Graphs 2501ICT/7421ICTNathan

René Hexel

School of Information and Communication Technology Griffith University

Semester 1, 2012

Outline

Introduction to Graphs

- Overview
- Basic Graph Definitions
- Directed Graphs
- 2 Graph Algorithms and Implementations
 - Graph Representations
 - Graph Algorithms and Implementations
- Output State St
 - Sets and Maps

Overview Basic Graph Definitions Directed Graphs

Graphs and Unordered Collections

Overview

Overview Basic Graph Definitions Directed Graphs

- Definition
- Graph Representations
- Basic Operations
 - Graph Traversals
 - Topological Sort
 - Trees within Graphs
- Unordered Collections

Overview Basic Graph Definitions Directed Graphs

Graph Definition

- Multiple Successors/Predecessors
 - Lists: one successor, one predecessor
 - Trees: several successors, one predecessor
- A Graph is a
 - · Set of points connected by line segments
 - → Points are called *vertices* (V) or *nodes*
 - \rightarrow Lines are called *edges* (E)

Graph Layout

Overview Basic Graph Definitions Directed Graphs

- Sets of
 - \rightarrow V: Vertices (Nodes)
 - \rightarrow *E*: Edges
 - Each Edge e ∈ E connects two Nodes v ∈ V

Introduction to Graphs

Graph Algorithms and Implementations Unordered Collections Overview Basic Graph Definitions Directed Graphs

Unlabelled Graphs

A C B D

- No labels for
 - \rightarrow Vertices
 - \rightarrow Edges

Introduction to Graphs

Graph Algorithms and Implementations Unordered Collections Overview Basic Graph Definitions Directed Graphs

Α

С

D

Ε

Labelled Vertices

Overview Basic Graph Definitions Directed Graphs

Weighted Graphs

- Labelled Vertices and Edges
- Edge labels typically are numbers
 - interpreted as the weight
 - → cost of going from one vertex to the next
 - → if no edge weight is given, 1 is assumed

Overview Basic Graph Definitions Directed Graphs

Disconnected Graphs

• One or more Nodes are not connected

Overview Basic Graph Definitions Directed Graphs

Connected Graphs

→ at least one *path* exists from each to every other vertex

Overview Basic Graph Definitions Directed Graphs

Connected Components

 the whole graph may not be connected, but it consists of connected subgraphs (components)

Overview Basic Graph Definitions Directed Graphs

Complete Graphs

- \rightarrow All possible connections exist
 - For a Set of *n* Nodes:
 - n 1 edges for each node

Cycles

Overview Basic Graph Definitions Directed Graphs

 a cycle is the possibility of following a path from a vertex back to itself without ever following the same edge more than once

Overview Basic Graph Definitions Directed Graphs

Directed Graphs

- \rightarrow Digraph
 - contains *directed edges* between *sources* and *destinations*

Overview Basic Graph Definitions Directed Graphs

Directed Cyclic Graphs

- \rightarrow Cyclic Digraph
 - contains at least one cyclic path along directed edges

Overview Basic Graph Definitions Directed Graphs

Directed Acyclic Graphs

\rightarrow DAG

- directed graph that contains no cycles
- \rightarrow many graph algorithms require DAGs

Overview Basic Graph Definitions Directed Graphs

Bidirectional Connectors

- undirected edges can be modelled by two directed edges
 - → the two directions may have different weight (more flexible than a weighted undirected edge)!

Overview Basic Graph Definitions Directed Graphs

Looping Edges

- an edge may loop from a node back to itself
 - → used in automata and state machines

Graph Representations Graph Algorithms and Implementations

Graph Algorithms and Implementations

Graph Algorithms and Implementations

Graph Representations Graph Algorithms and Implementations

Graph Representations

Adjacency Matrix

- \rightarrow a two-dimensional array of numbers
- a cell [i, j] contains 1 if there is an edge from vertex i to vertex j, 0 otherwise (zeroes are not shown in the table below)

	j	0	1	2	3	4
i		Α	В	С	D	Е
0	Α					
1	В	1				
2	С	1			1	
3	D	1		1		
4	Е					

Graph Representations Graph Algorithms and Implementations

Graph Representations (2)

