
Introduction to Graphs
Graph Algorithms and Implementations

Unordered Collections

Graphs
2501ICT/7421ICTNathan

René Hexel

School of Information and Communication Technology
Griffith University

Semester 1, 2012

René Hexel Graphs

Introduction to Graphs
Graph Algorithms and Implementations

Unordered Collections

Outline

1 Introduction to Graphs
Overview
Basic Graph Definitions
Directed Graphs

2 Graph Algorithms and Implementations
Graph Representations
Graph Algorithms and Implementations

3 Unordered Collections
Sets and Maps

René Hexel Graphs

Introduction to Graphs
Graph Algorithms and Implementations

Unordered Collections

Overview
Basic Graph Definitions
Directed Graphs

Graphs

Graphs and Unordered
Collections

René Hexel Graphs

Introduction to Graphs
Graph Algorithms and Implementations

Unordered Collections

Overview
Basic Graph Definitions
Directed Graphs

Overview

Definition
Graph Representations
Basic Operations

Graph Traversals
Topological Sort
Trees within Graphs

Unordered Collections

René Hexel Graphs

Introduction to Graphs
Graph Algorithms and Implementations

Unordered Collections

Overview
Basic Graph Definitions
Directed Graphs

Graph Definition

Multiple Successors/Predecessors
Lists: one successor, one predecessor
Trees: several successors, one predecessor

A Graph is a
Set of points connected by line segments

→ Points are called vertices (V) or nodes
→ Lines are called edges (E)

René Hexel Graphs

Introduction to Graphs
Graph Algorithms and Implementations

Unordered Collections

Overview
Basic Graph Definitions
Directed Graphs

Graph Layout

Sets of
→ V : Vertices (Nodes)
→ E : Edges

Each Edge e ∈ E
connects two Nodes
v ∈ V

v1

v2

v3

v4

v5

e1

e2

e3

e4

e5

René Hexel Graphs

Introduction to Graphs
Graph Algorithms and Implementations

Unordered Collections

Overview
Basic Graph Definitions
Directed Graphs

Unlabelled Graphs

No labels for
→ Vertices
→ Edges

A

B

C

D

E

René Hexel Graphs

Introduction to Graphs
Graph Algorithms and Implementations

Unordered Collections

Overview
Basic Graph Definitions
Directed Graphs

Labelled Vertices

Only Vertices have names

A

B

C

D

E

René Hexel Graphs

Introduction to Graphs
Graph Algorithms and Implementations

Unordered Collections

Overview
Basic Graph Definitions
Directed Graphs

Weighted Graphs

Labelled Vertices and
Edges
Edge labels typically are
numbers

interpreted as the weight
→ cost of going from one

vertex to the next
→ if no edge weight is

given, 1 is assumed

A

B

C

D

E
2

3

1
1

7

René Hexel Graphs

Introduction to Graphs
Graph Algorithms and Implementations

Unordered Collections

Overview
Basic Graph Definitions
Directed Graphs

Disconnected Graphs

One or more Nodes are
not connected

A

B

C

D

E

René Hexel Graphs

Introduction to Graphs
Graph Algorithms and Implementations

Unordered Collections

Overview
Basic Graph Definitions
Directed Graphs

Connected Graphs

→ at least one path exists
from each to every other
vertex

A

B

C

D

E

René Hexel Graphs

Introduction to Graphs
Graph Algorithms and Implementations

Unordered Collections

Overview
Basic Graph Definitions
Directed Graphs

Connected Components

the whole graph may not
be connected, but it
consists of connected
subgraphs (components)

A

B

C

D

E

René Hexel Graphs

Introduction to Graphs
Graph Algorithms and Implementations

Unordered Collections

Overview
Basic Graph Definitions
Directed Graphs

Complete Graphs

→ All possible connections
exist
For a Set of n Nodes:

n − 1 edges for each
node

A

B

C

D

E

René Hexel Graphs

Introduction to Graphs
Graph Algorithms and Implementations

Unordered Collections

Overview
Basic Graph Definitions
Directed Graphs

Cycles

a cycle is the possibility of
following a path from a
vertex back to itself without
ever following the same
edge more than once

