Introduction to Graphs
Graph Algorithms and Implementations
Unordered Collections

Graphs
2501ICT/7421I1CTNathan

René Hexel

School of Information and Communication Technology
Griffith University

Semester 1, 2012

René Hexel Graphs

Outline

@ Introduction to Graphs
@ Overview
@ Basic Graph Definitions
@ Directed Graphs

© Graph Algorithms and Implementations
@ Graph Representations
@ Graph Algorithms and Implementations

9 Unordered Collections
@ Sets and Maps

René Hexel Graphs

Graphs

Graphs and Unordered
Collections

Introduction to Graphs

Overview

Overview
Basic Graph Definitions
Directed Graphs

@ Definition
@ Graph Representations

@ Basic Operations

e Graph Traversals
e Topological Sort
o Trees within Graphs

@ Unordered Collections

René Hexel

Graphs

Introduction to Graphs Overview
Basic Graph Definitions
Directed Graphs

Graph Definition

@ Multiple Successors/Predecessors

o Lists: one successor, one predecessor
o Trees: several successors, one predecessor
@ AGraphisa

@ Set of points connected by line segments
— Points are called vertices (V) or nodes
— Lines are called edges (E)

René Hexel Graphs

Introduction to Graphs

Graph Layout

Overview

Basic Graph Definitions
Directed Graphs

@ Sets of
— V: Vertices (Nodes)
— E: Edges
@ EachEdgeec E
connects two Nodes
veV

René Hexel

Graphs

Introduction to Graphs
Graph Algorithms and Implementations
Unordered Collections

Unlabelled Graphs

Overview
Basic Graph Definitions
Directed Graphs

@ No labels for

— Vertices
— Edges

René Hexel

.

Graphs

Introduction to Graphs Overview
Graph Algorithms and Implementations Basic Graph Definitions
Unordered Collections Directed Graphs

Labelled Vertices

@ Only Vertices have names

René Hexel Graphs

Introduction to Graphs Overview
Basic Graph Definitions
Directed Graphs

Weighted Graphs

@ Labelled Vertices and
Edges 3
@ Edge labels typically are 2
numbers \
o interpreted as the weight
— cost of going from one
vertex to the next
— if no edge weight is
given, 1 is assumed

René Hexel Graphs

Introduction to Graphs
Graph Algorithms and Implementations
Unordered Collections

Disconnected Graphs

Overview
Basic Graph Definitions
Directed Graphs

@ One or more Nodes are
not connected

René Hexel

%%

Graphs

Introduction to Graphs

Connected Graphs

Overview

Basic Graph Definitions

Directed Graphs

— at least one path exists
from each to every other
vertex

René Hexel

“/;\ A
<O A4
. }
(B) -
“~ (p)

Graphs

Introduction to Graphs

Connected Components

Overview

Basic Graph Definitions
Directed Graphs

@ the whole graph may not
be connected, but it
consists of connected
subgraphs (components)

René Hexel

Graphs

Introduction to Graphs

Complete Graphs

Overview
Basic Graph Definitions
Directed Graphs

— All possible connections
exist
@ For a Set of n Nodes:

e n— 1 edges for each
node

René Hexel

Graphs

Introduction to Graphs

Cycles

Overview
Basic Graph Definitions
Directed Graphs

@ acycle is the possibility of
following a path from a
vertex back to itself without
ever following the same
edge more than once

René Hexel

Graphs

Introduction to Graphs Overview
Basic Graph

Definitions

Directed Graphs

Directed Graphs

D D

(A —— C |
— Digraph \< g o
@ contains directed edges PN } E |
between sources and (B) 1 {\,,,,/

destinations N /\ﬂ/ D

A4

René Hexel Graphs

Introduction to Graphs

Directed Cyclic Graphs

Overview
Basic Graph

Definitions

Directed Graphs

— Cyclic Digraph
e contains at least one
cyclic path along
directed edges

René Hexel

Graphs

Introduction to Graphs

Directed Acyclic Graphs

Overview

Basic Graph Definitions
Directed Graphs

— DAG
e directed graph that
contains no cycles
— many graph algorithms
require DAGs

René Hexel

Graphs

Introduction to Graphs Overview
Basic Graph Definitions
Directed Graphs

Bidirectional Connectors

@ undirected edges can be
modelled by two directed A
edges
— the two directions may
have different weight
(more flexible than a
weighted undirected
edge)!

