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Overview
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Graph Definition

Multiple Successors/Predecessors
Lists: one successor, one predecessor
Trees: several successors, one predecessor

A Graph is a
Set of points connected by line segments

→ Points are called vertices (V ) or nodes
→ Lines are called edges (E)
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Graph Layout

Sets of
→ V : Vertices (Nodes)
→ E : Edges

Each Edge e ∈ E
connects two Nodes
v ∈ V
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Unlabelled Graphs

No labels for
→ Vertices
→ Edges
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Labelled Vertices

Only Vertices have names
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Weighted Graphs

Labelled Vertices and
Edges
Edge labels typically are
numbers

interpreted as the weight
→ cost of going from one

vertex to the next
→ if no edge weight is

given, 1 is assumed
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Disconnected Graphs

One or more Nodes are
not connected

A

B

C

D

E

René Hexel Graphs



Introduction to Graphs
Graph Algorithms and Implementations

Unordered Collections

Overview
Basic Graph Definitions
Directed Graphs

Connected Graphs

→ at least one path exists
from each to every other
vertex
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Connected Components

the whole graph may not
be connected, but it
consists of connected
subgraphs (components)
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Complete Graphs

→ All possible connections
exist
For a Set of n Nodes:

n − 1 edges for each
node
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Cycles

a cycle is the possibility of
following a path from a
vertex back to itself without
ever following the same
edge more than once
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Directed Graphs

→ Digraph
contains directed edges
between sources and
destinations
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Directed Cyclic Graphs

→ Cyclic Digraph
contains at least one
cyclic path along
directed edges
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Directed Acyclic Graphs

→ DAG
directed graph that
contains no cycles

→ many graph algorithms
require DAGs
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Bidirectional Connectors

undirected edges can be
modelled by two directed
edges
→ the two directions may

have different weight
(more flexible than a
weighted undirected
edge)!
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Looping Edges

an edge may loop from a
node back to itself
→ used in automata and

state machines
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Implementations
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Graph Representations

Adjacency Matrix
→ a two-dimensional array of numbers

a cell [i,j] contains 1 if there is an edge from vertex i to
vertex j, 0 otherwise (zeroes are not shown in the table
below)

A

B

C

D

E

j 0 1 2 3 4
i A B C D E
0 A
1 B 1
2 C 1 1
3 D 1 1
4 E
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Graph Representations (2)

Weighted Graphs
→ store weight instead of just 1 (true) or 0 (false)

A
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D

E2

3

4
5

6

j 0 1 2 3 4
i A B C D E
0 A
1 B 2
2 C 3 4
3 D 5 6
4 E
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Graph Representations (3)

Adjacency List
store the information about a graph in an array of linked lists
the i th linked list contains all Vertices that receive an Edge
from Vertex i

A

B

C i : 0 A → nil

1 B → A → nil

2 C → A → nil
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Graph Representations (4)

Adjacency List
edge weights may be included in the nodes of the list
space efficiency: good for sparse graphs, i.e. graphs
without many edges

A

B

C i : 0 A → nil

1 B → A → nil

2 C → A → nil
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Complexity Analysis

Check existing Edge between any two given vertices v1
and v2

Matrix: index operation O(1)
List: follow links O(n)

Find all vi adjacent to given vk
Matrix: always visit all N cells O(n)
List: list for the given vertex O(n)
→ small number for sparse graphs O(1)
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Complexity Analysis (2)

Iterate across all neighbours of v1
Number of edges in a complete graph with N vertices

Directed: N ∗ (N − 1)
Undirected: N ∗ (N − 1)/2

Matrix: worst case O(n2)
List: depends on number of neighbours

sparse graphs: O(n)
dense graphs: O(n2)
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Traversals

Remember Tree traversals:
start at top, visit all nodes

Graph:
start from a given vertex, visit all vertices to which it
connects

Complexity
Matrix: iterate across the row: O(n)
List: traverse the vertex’s linked list: O(n)
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Traversal Example

Example (pseudo code)
void traverseFromVertex(Graph *G, Vertex *startNode)

{
mark_unvisited(G); // all vertices: O(n)
insert startNode in empty collection // O(1)
for each vertex in collection { // O(n)

if (!vertex.visited()) { // O(1)
vertex.setVisited(); // O(1)
do_something(vertex); // O(1)
collection.add(vertex.adjacent()); // O(n)