A

B

C

D

E

René Hexel Graphs

Introduction to Graphs
Graph Algorithms and Implementations

Unordered Collections

Overview
Basic Graph Definitions
Directed Graphs

Directed Graphs

→ Digraph
contains directed edges
between sources and
destinations

A

B

C

D

E

René Hexel Graphs

Introduction to Graphs
Graph Algorithms and Implementations

Unordered Collections

Overview
Basic Graph Definitions
Directed Graphs

Directed Cyclic Graphs

→ Cyclic Digraph
contains at least one
cyclic path along
directed edges

A

B

C

D

E

René Hexel Graphs

Introduction to Graphs
Graph Algorithms and Implementations

Unordered Collections

Overview
Basic Graph Definitions
Directed Graphs

Directed Acyclic Graphs

→ DAG
directed graph that
contains no cycles

→ many graph algorithms
require DAGs

A

B

C

D

E

René Hexel Graphs

Introduction to Graphs
Graph Algorithms and Implementations

Unordered Collections

Overview
Basic Graph Definitions
Directed Graphs

Bidirectional Connectors

undirected edges can be
modelled by two directed
edges
→ the two directions may

have different weight
(more flexible than a
weighted undirected
edge)!

A

B

C

D

E

René Hexel Graphs

Introduction to Graphs
Graph Algorithms and Implementations

Unordered Collections

Overview
Basic Graph Definitions
Directed Graphs

Looping Edges

an edge may loop from a
node back to itself
→ used in automata and

state machines

A

B

C

D

E

René Hexel Graphs

Introduction to Graphs
Graph Algorithms and Implementations

Unordered Collections

Graph Representations
Graph Algorithms and Implementations

Graph Algorithms and Implementations

Graph Algorithms and
Implementations

René Hexel Graphs

Introduction to Graphs
Graph Algorithms and Implementations

Unordered Collections

Graph Representations
Graph Algorithms and Implementations

Graph Representations

Adjacency Matrix
→ a two-dimensional array of numbers

a cell [i,j] contains 1 if there is an edge from vertex i to
vertex j, 0 otherwise (zeroes are not shown in the table
below)

A

B

C

D

E

j 0 1 2 3 4
i A B C D E
0 A
1 B 1
2 C 1 1
3 D 1 1
4 E

René Hexel Graphs

Introduction to Graphs
Graph Algorithms and Implementations

Unordered Collections

Graph Representations
Graph Algorithms and Implementations

Graph Representations (2)

Weighted Graphs
→ store weight instead of just 1 (true) or 0 (false)

A

B

C

D

E2

3

4
5

6

j 0 1 2 3 4
i A B C D E
0 A
1 B 2
2 C 3 4
3 D 5 6
4 E

René Hexel Graphs

Introduction to Graphs
Graph Algorithms and Implementations

Unordered Collections

Graph Representations
Graph Algorithms and Implementations

Graph Representations (3)

Adjacency List
store the information about a graph in an array of linked lists
the i th linked list contains all Vertices that receive an Edge
from Vertex i

A

B

C i : 0 A → nil

1 B → A → nil

2 C → A → nil

René Hexel Graphs

Introduction to Graphs
Graph Algorithms and Implementations

Unordered Collections

Graph Representations
Graph Algorithms and Implementations

Graph Representations (4)

Adjacency List
edge weights may be included in the nodes of the list
space efficiency: good for sparse graphs, i.e. graphs
without many edges

A

B

C i : 0 A → nil

1 B → A → nil

2 C → A → nil

René Hexel Graphs

Introduction to Graphs
Graph Algorithms and Implementations

Unordered Collections

Graph Representations
Graph Algorithms and Implementations

Complexity Analysis

Check existing Edge between any two given vertices v1
and v2

Matrix: index operation O(1)
List: follow links O(n)

Find all vi adjacent to given vk
Matrix: always visit all N cells O(n)
List: list for the given vertex O(n)
→ small number for sparse graphs O(1)

René Hexel Graphs

Introduction to Graphs
Graph Algorithms and Implementations

Unordered Collections

Graph Representations
Graph Algorithms and Implementations

Complexity Analysis (2)

Iterate across all neighbours of v1
Number of edges in a complete graph with N vertices

Directed: N ∗ (N − 1)
Undirected: N ∗ (N − 1)/2

Matrix: worst case O(n2)
List: depends on number of neighbours

sparse graphs: O(n)
dense graphs: O(n2)

René Hexel Graphs

Introduction to Graphs
Graph Algorithms and Implementations

Unordered Collections

Graph Representations
Graph Algorithms and Implementations

Traversals

Remember Tree traversals:
start at top, visit all nodes

Graph:
start from a given vertex, visit all vertices to which it
connects

Complexity
Matrix: iterate across the row: O(n)
List: traverse the vertex’s linked list: O(n)

