Complexity Analysis 2501ICT/7421ICT Nathan

René Hexel

School of Information and Communication Technology Griffith University

Semester 1, 2012

- Measuring Complexity
 - Overview
 - Measuring the Efficiency of Algorithms

2 Big-O Notation

- Big-O Analysis
- Common Complexities

- Efficiency of Algorithms
- Time and Space
- Measuring Efficiency
- Big-O Analysis
- Examples and Case Studies
- Search Algorithms
- Sort Algorithms

Overview Measuring the Efficiency of Algorithms

Why Analyse Complexity?

Improve Algorithm Efficiency

- need to assess efficiency
- \rightarrow can Make a Big Difference
- Large data sets
- Computationally intense problems
- But: Correctness is most important
 - \rightarrow make correct algorithm efficient, not vice versa!

Algorithm Efficiency

- Algorithms Consume Resources
 - processing time
 - memory space
- Compromise
 - speed up at expense of memory
 - slower, but more memory efficient algorithms
 - → application dependent!

• Problem Size is the data set size an algorithm works on

Example (Sum Integers in an Array)								
	12	4	17		29	18		
	1	2	3	•••	n – 1	n		

- *n* Integers:
 - \rightarrow problem size is *n*

Measuring Efficiency

Time a program using the computer clock

- \rightarrow time command on the command line
 - takes too long for large data sets
 - → may not even complete!
 - system dependent (compiler, hardware, ...)
- Count block or instruction iterations
 - better overall indicator
 - works with abstract representations
 - ightarrow constant and variable figures (loops)

Execution Time

- AAAA: Abstractly assess an algorithm
 - ightarrow without executing an actual program

Example (How many times is S_1 executed?)

for (i = 0; i < 10; i++)
for (i = 0; i < N; i++)
S₁;

- S₁ is the Privileged Instruction
 - if *S*₁ takes a constant amount of time *k*₁, how long will the loop take to execute?

 \Rightarrow execution time $t = N \cdot k_1$

Measuring Complexity Big-O Notation Weasuring the Efficiency of Algorithms

Execution Time (2)

Example (Adding a constant Overhead)

 $S_0;$ for (i = 0; i < N; i++) $S_1;$ $S_2;$

• Assuming S_0 and S_2 together take a constant time k_2 : \Rightarrow total execution time $t = N \cdot k_1 + k_2$

Complexity and Problem Size

Small n

- time differences are small
- most algorithms perform similarly
- Large n
 - huge difference
 - $\rightarrow~$ several seconds vs. thousands of years or more!
- Complexity figure is significant for large values of n

Measuring Complexity Big-O Notation Big-O Analysis Common Complexities

Large Values of n

Example (comparing different efficiencies)

п	<i>n</i> log ₁₀ <i>n</i>	n ²	2 ⁿ
5	3.49	25	32
10	10	100	1,024
100	200	10,000	10 ³⁰
1,000	3,000	1,000,000	10 ³⁰¹
10,000	40,000	100,000,000	10 ³⁰¹⁰

René Hexel Complexity Analysis

Measuring Complexity Big-O Notation Big-O Analysis Common Complexities

Influence of Lesser Terms

Example (Lesser Terms become Insignificant)

n	n ²	<i>n</i> ² + 14 <i>n</i> + 26	Influence
10	100	266	166 %
100	10,000	11,426	14.3 %
1,000	1,000,000	1,014,026	1.4 %
10,000	100,000,000	100, 140, 026	0.14%

- n² has the biggest effect
 - ⇒ lesser terms become insignificant!

Big-O Notation

Less Significant Terms are Ignored

- \Rightarrow $n^2 + 14n + 26$ becomes $O(n^2)$
- \rightarrow O(n^2) is read "Order n Squared"
- General Case
 - factor with highest significance determines Order of Magnitude

$$\rightarrow O(n^k): a + bn + cn^2 + \dots + n^k \rightarrow O(k^n): a + bn + cn^2 + \dots + n^k + k^n$$

Measuring Complexity Big-O Notation Big-O Analysis Common Complexities

Magnitude of Complexity

Example (most significant term matters)

$$\begin{array}{rcl} 2n^2 + 6 & = & O(n^2) \\ n^3 + 3000n^2 + 6 & = & O(n^3) \\ 2^n + 4n^100 + 5n & = & O(2^n) \end{array}$$

- Placement of data may influence algorithm complexity
 - Best-Case, Average, and Worst-Case
 - $\rightarrow~$ Significant: Average and Worst-Case

Big-O Limitations

- Less Significant Terms
 - $\rightarrow\,$ can be quite significant for small and medium size data sets!
- Constant of Proportionality
 - \rightarrow 800 n^2
 - almost 3 orders of magnitude more complex than n²

Measuring Complexity B Big-O Notation C

Big-O Analysis Common Complexities

Common Orders of Magnitude

Example (Common Orders of Magnitude)

O(1)Constant $O(\log n)$ LogarithmicO(n)Linear $O(n\log n)$ Log Linear $O(n^2)$ n-Squared $O(2^n)$ Exponential

Common Cases

- Single loop processing n items
 - O(*n*)
- Two nested loops of *n* items
 - O(*n*²)
- Binary Search
 - O(log₂ n)
- Efficient Sort
 - O(*n* log₂ *n*)

- log₂n complexity is very common!
 - $\rightarrow \log n$
- Examples:
 - Repeated doubling
 - Start at 1, double until size reaches n
 - Repeated halving
 - Start at n, half data set until 1 is reached
 - Binary searches, efficient sorting, ...