}
}

}
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Traversal Types

Depth First (DFT)
go deeply into the graph before backtracking on another
path

→ use a Stack as the collection
→ use recursion

Breadth First (BFT)
visit each adjacent vertex first

→ use a Queue as the collection
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Recursive Depth-First Example

Example (pseudo code)
void traverseFromVertex(Graph *G, Vertex *start)

{
mark_unvisited(G); // all vertices: O(n)
depth_first(G, start);

}

void depth_first(Graph *G, Vertex *v)

{
v.setVisited();
do_something(v);
for each w in vertex.adjacent()

if (!w.visited())
depth_first(G, w);

}
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Trees within Graphs

Traversal from a vertex
only includes a sub-graph of the main graph

→ a depth-first traversal creates a depth-first search tree
Spanning Tree

a sub-graph starting at a given vertex and retaining the
connection between all the vertices in the sub-graph
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Minimum Spanning Tree

Minimum Spanning Tree
traversal using a minimum number of edges
for weighted edges: minimising the sum of the edges’
weights

(Minimum) Spanning Forest
repeatedly apply the (minimum) spanning tree algorithm on
all graph components
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Minimum Spanning Tree Algorithm

Example (pseudo code)
void minimumSpanningTree(Graph *G)

{
mark_unvisited(G); // all vertices: O(n)
mark some vertex v as visited;
for (k = 1; k < n; k++) // for each vertex
{

find the smallest weight from a visited vertex to an unvisited vertex w;
mark the edge and w as visited;

}
}

⇒ Complexity: O(n ·m)
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Topological Orders

Example (Graph Example)

P

Q

R

S

T

DAGs may have certain orderings among the vertices
→ Topological Orders
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Topological Sort

Example (Graph Example)

P

Q

R

S

T

Find a topological order of vertices using a traversal (DFT,
BFT)
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Topological Sort (2)

Example (attempt to flatten the graph)

P

Q

R

S T

Find a topological order of vertices using a traversal (DFT,
BFT)
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Topological Sort (3)

Example (one topological order)

P Q R S T

Example (another topological order)

P QR S T

Multiple equivalent orderings are possible
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Shortest Path Problems

Single-Source Shortest Path
shortest Path from a given vertex to all other vertices

→ Dijkstra’s algorithm: O(n2)
All Pairs Shortest Path

Set of all the shortest paths in a graph
→ Floyd’s algorithm: O(n3)
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Dijkstra’s Algorithm

Inputs
DAG with edge-weights greater than 0
a single source vertex s

Output: two-dimensional array:
N rows: vertices
three columns

1 vertex number
2 distance from source
3 predecessor

temporary array of booleans: vertex included in path
Two steps

initialisation
computation
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Initialisation

Dijkstra’s Algorithm: Initialisation
for each vertex v in the graph (each row in results)

{
vertexnumber[row] = v;
if v == source vertex s // source node
{

distance[row] = 0;
path[row] = undefined;
included[row] = true;

}
else if there is an edge from s to v // nodes adjacent to source

{
distance[row] = edge_weight(s,v);
path[row] = s;
included[row] = false;

}
else // all other nodes
{

distance[row] = infinite;
path[row] = undefined;
included[row] = false;

}
}
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Initialisation Results

included[]
→ all cells are false except for source vertex cell
distance[]
= 0 (source vertex)
> 0 (adjacent vertices)

infinity (all other vertices)
path[]
→ source vertex (adjacent vertices) or undefined
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Computation

Dijkstra’s Algorithm: Computation
do
{

find vertex F that is not yet included and has minimal difference
{

included[F] = true;
for each other vertex T not included
{

if there is an edge from F to T
{

newdist= distance[F] + edge_weight(F,T);
if newdist< distance[T]
{
distance[T] = newdist;
path[T] = F;

}
}

}
}

} while not all vertices are included;
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Shortest Path Complexity

Critical Step
nested if statement
→ resets distance and predecessor for an unincluded vertex if

a new minimal distance has been found

Initialisation: every vertex O(n)
Computation: nested loops O(n2)
Total: O(n2)
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Graph Implementations

A Graph Class
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Graph Interface

Needs to define
Mutators: adding/removing edges and vertices
Accessors: checking/returning edges/weights
Iterators

over vertices, labels, adjacent vertices
over edges, edges connected to a specific vertex

Other interfaces
getting/setting of labels, weights, etc.
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Array Graph Interface