René Hexel Graphs

Introduction to Graphs
Graph Algorithms and Implementations

Unordered Collections

Graph Representations
Graph Algorithms and Implementations

Traversal Example

Example (pseudo code)
void traverseFromVertex(Graph *G, Vertex *startNode)

{
mark_unvisited(G); // all vertices: O(n)
insert startNode in empty collection // O(1)
for each vertex in collection { // O(n)

if (!vertex.visited()) { // O(1)
vertex.setVisited(); // O(1)
do_something(vertex); // O(1)
collection.add(vertex.adjacent()); // O(n)

}
}

}

René Hexel Graphs

Introduction to Graphs
Graph Algorithms and Implementations

Unordered Collections

Graph Representations
Graph Algorithms and Implementations

Traversal Types

Depth First (DFT)
go deeply into the graph before backtracking on another
path

→ use a Stack as the collection
→ use recursion

Breadth First (BFT)
visit each adjacent vertex first

→ use a Queue as the collection

René Hexel Graphs

Introduction to Graphs
Graph Algorithms and Implementations

Unordered Collections

Graph Representations
Graph Algorithms and Implementations

Recursive Depth-First Example

Example (pseudo code)
void traverseFromVertex(Graph *G, Vertex *start)

{
mark_unvisited(G); // all vertices: O(n)
depth_first(G, start);

}

void depth_first(Graph *G, Vertex *v)

{
v.setVisited();
do_something(v);
for each w in vertex.adjacent()

if (!w.visited())
depth_first(G, w);

}

René Hexel Graphs

Introduction to Graphs
Graph Algorithms and Implementations

Unordered Collections

Graph Representations
Graph Algorithms and Implementations

Trees within Graphs

Traversal from a vertex
only includes a sub-graph of the main graph

→ a depth-first traversal creates a depth-first search tree
Spanning Tree

a sub-graph starting at a given vertex and retaining the
connection between all the vertices in the sub-graph

René Hexel Graphs

Introduction to Graphs
Graph Algorithms and Implementations

Unordered Collections

Graph Representations
Graph Algorithms and Implementations

Minimum Spanning Tree

Minimum Spanning Tree
traversal using a minimum number of edges
for weighted edges: minimising the sum of the edges’
weights

(Minimum) Spanning Forest
repeatedly apply the (minimum) spanning tree algorithm on
all graph components

René Hexel Graphs

Introduction to Graphs
Graph Algorithms and Implementations

Unordered Collections

Graph Representations
Graph Algorithms and Implementations

Minimum Spanning Tree Algorithm

Example (pseudo code)
void minimumSpanningTree(Graph *G)

{
mark_unvisited(G); // all vertices: O(n)
mark some vertex v as visited;
for (k = 1; k < n; k++) // for each vertex
{

find the smallest weight from a visited vertex to an unvisited vertex w;
mark the edge and w as visited;

}
}

⇒ Complexity: O(n ·m)

René Hexel Graphs

Introduction to Graphs
Graph Algorithms and Implementations

Unordered Collections

Graph Representations
Graph Algorithms and Implementations

Topological Orders

Example (Graph Example)

P

Q

R

S

T

DAGs may have certain orderings among the vertices
→ Topological Orders

René Hexel Graphs

Introduction to Graphs
Graph Algorithms and Implementations

Unordered Collections

Graph Representations
Graph Algorithms and Implementations

Topological Sort

Example (Graph Example)

P

Q

R

S

T

Find a topological order of vertices using a traversal (DFT,
BFT)

René Hexel Graphs

Introduction to Graphs
Graph Algorithms and Implementations

Unordered Collections

Graph Representations
Graph Algorithms and Implementations

Topological Sort (2)

Example (attempt to flatten the graph)

P

Q

R

S T

Find a topological order of vertices using a traversal (DFT,
BFT)

René Hexel Graphs

Introduction to Graphs
Graph Algorithms and Implementations

Unordered Collections

Graph Representations
Graph Algorithms and Implementations

Topological Sort (3)

Example (one topological order)

P Q R S T

Example (another topological order)

P QR S T

Multiple equivalent orderings are possible

René Hexel Graphs

Introduction to Graphs
Graph Algorithms and Implementations

Unordered Collections

Graph Representations
Graph Algorithms and Implementations

Shortest Path Problems

Single-Source Shortest Path
shortest Path from a given vertex to all other vertices

→ Dijkstra’s algorithm: O(n2)
All Pairs Shortest Path

Set of all the shortest paths in a graph
→ Floyd’s algorithm: O(n3)