René Hexel Graphs

Introduction to Graphs

Looping Edges

Overview
Basic Graph Definitions
Directed Graphs

@ an edge may loop from a
node back to itself

— used in automata and
state machines

René Hexel

Graphs

Graph Algorithms and Implementations CleTai [REEESEIEnE

Graph Algorithms and Implementations

Graph Algorithms and
Implementations

Graph Algorithms and Implementations

Graph Representations

Sl (e E [ER S Graph Algorithms and Implementations

Graph Representations

@ Adjacency Matrix

— atwo-dimensional array of numbers
e acell [i, §] contains 1 if there is an edge from vertex i to
vertex j, 0 otherwise (zeroes are not shown in the table
below)

m &

2|3
A/B|C|D

s
4
~_
m
BN =IO+
m| OO o >

René Hexel Graphs

Graph Representations

ST A G e Graph Algorithms and Implementations

Graph Representations (2)

@ Weighted Graphs
— store weight instead of just 1 (true) or 0 (false)

STol1]2
A —1' ¢ i AlB|C
3 0 A
| ool @ [ER

2 C|3
B D 3 D|5 6

4 E

René Hexel Graphs

Graph Representations

ST A G e Graph Algorithms and Implementations

Graph Representations (3)

@ Adjacency List

e store the information about a graph in an array of linked lists
e the /™ linked list contains all Vertices that receive an Edge
from Vertex i

A)—— C ;

i:0 A —nil
\ 1 B H —nil
B 2 C —> —nil

René Hexel Graphs

Graph Representations

Sl (e E [ER S Graph Algorithms and Implementations

Graph Representations (4)

@ Adjacency List
e edge weights may be included in the nodes of the list
e space efficiency: good for sparse graphs, i.e. graphs
without many edges

A — C

i:0 A —nil
\ 1 B —> —nil
B 2 C —|A] —ni1

René Hexel Graphs

Graph Representations

ST A G e Graph Algorithms and Implementations

Complexity Analysis

@ Check existing Edge between any two given vertices v;

and v»
e Matrix: index operation O(1)
o List: follow links O(n)
@ Find all v; adjacent to given vy
e Matrix: always visit all N cells O(n)
o List: list for the given vertex O(n)
— small number for sparse graphs O(1)

René Hexel Graphs

Graph Representations

Craphloonthmstandlimpismentations Graph Algorithms and Implementations

Complexity Analysis (2)

@ lterate across all neighbours of v;
e Number of edges in a complete graph with N vertices

@ Directed: Nx(N—1)
@ Undirected: Nx(N—-1)/2
e Matrix: worst case O(n?)
o List: depends on number of neighbours
@ sparse graphs: O(n)
@ dense graphs: o(r?)

René Hexel Graphs

Graph Representations

Craphloonthmstandlimpismentations Graph Algorithms and Implementations

Traversals

@ Remember Tree traversals:
e start at top, visit all nodes

@ Graph:
o start from a given vertex, visit all vertices to which it
connects
@ Complexity
e Matrix: iterate across the row: O(n)
o List: traverse the vertex’s linked list: O(n)

René Hexel Graphs

Graph Representations

ST A G e Graph Algorithms and Implementations

Traversal Example

Example (pseudo code)

void traverseFromVertex (Graph xG, Vertex xstartNode)

{

mark_unvisited(G) ; // a vertices: O (n)
insert startNode in empty collection // 0(1)
for each vertex in collection { // 0 (n)
if (!vertex.visited()) { // 0 (1)
vertex.setVisited(); /7 0 (1)
do_something (vertex) ; // 0 (1)
collection.add (vertex.adjacent ()); // O (n)