- Weighted Graphs
 - \rightarrow store weight instead of just 1 (true) or 0 (false)

	j	0	1	2	3	4
i		Α	В	С	D	Е
0	Α					
1	В	2				
2	С	3			4	
3	D	5		6		
4	Е					

Graphs

Graph Representations Graph Algorithms and Implementations

Graph Representations (3)

Adjacency List

- store the information about a graph in an array of linked lists
- the *i*th linked list contains all Vertices that receive an Edge from Vertex *i*

$$\begin{array}{cccc} i: 0 & A & \rightarrow \text{nil} \\ 1 & B & \rightarrow \boxed{A} & \rightarrow \text{nil} \\ 2 & C & \rightarrow \boxed{A} & \rightarrow \text{nil} \end{array}$$

Graph Representations Graph Algorithms and Implementations

Graph Representations (4)

Adjacency List

- edge weights may be included in the nodes of the list
- space efficiency: good for sparse graphs, i.e. graphs without many edges

$$\begin{array}{cccc} i: 0 & A & \rightarrow \text{nil} \\ 1 & B & \rightarrow \boxed{A} & \rightarrow \text{nil} \\ 2 & C & \rightarrow \boxed{A} & \rightarrow \text{nil} \end{array}$$

Graph Representations Graph Algorithms and Implementations

Complexity Analysis

 Check existing Edge between any two given vertices v₁ and v₂

 Matrix: index operation 	O(1)
 List: follow links 	O(<i>n</i>)
Find all v_i adjacent to given v_k	
 Matrix: always visit all N cells 	O(<i>n</i>)
 List: list for the given vertex 	O(n)
ightarrow small number for sparse graphs	O(1)

Graph Representations Graph Algorithms and Implementations

Complexity Analysis (2)

Iterate across all neighbours of v₁

- Number of edges in a complete graph with N vertices
 - Directed: *N* ∗ (*N* − 1)
 - Undirected: *N* ∗ (*N* − 1)/2
- Matrix: worst case $O(n^2)$
- List: depends on number of neighbours
 - sparse graphs: O(n)
 - dense graphs: O(n²)

Traversals

O(n)

O(n)

- Remember Tree traversals:
 - start at top, visit all nodes
- Graph:
 - start from a given vertex, visit all vertices to which it connects
- Complexity
 - Matrix: iterate across the row:
 - List: traverse the vertex's linked list:

Graph Representations Graph Algorithms and Implementations

Traversal Example

Example (pseudo code)				
<pre>void traverseFromVertex(Graph *G, Vertex</pre>	*startNode)			
{				
<pre>mark_unvisited(G);</pre>	<pre>// all vertices:</pre>		0(n)	
insert startNode in empty collection	/	1	0(1)	
<pre>for each vertex in collection {</pre>	/	/	0(n)	
<pre>if (!vertex.visited()) {</pre>	/	/	0(1)	
<pre>vertex.setVisited();</pre>	/	/	0(1)	
<pre>do_something(vertex);</pre>	/	/	0(1)	
<pre>collection.add(vertex.adjacent());</pre>	/	/	0(n)	
}				
}				
}				

Graph Representations Graph Algorithms and Implementations

Traversal Types

- Depth First (DFT)
 - go deeply into the graph before backtracking on another path
 - \rightarrow use a Stack as the collection
 - \rightarrow use recursion
- Breadth First (BFT)
 - visit each adjacent vertex first
 - ightarrow use a Queue as the collection

Graph Representations Graph Algorithms and Implementations

Recursive Depth-First Example

Example (pseudo code)			
<pre>void traverseFromVertex(Graph *G, Vert</pre>	tex *start)		
{			
<pre>mark_unvisited(G);</pre>	<pre>// all vertices:</pre>	0(n)	
<pre>depth_first(G, start);</pre>			
}			
<pre>void depth_first(Graph *G, Vertex *v)</pre>			
{			
v.setVisited();			
<pre>do_something(v);</pre>			
for each w in vertex.adjacent	()		
<pre>if (!w.visited())</pre>			
depth_first(G,	, w);		
}			

Graph Representations Graph Algorithms and Implementations

Trees within Graphs

- Traversal from a vertex
 - only includes a sub-graph of the main graph
 - $ightarrow\,$ a depth-first traversal creates a depth-first search tree
- Spanning Tree
 - a sub-graph starting at a given vertex and retaining the connection between all the vertices in the sub-graph