René Hexel Graphs

Introduction to Graphs
Graph Algorithms and Implementations

Unordered Collections

Graph Representations
Graph Algorithms and Implementations

Dijkstra’s Algorithm

Inputs
DAG with edge-weights greater than 0
a single source vertex s

Output: two-dimensional array:
N rows: vertices
three columns

1 vertex number
2 distance from source
3 predecessor

temporary array of booleans: vertex included in path
Two steps

initialisation
computation

René Hexel Graphs

Introduction to Graphs
Graph Algorithms and Implementations

Unordered Collections

Graph Representations
Graph Algorithms and Implementations

Initialisation

Dijkstra’s Algorithm: Initialisation
for each vertex v in the graph (each row in results)

{
vertexnumber[row] = v;
if v == source vertex s // source node
{

distance[row] = 0;
path[row] = undefined;
included[row] = true;

}
else if there is an edge from s to v // nodes adjacent to source

{
distance[row] = edge_weight(s,v);
path[row] = s;
included[row] = false;

}
else // all other nodes
{

distance[row] = infinite;
path[row] = undefined;
included[row] = false;

}
}

René Hexel Graphs

Introduction to Graphs
Graph Algorithms and Implementations

Unordered Collections

Graph Representations
Graph Algorithms and Implementations

Initialisation Results

included[]
→ all cells are false except for source vertex cell
distance[]
= 0 (source vertex)
> 0 (adjacent vertices)

infinity (all other vertices)
path[]
→ source vertex (adjacent vertices) or undefined

René Hexel Graphs

Introduction to Graphs
Graph Algorithms and Implementations

Unordered Collections

Graph Representations
Graph Algorithms and Implementations

Computation

Dijkstra’s Algorithm: Computation
do
{

find vertex F that is not yet included and has minimal difference
{

included[F] = true;
for each other vertex T not included
{

if there is an edge from F to T
{

newdist= distance[F] + edge_weight(F,T);
if newdist< distance[T]
{
distance[T] = newdist;
path[T] = F;

}
}

}
}

} while not all vertices are included;

René Hexel Graphs

Introduction to Graphs
Graph Algorithms and Implementations

Unordered Collections

Graph Representations
Graph Algorithms and Implementations

Shortest Path Complexity

Critical Step
nested if statement
→ resets distance and predecessor for an unincluded vertex if

a new minimal distance has been found

Initialisation: every vertex O(n)
Computation: nested loops O(n2)
Total: O(n2)

René Hexel Graphs

Introduction to Graphs
Graph Algorithms and Implementations

Unordered Collections

Graph Representations
Graph Algorithms and Implementations

Graph Implementations

A Graph Class

René Hexel Graphs

Introduction to Graphs
Graph Algorithms and Implementations

Unordered Collections

Graph Representations
Graph Algorithms and Implementations

Graph Interface

Needs to define
Mutators: adding/removing edges and vertices
Accessors: checking/returning edges/weights
Iterators

over vertices, labels, adjacent vertices
over edges, edges connected to a specific vertex

Other interfaces
getting/setting of labels, weights, etc.

René Hexel Graphs

Introduction to Graphs
Graph Algorithms and Implementations

Unordered Collections

Graph Representations
Graph Algorithms and Implementations

Array Graph Interface

Example (Objective-C)
@interface Graph: NSObject
{

id *vertex; // vertices array
int *edge; // edge array
int n, size; // # of vertices

}

- initWithSize: (int) N;

- (void) addVertex: label;

- (void) addEdgeFrom: (int) src
to: (int) dst

weight: w;

- (int) edgeFrom: (int) src
to: (int) dst;

- (int) findVertex: label;

@end

Example (C++)
class Graph
{

string *vertex;// vertices array
int *edge; // edge array
int n, size; // # of vertices

public:
Graph(int N);

void Graph::addVertex(const string &label);

void Graph::addEdge(int from,
int to,
int w);

int Graph::getEdge(int from,
int to);

int Graph::findVertex(const string &label);

};

René Hexel Graphs

Introduction to Graphs
Graph Algorithms and Implementations

Unordered Collections

Graph Representations
Graph Algorithms and Implementations

Array Graph Implementation

Example (Initialiser)
@implementation Graph

- initWithSize: (int) N
{ // in real life: check errors!

if (![super init]) return nil;
vertex = calloc(N, sizeof(id));
edge = calloc(N*N, sizeof(int));
size = N;
n = 0; // no vertices yet

return self;
}

Example (Constructor)
/** Graph Implementation: Constructor */

Graph::Graph(int N)
{ // in real life: check errors!