René Hexel Graphs

Graph Representations

Craphloonthmstandlimpismentations Graph Algorithms and Implementations

Traversal Types

@ Depth First (DFT)
@ go deeply into the graph before backtracking on another
path
— use a Stack as the collection
— use recursion
@ Breadth First (BFT)

e visit each adjacent vertex first
— use a Queue as the collection

René Hexel Graphs

Graph Representations

ST A G e Graph Algorithms and Implementations

Recursive Depth-First Example

Example (pseudo code)

void traverseFromVertex (Graph *G, Vertex x*start)

{

mark_unvisited(G) ; // all vertices: O (n)
depth_first (G, start);
}

void depth_first (Graph *G, Vertex xv)
{
v.setVisited();
do_something (v) ;
for each w in vertex.adjacent ()
if (!w.visited())
depth_first (G, w);

René Hexel Graphs

Graph Representations

Graph Algorithms and Implementations Graph Algorithms and Implementations

Trees within Graphs

@ Traversal from a vertex

e only includes a sub-graph of the main graph
— a depth-first traversal creates a depth-first search tree

@ Spanning Tree

@ a sub-graph starting at a given vertex and retaining the
connection between all the vertices in the sub-graph

René Hexel Graphs

Graph Representations

Graph Algorithms and Implementations Graph Algorithms and Implementations

Minimum Spanning Tree

@ Minimum Spanning Tree
e traversal using a minimum number of edges
o for weighted edges: minimising the sum of the edges’
weights
@ (Minimum) Spanning Forest
o repeatedly apply the (minimum) spanning tree algorithm on
all graph components

René Hexel Graphs

. . Graph Representations
ST A G e Graph Algorithms and Implementations

Minimum Spanning Tree Algorithm

Example (pseudo code)

void minimumSpanningTree (Graph *G)
{
mark_unvisited (G) ; // all
mark some vertex v as visited;
for (k = 1; k < n; k++)

vertices:

0 (n)

// for each vertex
find the smallest weight from a visited vertex to an unvisited vertex w;
mark the edge and w as visited;
}
}

= Complexity: O(n- m)

René Hexel Graphs

Graph Representations

Sl (e E [ER S Graph Algorithms and Implementations

Topological Orders

@ DAGs may have certain orderings among the vertices
— Topological Orders

René Hexel Graphs

Graph Representations

Sl (e E [ER S Graph Algorithms and Implementations

Topological Sort

@ Find a topological order of vertices using a traversal (DFT,
BFT)

René Hexel Graphs

Graph Representations

Sl (e E [ER S Graph Algorithms and Implementations

Topological Sort (2)

Example (attempt to flatten the graph)

a \/ /\/ D (D

S /\ /\ / N

\/

@ Find a topological order of vertices using a traversal (DFT,
BFT)

René Hexel Graphs

Graph Representations

Sl (e E [ER S Graph Algorithms and Implementations

Topological Sort (3)

Example (one topological order)

@ Multiple equivalent orderings are possible

René Hexel Graphs

Graph Representations

Sl (e E [ER S Graph Algorithms and Implementations

Shortest Path Problems

@ Single-Source Shortest Path
e shortest Path from a given vertex to all other vertices
— Dijkstra’s algorithm: O(r?)
@ All Pairs Shortest Path

e Set of all the shortest paths in a graph
— Floyd’s algorithm: o(n®)

René Hexel Graphs

Graph Representations

Sl (e E [ER S Graph Algorithms and Implementations

Dijkstra’s Algorithm

@ Inputs
o DAG with edge-weights greater than 0
e a single source vertex s

@ Output: two-dimensional array:

@ N rows: vertices
e three columns

@ vertex number
@ distance from source
© predecessor

e temporary array of booleans: vertex included in path
@ Two steps

e initialisation

e computation

René Hexel Graphs

Graph Representations

Sl (e E [ER S Graph Algorithms and Implementations

Initialisation

's Algorithm: Initialisation

for each vertex v in the graph (each row in results)
{
vertexnumber [row] = v;
if v == source vertex s // source node
{
distance[row] = 0;
path[row] = undefined;
included|[row] = true;
}
else if there is an edge from s to v // nodes adjacent to source
{
distance[row] = edge_weight (s,V);
path[row] = s;
included[row] = false;
}
else // a other nodes
{
distance[row] = infinite;
path[row] = undefined;
included[row] = false;
}
}

René Hexel Graphs

Graph Representations

ST A G e Graph Algorithms and Implementations

Initialisation Results

@ included[]
— all cells are false except for source vertex cell
@ distance[]

=0 (source vertex)
> 0 (adjacent vertices)
infinity (all other vertices)

@ path[]
— source vertex (adjacent vertices) or undefined

René Hexel Graphs

. . Graph Representations
Sl (e E [ER S Graph Algorithms and Implementations

Computation

B]]] 's Algorithm: Computation
do
{

find vertex F that is not yet included and has minimal difference

{
included[F] = true;
for each other vertex T not included
{
if there is an edge from F to T
{
newdist= distance[F] + edge_weight (F,T);
if newdist< distance[T]
{
distance[T] = newdist;
path[T] = F;

}

}
}

} while not all vertices are included;

René Hexel Graphs

Graph Representations

Sl (e E [ER S Graph Algorithms and Implementations

Shortest Path Complexity

@ Critical Step
e nested if statement

— resets distance and predecessor for an unincluded vertex if
a new minimal distance has been found

@ Initialisation: every vertex O(n)
@ Computation: nested loops O(n?)
@ Total: O(n?)

René Hexel Graphs

Graph Representations

Sl (e E [ER S Graph Algorithms and Implementations

Graph Implementations

A Graph Class

René Hexel Graphs

Graph Representations

Graph Algorithms and Implementations Graph Algorithms and Implementations

Graph Interface

@ Needs to define

e Mutators: adding/removing edges and vertices
e Accessors: checking/returning edges/weights
o lterators

@ over vertices, labels, adjacent vertices
@ over edges, edges connected to a specific vertex

o Other interfaces
@ getting/setting of labels, weights, etc.

René Hexel Graphs

Graph Algorithms and Implementations

Array Graph Interface

Graph Representations
Graph Algorithms and Implementations

Example (Objective-C) Example (C++)
Qinterface Graph: NSObject class Graph
{ {
id xvertex; // string *vertex;// vertices array
int xedge; // int xedge; // edge ar
int n, size; // int n, size; // # of vertices
}
public:
— initWithSize: (int) N; Graph (int N);
- (void) addVertex: label; void Graph::addVertex (const string &label);
- (void) addEdgeFrom: (int) src void Graph::addEdge (int from,
to: (int) dst int to,
weight: w; int w);
- (int) edgeFrom: (int) src int Graph::getEdge (int from,
to: (int) dst; int to);
- (int) findVertex: label; int Graph::findVertex(const string &label);
Qend Yi
y
René Hexel Graphs

Graph Algorithms and Implementations

Graph Representations
Graph Algorithms and Implementations

Array Graph Implementation

Example (Initialiser)
@implementation Graph

— initWithSize: (int) N
{ // in real 1i 3
if (![super init]) return nil;
vertex = calloc (N, sizeof(id));
edge = calloc (N%N, sizeof (int));
size = N;
n = 0; // no verti

check errors!