Graph Representations Graph Algorithms and Implementations

Minimum Spanning Tree

- Minimum Spanning Tree
 - traversal using a minimum number of edges
 - for weighted edges: minimising the sum of the edges' weights
- (Minimum) Spanning Forest
 - repeatedly apply the (minimum) spanning tree algorithm on all graph components

Graph Representations Graph Algorithms and Implementations

Minimum Spanning Tree Algorithm

Example (pseudo code)		
void minimumSpanningTree(Graph *G)		
{		
<pre>mark_unvisited(G);</pre>	<pre>// all vertices: 0(n)</pre>	
mark some vertex v as visited;		
for (k = 1; k < n; k++)	// for each vertex	
{		
find the smallest weight from a	a visited vertex to an unvisited vertex w;	
mark the edge and w as visited;	;	
}		
1		
1		

 \Rightarrow Complexity: O($n \cdot m$)

Graph Representations Graph Algorithms and Implementations

Topological Orders

Example (Graph Example)

DAGs may have certain orderings among the vertices
 → Topological Orders

Graph Representations Graph Algorithms and Implementations

Topological Sort

 Find a topological order of vertices using a traversal (DFT, BFT)

Graph Representations Graph Algorithms and Implementations

Topological Sort (2)

 Find a topological order of vertices using a traversal (DFT, BFT)

Graph Representations Graph Algorithms and Implementations

Topological Sort (3)

Multiple equivalent orderings are possible

René Hexel

Graphs

Graph Representations Graph Algorithms and Implementations

Shortest Path Problems

- Single-Source Shortest Path
 - shortest Path from a given vertex to all other vertices
 - \rightarrow Dijkstra's algorithm:
- All Pairs Shortest Path
 - Set of all the shortest paths in a graph
 - \rightarrow Floyd's algorithm:

O(*n*³)

 $O(n^2)$

Graph Representations Graph Algorithms and Implementations

Dijkstra's Algorithm

Inputs

- DAG with edge-weights greater than 0
- a single source vertex s
- Output: two-dimensional array:
 - N rows: vertices
 - three columns
 - vertex number
 - 2 distance from source
 - predecessor
 - temporary array of booleans: vertex included in path
- Two steps
 - initialisation
 - computation

Graph Representations Graph Algorithms and Implementations

Initialisation

Dijkstra's Algorithm: Initialisation

for each vertex v in the graph (each row in results)	
{	
vertexnumber[row] = v;	
if v == source vertex s // source node	
{	
distance[row] = 0;	
<pre>path[row] = undefined;</pre>	
included[row] = true;	
}	
else if there is an edge from s to v // nodes adjacent to source	
{	
<pre>alstance[row] = eage_weight(s, v);</pre>	
path[row] = s;	
included[row] = raise;	
}	
eise // all other hodes	
{	
aistaice[i00] - undefinite;	
pacified [real - false.	
Therudeu[tow] - tatbe,	
I	

René Hexel

Graph Representations Graph Algorithms and Implementations

Initialisation Results

included[]
 → all cells are false except for source vertex cell
 distance[]
 = 0 (source vertex)
 > 0 (adjacent vertices)
 infinity (all other vertices)
 path[]
 → source vertex (adjacent vertices) or undefined

Graph Representations Graph Algorithms and Implementations

Computation

Dijkstra's Algorithm: Computation

Graph Representations Graph Algorithms and Implementations

> O(n) $O(n^2)$

> $O(n^2)$

Shortest Path Complexity

Critical Step

- nested if statement
 - $\rightarrow\,$ resets distance and predecessor for an unincluded vertex if a new minimal distance has been found
- Initialisation: every vertex
- Computation: nested loops
- Total:

René Hexel Graphs

Graph Representations Graph Algorithms and Implementations

Graph Implementations

A Graph Class

René Hexel Graphs

Graph Interface

Graph Representations Graph Algorithms and Implementations

Needs to define

- Mutators: adding/removing edges and vertices
- Accessors: checking/returning edges/weights
- Iterators
 - over vertices, labels, adjacent vertices
 - over edges, edges connected to a specific vertex
- Other interfaces
 - getting/setting of labels, weights, etc.