vertex = new string[N];
edge = new int[N*N];
size = N;
n = 0; // no vertices yet

}

René Hexel Graphs

Introduction to Graphs
Graph Algorithms and Implementations

Unordered Collections

Graph Representations
Graph Algorithms and Implementations

Adding a Vertex/Edge

Example (Objective-C)
- (void) addVertex: label
{

vertex[n++] = label;
}

- (void) addEdgeFrom: (int) src
to: (int) dst

weight: (int) w
{

edge[src + size * dst] = w;
}

Example (C++)
void Graph::addVertex(const string &label)
{

vertex[n++] = label;
}

void Graph::addEdge(int from,
int to,
int w)

{
edge[from + size * to] = w;

}

René Hexel Graphs

Introduction to Graphs
Graph Algorithms and Implementations

Unordered Collections

Graph Representations
Graph Algorithms and Implementations

Retrieving Data

Example (Objective-C)
/*
* return weight of edge

*/
- (int) edgeFrom: (int) src

to: (int) dst
{

return edge[src + size * dst];
}

/*
* find vertex with label

*/
- (int) findVertex: label
{

for (int i = 0; i < n; i++)
if ([vertex[i] isEqual: label])

return i;

return -1; // not found
}

Example (C++)
/*
* return weight of edge

*/
int Graph::getEdge(int src,

int dst)
{

return edge[src + size * dst];
}

/*
* find vertex with label

*/
int Graph::findVertex(const string &label)
{

for (int i = 0; i < n; i++)
if (vertex[i] == label)
return i;

return -1; // not found
}

René Hexel Graphs

Introduction to Graphs
Graph Algorithms and Implementations

Unordered Collections

Graph Representations
Graph Algorithms and Implementations

Other Functions/Methods

deleteVertex:
remove vertex from array
remove gap!

deleteEdgeFrom:To:
same as addEdgeFrom:To:Weight:0;

numVertices
return n;

numEdges
number of edges with weight > 0

René Hexel Graphs

Introduction to Graphs
Graph Algorithms and Implementations

Unordered Collections
Sets and Maps

Unordered Collections

→ Items in no particular position
Set

unique items in no particular order
Counted Set (Multi Set, Bag)

items in no particular order
same item can be present multiple times

Dictionary (Map)
values associated with unique keys

René Hexel Graphs

Introduction to Graphs
Graph Algorithms and Implementations

Unordered Collections
Sets and Maps

Unordered Collection Class Examples

Unordered Set
NSSet / NSMutableSet Objective-C
std::unordered_set C++

Ordered Set
NSOrderedSet / NSMutableOrderedSet Objective-C
std::set C++

Counted Set (Multi Set, Bag)
NSCountedSet Objective-C
std::multiset C++

Dictionary (Map)
NSDictionary / NSMutableDictionary Objective-C
std::map / std::multimap C++

René Hexel Graphs

Introduction to Graphs
Graph Algorithms and Implementations

Unordered Collections
Sets and Maps

NSDictionary Example

Example (an English/German dictionary in Objective-C)
#import <Foundation/Foundation.h>

int main(int argc, char *argv[])
{

@autoreleasepool
{

NSDictionary *dict = [NSDictionary dictionaryWithObjectsAndKeys:
/*
* @"German:", @"English:",

*/
@"Eins", @"One",
@"Zwei", @"Two",
@"Drei", @"Three",
nil];

id key = @"Three"; // a key to search for
id value = [dict objectForKey: key]; // its corresponding value

printf("The German translation for ’%s’ is ’%s’\n",
[key UTF8String], [value UTF8String]);

}

return EXIT_SUCCESS;
}

René Hexel Graphs

Introduction to Graphs
Graph Algorithms and Implementations

Unordered Collections
Sets and Maps

std::map Example

Example (an English/German dictionary in C++)
#include <iostream>
#include <map>

using namespace std;

int main(int argc, char *argv[])
{

map<const char*, const char *> dict;

/*
* English German

*/
dict["one"] = "eins";
dict["two"] = "zwei";
dict["three"] = "drei";

const char *key = "three"; // a key to search for
const char *value = dict[key]; // its corresponding value

cout << "The German translation for ";
cout << key << " is "<< value << endl;

return EXIT_SUCCESS;
}

René Hexel Graphs

	Introduction to Graphs
	Overview
	Basic Graph Definitions
	Directed Graphs

	Graph Algorithms and Implementations
	Graph Representations
	Graph Algorithms and Implementations

	Unordered Collections
	Sets and Maps