5 yet

return self;

Example (Constructo

ph Implementation:

Graph: :Graph (int N)
{ // in real life: check errors!
vertex = new string[N];

edge = new int [NxN];

size = N;

n = 0; // no vertices yet

René Hexel

Graphs

Graph Algorithms and Implementations

Adding a Vertex/Edge

Graph Representations
Graph Algorithms and Implementations

Example (Objective-C)

- (void) addVertex: 1label
{
vertex[n++] = label;
}
- (void) addEdgeFrom: (int) src
to: (int) dst
weight: (int) w
{
edge[src + size * dst] = w;

}

Example (C++)

void Graph::addVertex (const string &label)
{
vertex[n++] = label;

}

void Graph::addEdge (int from,
int to,
int w)
{
edge [from + size * to] = w;

}

René Hexel

Graphs

Graph Algorithms and Implementations

Retrieving Data

Graph Representations
Graph Algorithms and Implementations

Example (O

return weight o

- (int) edgeFrom:

{

{

toi

(int) src
(int) dst

jective-C)

return edge[src + size x dst];

ertex wit

h label

(int) findVertex: label

ple (C++)

* return w

of edge
*/
int Graph::getEdge (int src,
int dst)
{
return edge[src + size x dst];

}

/ %

* find vert with label

./
int Graph::findVertex (const string &label)
{

for (int 1 = 0; i < n; i++) for (int i = 0; i < n; i++)
if ([vertex[i] isEqual: 1label]) if (vertex[i] == label)
return 1i; return i;
return -1; // not found return -1; // not found
}
v
René Hexel Graphs

Graph Representations

Sl (e E [ER S Graph Algorithms and Implementations

Other Functions/Methods

@ deleteVertex:

e remove vertex from array
e remove gap!

@ deleteEdgeFrom:To:

e same as addEdgeFrom:To:Weight:0;
@ numVertices

@ return n;
@ numEdges

e number of edges with weight > 0

René Hexel Graphs

Sets and Maps
Unordered Collections

Unordered Collections

— Items in no particular position
@ Set

@ unique items in no particular order
@ Counted Set (Multi Set, Bag)

e items in no particular order
e same item can be present multiple times

@ Dictionary (Map)
e values associated with unique keys

René Hexel Graphs

Sets and Maps
Unordered Collections

Unordered Collection Class Examples

@ Unordered Set

@ NSSet /NSMutableSet
@ std::unordered_set

@ Ordered Set

@ NSOrderedSet / NSMutableOrderedSet
@ std::set

@ Counted Set (Multi Set, Bag)

@ NSCountedSet
@ std::multiset

@ Dictionary (Map)

@ NSDictionary/NSMutableDictionary
@ std::map/std::multimap

René Hexel Graphs

Objective-C
C++

Objective-C
C++

Objective-C
C++

Objective-C

C++

Sets and Maps
Unordered Collections

NSDictionary Example

Example (an English/Germ ry in Objective-C)

#import <Foundation/Foundation.h>

int main (int argc, char xargv[])
{
Qautoreleasepool

{
NSDictionary xdict = [NSDictionary dictionaryWithObjectsAndKeys:

* @"German:", @"English:",
Q"Eins", @"One",
Q@"Zwei", @"Two",
@"Drei", @"Three",
nill;
id key = @"Three"; //
id value = [dict objectForKey: key]; // value

printf ("The German translation for ’%s’ is '%s'\n",
[key UTF8String], [value UTF8String]);

}

return EXIT_SUCCESS;

René Hexel Graphs

Sets and Maps
Unordered Collections

std: :map Example

Example (an English/Germ

#include < tream>
#include <map>

using namespace std;

int main (int argc, char xargv[])
{
map<const charx, const char x> dict;

inglish German
dict["one"] "eins";
dict["two"] = "zwei";
dict["three"] = "drei";
const char xkey = "three"; //
const char xvalue = dict[key]; //

cout << "The German translation for ";
cout << key << " is "<< value << endl;

return EXIT_SUCCESS;

René Hexel Graphs

	Introduction to Graphs
	Overview
	Basic Graph Definitions
	Directed Graphs

	Graph Algorithms and Implementations
	Graph Representations
	Graph Algorithms and Implementations

	Unordered Collections
	Sets and Maps

