
Measuring Complexity
Big-O Notation

Complexity Analysis
2501ICT/7421ICT Nathan

René Hexel

School of Information and Communication Technology
Griffith University

Semester 1, 2012

René Hexel Complexity Analysis



Measuring Complexity
Big-O Notation

Outline

1 Measuring Complexity
Overview
Measuring the Efficiency of Algorithms

2 Big-O Notation
Big-O Analysis
Common Complexities

René Hexel Complexity Analysis



Measuring Complexity
Big-O Notation

Overview
Measuring the Efficiency of Algorithms

Overview

Efficiency of Algorithms
Time and Space
Measuring Efficiency
Big-O Analysis
Examples and Case Studies
Search Algorithms
Sort Algorithms

René Hexel Complexity Analysis



Measuring Complexity
Big-O Notation

Overview
Measuring the Efficiency of Algorithms

Why Analyse Complexity?

Improve Algorithm Efficiency
need to assess efficiency

→ can Make a Big Difference

Large data sets
Computationally intense problems
But: Correctness is most important
→ make correct algorithm efficient, not vice versa!

René Hexel Complexity Analysis



Measuring Complexity
Big-O Notation

Overview
Measuring the Efficiency of Algorithms

Algorithm Efficiency

Algorithms Consume Resources
processing time
memory space

Compromise
speed up at expense of memory
slower, but more memory efficient algorithms

→ application dependent!

René Hexel Complexity Analysis



Measuring Complexity
Big-O Notation

Overview
Measuring the Efficiency of Algorithms

Problem Size

Problem Size is the data set size an algorithm works on

Example (Sum Integers in an Array)

12 4 17 · · · 29 18
1 2 3 · · · n - 1 n

n Integers:
→ problem size is n

René Hexel Complexity Analysis



Measuring Complexity
Big-O Notation

Overview
Measuring the Efficiency of Algorithms

Measuring Efficiency

Time a program using the computer clock
→ time command on the command line

takes too long for large data sets
→ may not even complete!

system dependent (compiler, hardware, . . . )
Count block or instruction iterations

better overall indicator
works with abstract representations

→ constant and variable figures (loops)

René Hexel Complexity Analysis



Measuring Complexity
Big-O Notation

Overview
Measuring the Efficiency of Algorithms

Execution Time

AAAA: Abstractly assess an algorithm
→ without executing an actual program

Example (How many times is S1 executed?)
for (i = 0; i < 10; i++)
for (i = 0; i < N; i++)

S1;

S1 is the Privileged Instruction
if S1 takes a constant amount of time k1, how long will the
loop take to execute?
⇒ execution time t = N · k1

René Hexel Complexity Analysis



Measuring Complexity
Big-O Notation

Overview
Measuring the Efficiency of Algorithms

Execution Time (2)

Example (Adding a constant Overhead)

S0;
for (i = 0; i < N; i++)

S1;
S2;

Assuming S0 and S2 together take a constant time k2:
⇒ total execution time t = N · k1 + k2

René Hexel Complexity Analysis



Measuring Complexity
Big-O Notation

Big-O Analysis
Common Complexities

Complexity and Problem Size

Small n
time differences are small
most algorithms perform similarly

Large n
huge difference
→ several seconds vs. thousands of years or more!

Complexity figure is significant for large values of n

René Hexel Complexity Analysis



Measuring Complexity
Big-O Notation

Big-O Analysis
Common Complexities

Large Values of n

Example (comparing different efficiencies)

n n log10 n n2 2n

5 3.49 25 32
10 10 100 1,024

100 200 10,000 1030

1,000 3,000 1,000,000 10301

10,000 40,000 100,000,000 103010

René Hexel Complexity Analysis



Measuring Complexity
Big-O Notation

Big-O Analysis
Common Complexities

Influence of Lesser Terms

Example (Lesser Terms become Insignificant)

n n2 n2 + 14n + 26 Influence
10 100 266 166%

100 10,000 11,426 14.3%

1,000 1,000,000 1,014,026 1.4%

10,000 100,000,000 100,140,026 0.14%

n2 has the biggest effect
⇒ lesser terms become insignificant!

René Hexel Complexity Analysis



Measuring Complexity
Big-O Notation

Big-O Analysis
Common Complexities

Big-O Notation

Less Significant Terms are Ignored
⇒ n2 + 14n + 26 becomes O(n2)
→ O(n2) is read “Order n Squared”

General Case
factor with highest significance determines Order of
Magnitude
→ O(nk ): a + bn + cn2 + · · ·+ nk

→ O(kn): a + bn + cn2 + · · ·+ nk + kn

René Hexel Complexity Analysis



Measuring Complexity
Big-O Notation

Big-O Analysis
Common Complexities

Magnitude of Complexity

Example (most significant term matters)

2n2 + 6 = O(n2)
n3 + 3000n2 + 6 = O(n3)
2n + 4n100 + 5n = O(2n)

Placement of data may influence algorithm complexity
Best-Case, Average, and Worst-Case

→ Significant: Average and Worst-Case

René Hexel Complexity Analysis



Measuring Complexity
Big-O Notation

Big-O Analysis
Common Complexities

Big-O Limitations

Less Significant Terms
→ can be quite significant for small and medium size data

sets!
Constant of Proportionality
→ 800n2

almost 3 orders of magnitude more complex than n2

René Hexel Complexity Analysis



Measuring Complexity
Big-O Notation

Big-O Analysis
Common Complexities

Common Orders of Magnitude

Example (Common Orders of Magnitude)

O(1) Constant
O(log n) Logarithmic
O(n) Linear
O(n log n) Log Linear
O(n2) n-Squared
O(2n) Exponential

René Hexel Complexity Analysis



Measuring Complexity
Big-O Notation

Big-O Analysis
Common Complexities

Common Cases

Single loop processing n items
O(n)

Two nested loops of n items
O(n2)

Binary Search
O(log2 n)

Efficient Sort
O(n log2 n)

René Hexel Complexity Analysis



Measuring Complexity
Big-O Notation

Big-O Analysis
Common Complexities

Logarithms

log2n complexity is very common!
→ log n

Examples:
Repeated doubling

Start at 1, double until size reaches n
Repeated halving

Start at n, half data set until 1 is reached

Binary searches, efficient sorting, . . .

René Hexel Complexity Analysis


	Measuring Complexity
	Overview
	Measuring the Efficiency of Algorithms

	Big-O Notation
	Big-O Analysis
	Common Complexities


