursively restart with case 1 on the grandparent

- Case 4: parent p of new node n is red, uncle u is black
 - grandparent g
 - if n == p.right && p == g.left
 - \rightarrow perform *left rotation* to switch roles of *n* and *p*
 - if n == p.left && p == g.right
 - \rightarrow perform *right rotation* to switch roles of *n* and *p*
 - \rightarrow continue with *Case 5*!

- Case 5: parent p of new node n is red, uncle u is black
 - switch the colours of p and grandparent g
 - if n == p.left && p == g.left
 - \rightarrow perform *right rotation* on *g*
 - if n == p.right && p == g.right
 - \rightarrow perform *left rotation* on *g*
 - ⇒ Terminal manoeuvre, no further repaint needed!

Strings in Search Trees

- Storing long strings in binary search trees can be inefficient
 - Requires full string (key) comparisons for every node
 - $\rightarrow O(n \log n)$ search complexity if average string length approximates the number of nodes *n*
- Trie
 - Retrieval of keys while traversing a search tree

- trees that store the individual characters of the key strings
- common prefixes share the same path through the search tree, e.g.
 - o on
 - off
 - often

Trie Efficiency

- Time and Space efficiency
 - ightarrow large number of long words
- Efficient for spell checking
 - → common prefixes determine tree height
 - English words do not share long common prefixes
 - 5-7 node visits, regardless of whether 10,000 or 100,000 words are stored!
 - compare with 13 = log₂ 10000 or 17 = log₂ 100000 node visits for optimal binary search trees!

Trie Challenges

Prefix detection

- how to distinguish words such as "are" and "area"
- \rightarrow requires a separate *end of word* mark
- Efficient search requires O(1) character search in nodes
 - \rightarrow requires (array) space for each node, indexed by char
 - 26+1 pointers for A-Z (plus end of word mark)
 - 127+1 pointers for ASCII
 - 65536 pointers for UTF-16
 - 4294967296 pointers for UTF-32 (full Unicode)
- Suffixes are different node types
 - \rightarrow makes trie handling code more complex