Graph Representations Graph Algorithms and Implementations

Array Graph Interface

Example (Objective-C)

```
@interface Graph: NSObject
 id *vertex; // vertices array
 int *edge; // edge array
 int n, size: // # of vertices
- initWithSize: (int) N:
  (void) addVertex: label;
  (void) addEdgeFrom: (int) src
                 to: (int) dst
             weight: w;
  (int) edgeFrom: (int) src
             to: (int) dst;
 (int) findVertex: label;
@end
```

Example (C++)

```
class Graph
{
   string *vertex;// vertices array
   int *edge; // edge array
```

```
int n, size; // # of vertices
```

```
public:
```

```
Graph(int N);
```

```
void Graph::addVertex(const string &label);
```

int Graph::findVertex(const string &label);

};

René Hexel

Graphs

Graph Representations Graph Algorithms and Implementations

Array Graph Implementation

Example (Initialiser)

@implementation Graph

```
- initWithSize: (int) N
{ // in real life: check errors!
    if (![super init]) return nil;
    vertex = calloc(N, sizeof(id));
    edge = calloc(N*N, sizeof(int));
    size = N;
    n = 0; // no vertices yet
```

return self;

Example (Constructor)

/** Graph Implementation: Constructor */

```
Graph::Graph(int N)
{ // in real life: check errors!
```

```
vertex = new string[N];
edge = new int[N*N];
size = N;
n = 0; // no vertices yet
```

Graph Representations Graph Algorithms and Implementations

Adding a Vertex/Edge

Example (Objective-C)

Example (C++)

Retrieving Data

Example (Objective-C)

```
* return weight of edge
- (int) edgeFrom: (int) src
             to: (int) dst
 return edge[src + size * dst];
* find vertex with label
- (int) findVertex: label
 for (int i = 0; i < n; i++)
   if ([vertex[i] isEqual: label])
     return i;
 return -1: // not found
```

Graph Representations Graph Algorithms and Implementations

Example (C++)

```
int Graph::getEdge(int src,
                    int dst)
 return edge[src + size * dst];
* find vertex with label
int Graph::findVertex(const string &label)
  for (int i = 0; i < n; i++)</pre>
   if (vertex[i] == label)
      return i;
  return -1: // not found
```

Graph Representations Graph Algorithms and Implementations

Other Functions/Methods

• deleteVertex:

- remove vertex from array
- remove gap!
- deleteEdgeFrom:To:
 - same as addEdgeFrom:To:Weight:0;
- numVertices
 - return n;
- numEdges
 - number of edges with weight > 0

Sets and Maps

Unordered Collections

- \rightarrow Items in no particular position
 - Set
 - unique items in no particular order
 - Counted Set (Multi Set, Bag)
 - items in no particular order
 - same item can be present multiple times
 - Dictionary (Map)
 - values associated with unique keys

Objective-C

 C_{++}

 C_{++}

C++

C++

Unordered Collection Class Examples

Unordered Set

- NSSet / NSMutableSet
- std::unordered_set
- Ordered Set
 - NSOrderedSet / NSMutableOrderedSet Objective-C
 - std::set

Counted Set (Multi Set, Bag)

- NSCountedSet Objective-C
- std::multiset
- Dictionary (Map)
 - NSDictionary / NSMutableDictionary Objective-C
 - std::map/std::multimap

Sets and Maps

NSDictionary Example

Example (an English/German dictionary in Objective-C)

```
#import <Foundation/Foundation.h>
int main(int argc, char *argv[])
   @autoreleasepool
       NSDictionary *dict = [NSDictionary dictionaryWithObjectsAndKeys:
              @"German:", @"English:",
              @"Eins", @"One",
              @"Zwei", @"Two",
               @"Drei", @"Three",
              nil;
       id kev = @"Three";
                                      // a kev to search for
       id value = [dict objectForKey: key]; // its corresponding value
       printf("The German translation for '%s' is '%s'\n",
                      [key UTF8String], [value UTF8String]);
   return EXIT SUCCESS:
```

René Hexel

```
Graphs
```

Sets and Maps

std::map Example

Example (an English/German dictionary in C++)

```
#include <iostream>
#include <map>
using namespace std;
int main(int argc, char *argv[])
        map<const char*, const char *> dict;
         * English German
         */
       dict["one"] = "eins";
dict["two"] = "zwei";
dict["three"] = "drei";
        const char *key = "three": // a key to search for
        const char *value = dict[key]; // its corresponding value
        cout << "The German translation for ":
        cout << key << " is "<< value << endl;
        return EXIT SUCCESS;
```

René Hexel

Graphs