Complexity Analysis
2501ICT/7421ICT Nathan

René Hexel

School of Information and Communication Technology
Griffith University

Semester 1, 2012
Outline

1. Measuring Complexity
 - Overview
 - Measuring the Efficiency of Algorithms

2. Big-O Notation
 - Big-O Analysis
 - Common Complexities

Measuring Complexity
Big-O Notation

René Hexel
Complexity Analysis
Overview

- Efficiency of Algorithms
- Time and Space
- Measuring Efficiency
- Big-O Analysis
- Examples and Case Studies
- Search Algorithms
- Sort Algorithms
Why Analyse Complexity?

- Improve Algorithm Efficiency
 - need to assess efficiency
 - can Make a Big Difference
- Large data sets
- Computationally intense problems
- But: Correctness is most important
 - make correct algorithm efficient, not vice versa!
Algorithm Efficiency

- Algorithms Consume Resources
 - processing time
 - memory space

- Compromise
 - speed up at expense of memory
 - slower, but more memory efficient algorithms

→ application dependent!
Problem Size

- Problem Size is the data set size an algorithm works on.

Example (Sum Integers in an Array)

<table>
<thead>
<tr>
<th>12</th>
<th>4</th>
<th>17</th>
<th>⋅⋅⋅</th>
<th>29</th>
<th>18</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2</td>
<td>3</td>
<td>⋅⋅⋅</td>
<td>n − 1</td>
<td>n</td>
</tr>
</tbody>
</table>

- \(n \) Integers:
 - \(\rightarrow \) problem size is \(n \)
Measuring Efficiency

- Time a program using the computer clock
 - `time command` on the command line
 - Takes too long for large data sets
 - May not even complete!
 - System dependent (compiler, hardware, ...)
- Count block or instruction *iterations*
 - Better overall indicator
 - Works with abstract representations
 - Constant and variable figures (loops)
Execution Time

- AAAA: Abstractly assess an algorithm → without executing an actual program

Example (How many times is S_1 executed?)

```plaintext
for (i = 0; i < 10; i++)
for (i = 0; i < N; i++)
    $S_1$;
```

- S_1 is the Privileged Instruction
 - if S_1 takes a constant amount of time k_1, how long will the loop take to execute?
 - ⇒ execution time $t = N \cdot k_1$
Example (Adding a constant Overhead)

\[S_0; \]
\[\text{for (} i = 0; i < N; i++ \text{)} \]
\[S_1; \]
\[S_2; \]

- Assuming \(S_0 \) and \(S_2 \) together take a constant time \(k_2 \):
 \[\Rightarrow \text{total execution time} \ t = N \cdot k_1 + k_2 \]
Complexity and Problem Size

- **Small n**
 - time differences are small
 - most algorithms perform similarly

- **Large n**
 - huge difference
 - several seconds vs. thousands of years or more!

- Complexity figure is significant for large values of n
Large Values of n

Example (comparing different efficiencies)

<table>
<thead>
<tr>
<th>n</th>
<th>$n \log_{10} n$</th>
<th>n^2</th>
<th>2^n</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>3.49</td>
<td>25</td>
<td>32</td>
</tr>
<tr>
<td>10</td>
<td>10</td>
<td>100</td>
<td>1,024</td>
</tr>
<tr>
<td>100</td>
<td>200</td>
<td>10,000</td>
<td>10^{30}</td>
</tr>
<tr>
<td>1,000</td>
<td>3,000</td>
<td>1,000,000</td>
<td>10^{301}</td>
</tr>
<tr>
<td>10,000</td>
<td>40,000</td>
<td>100,000,000</td>
<td>10^{3010}</td>
</tr>
</tbody>
</table>
Influence of Lesser Terms

Example (Lesser Terms become Insignificant)

<table>
<thead>
<tr>
<th>n</th>
<th>n^2</th>
<th>$n^2 + 14n + 26$</th>
<th>Influence</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>100</td>
<td>266</td>
<td>166 %</td>
</tr>
<tr>
<td>100</td>
<td>10,000</td>
<td>11,426</td>
<td>14.3 %</td>
</tr>
<tr>
<td>1,000</td>
<td>1,000,000</td>
<td>1,014,026</td>
<td>1.4 %</td>
</tr>
<tr>
<td>10,000</td>
<td>100,000,000</td>
<td>100,140,026</td>
<td>0.14 %</td>
</tr>
</tbody>
</table>

- n^2 has the biggest effect
 - ⇒ lesser terms become insignificant!

René Hexel
Complexity Analysis
Big-O Notation

- **Less Significant Terms are Ignored**
 - \(n^2 + 14n + 26 \) becomes \(O(n^2) \)
 - \(O(n^2) \) is read “Order n Squared”

- **General Case**
 - factor with highest significance determines Order of Magnitude
 - \(O(n^k): a + bn + cn^2 + \cdots + n^k \)
 - \(O(k^n): a + bn + cn^2 + \cdots + n^k + k^n \)
Magnitude of Complexity

Example (most significant term matters)

<table>
<thead>
<tr>
<th>Expression</th>
<th>Complexity</th>
</tr>
</thead>
<tbody>
<tr>
<td>$2n^2 + 6$</td>
<td>$O(n^2)$</td>
</tr>
<tr>
<td>$n^3 + 3000n^2 + 6$</td>
<td>$O(n^3)$</td>
</tr>
<tr>
<td>$2^n + 4n^{100} + 5n$</td>
<td>$O(2^n)$</td>
</tr>
</tbody>
</table>

- Placement of data may influence algorithm complexity
 - Best-Case, Average, and Worst-Case
 - Significant: Average and Worst-Case
Big-O Limitations

- Less Significant Terms
 → can be quite significant for small and medium size data sets!
- Constant of Proportionality
 → $800n^2$
 - almost 3 orders of magnitude more complex than n^2
Common Orders of Magnitude

<table>
<thead>
<tr>
<th>Big-O Notation</th>
<th>Complexity</th>
</tr>
</thead>
<tbody>
<tr>
<td>O(1)</td>
<td>Constant</td>
</tr>
<tr>
<td>O(log n)</td>
<td>Logarithmic</td>
</tr>
<tr>
<td>O(n)</td>
<td>Linear</td>
</tr>
<tr>
<td>O(n log n)</td>
<td>Log Linear</td>
</tr>
<tr>
<td>O(n^2)</td>
<td>n-Squared</td>
</tr>
<tr>
<td>O(2^n)</td>
<td>Exponential</td>
</tr>
</tbody>
</table>
Common Cases

- Single loop processing n items
 - $O(n)$
- Two nested loops of n items
 - $O(n^2)$
- Binary Search
 - $O(\log_2 n)$
- Efficient Sort
 - $O(n \log_2 n)$
Logarithms

- $\log_2 n$ complexity is very common!
 - $\log n$

- Examples:
 - Repeated doubling
 - Start at 1, double until size reaches n
 - Repeated halving
 - Start at n, half data set until 1 is reached
 - Binary searches, efficient sorting, . . .