Example (Objective-C)
@interface Graph: NSObject
{

id *vertex; // vertices array
int *edge; // edge array
int n, size; // # of vertices

}

- initWithSize: (int) N;

- (void) addVertex: label;

- (void) addEdgeFrom: (int) src
to: (int) dst

weight: w;

- (int) edgeFrom: (int) src
to: (int) dst;

- (int) findVertex: label;

@end

Example (C++)
class Graph
{

string *vertex;// vertices array
int *edge; // edge array
int n, size; // # of vertices

public:
Graph(int N);

void Graph::addVertex(const string &label);

void Graph::addEdge(int from,
int to,
int w);

int Graph::getEdge(int from,
int to);

int Graph::findVertex(const string &label);

};
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Array Graph Implementation

Example (Initialiser)
@implementation Graph

- initWithSize: (int) N
{ // in real life: check errors!

if (![super init]) return nil;
vertex = calloc(N, sizeof(id));
edge = calloc(N*N, sizeof(int));
size = N;
n = 0; // no vertices yet

return self;
}

Example (Constructor)
/** Graph Implementation: Constructor */

Graph::Graph(int N)
{ // in real life: check errors!

vertex = new string[N];
edge = new int[N*N];
size = N;
n = 0; // no vertices yet

}
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Adding a Vertex/Edge

Example (Objective-C)
- (void) addVertex: label
{

vertex[n++] = label;
}

- (void) addEdgeFrom: (int) src
to: (int) dst

weight: (int) w
{

edge[src + size * dst] = w;
}

Example (C++)
void Graph::addVertex(const string &label)
{

vertex[n++] = label;
}

void Graph::addEdge(int from,
int to,
int w)

{
edge[from + size * to] = w;

}
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Retrieving Data

Example (Objective-C)
/*
* return weight of edge

*/
- (int) edgeFrom: (int) src

to: (int) dst
{

return edge[src + size * dst];
}

/*
* find vertex with label

*/
- (int) findVertex: label
{

for (int i = 0; i < n; i++)
if ([vertex[i] isEqual: label])

return i;

return -1; // not found
}

Example (C++)
/*
* return weight of edge

*/
int Graph::getEdge(int src,

int dst)
{

return edge[src + size * dst];
}

/*
* find vertex with label

*/
int Graph::findVertex(const string &label)
{

for (int i = 0; i < n; i++)
if (vertex[i] == label)
return i;

return -1; // not found
}
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Other Functions/Methods

deleteVertex:
remove vertex from array
remove gap!

deleteEdgeFrom:To:
same as addEdgeFrom:To:Weight:0;

numVertices
return n;

numEdges
number of edges with weight > 0
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Unordered Collections

→ Items in no particular position
Set

unique items in no particular order
Counted Set (Multi Set, Bag)

items in no particular order
same item can be present multiple times

Dictionary (Map)
values associated with unique keys
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Unordered Collection Class Examples

Unordered Set
NSSet / NSMutableSet Objective-C
std::unordered_set C++

Ordered Set
NSOrderedSet / NSMutableOrderedSet Objective-C
std::set C++

Counted Set (Multi Set, Bag)
NSCountedSet Objective-C
std::multiset C++

Dictionary (Map)
NSDictionary / NSMutableDictionary Objective-C
std::map / std::multimap C++
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NSDictionary Example

Example (an English/German dictionary in Objective-C)
#import <Foundation/Foundation.h>

int main(int argc, char *argv[])
{

@autoreleasepool
{

NSDictionary *dict = [NSDictionary dictionaryWithObjectsAndKeys:
/*
* @"German:", @"English:",

*/
@"Eins", @"One",
@"Zwei", @"Two",
@"Drei", @"Three",
nil];

id key = @"Three"; // a key to search for
id value = [dict objectForKey: key]; // its corresponding value

printf("The German translation for ’%s’ is ’%s’\n",
[key UTF8String], [value UTF8String]);

}

return EXIT_SUCCESS;
}
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std::map Example

Example (an English/German dictionary in C++)
#include <iostream>
#include <map>

using namespace std;

int main(int argc, char *argv[])
{

map<const char*, const char *> dict;

/*
* English German

*/
dict["one"] = "eins";
dict["two"] = "zwei";
dict["three"] = "drei";

const char *key = "three"; // a key to search for
const char *value = dict[key]; // its corresponding value

cout << "The German translation for ";
cout << key << " is "<< value << endl;

return EXIT_SUCCESS;
}
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