Complexity Analysis 2501ICT/7421ICT Nathan

René Hexel

School of Information and Communication Technology
Griffith University
Semester 1, 2012

Outline

(1) Measuring Complexity

- Overview
- Measuring the Efficiency of Algorithms
(2) Big-O Notation
- Big-O Analysis
- Common Complexities

Overview

- Efficiency of Algorithms
- Time and Space
- Measuring Efficiency
- Big-O Analysis
- Examples and Case Studies
- Search Algorithms
- Sort Algorithms

Why Analyse Complexity?

- Improve Algorithm Efficiency
- need to assess efficiency
\rightarrow can Make a Big Difference
- Large data sets
- Computationally intense problems
- But: Correctness is most important
\rightarrow make correct algorithm efficient, not vice versa!

Algorithm Efficiency

- Algorithms Consume Resources
- processing time
- memory space
- Compromise
- speed up at expense of memory
- slower, but more memory efficient algorithms
\rightarrow application dependent!

Problem Size

- Problem Size is the data set size an algorithm works on

Example (Sum Integers in an Array)

12	4	17	\cdots	29	18
1	2	3	\cdots	$n-1$	n

- n Integers:
\rightarrow problem size is n

Measuring Efficiency

- Time a program using the computer clock
\rightarrow time command on the command line
- takes too long for large data sets
\rightarrow may not even complete!
- system dependent (compiler, hardware, ...)
- Count block or instruction iterations
- better overall indicator
- works with abstract representations
\rightarrow constant and variable figures (loops)

Execution Time

- AAAA: Abstractly assess an algorithm
\rightarrow without executing an actual program

```
Example (How many times is S S executed?)
```

```
for (i = 0; i < 10; i++)
```

for (i = 0; i < 10; i++)
for (i = 0; i < N; i++)
for (i = 0; i < N; i++)
Si;

```
    Si;
```

- S_{1} is the Privileged Instruction
- if S_{1} takes a constant amount of time k_{1}, how long will the loop take to execute?
\Rightarrow execution time $t=N \cdot k_{1}$

Execution Time (2)

Example (Adding a constant Overhead)

S_{0};
for (i = 0; i < N; i++)
$S_{1} ;$
S_{2};

- Assuming S_{0} and S_{2} together take a constant time k_{2} :
\Rightarrow total execution time $t=N \cdot k_{1}+k_{2}$

Complexity and Problem Size

- Small n
- time differences are small
- most algorithms perform similarly
- Large n
- huge difference
\rightarrow several seconds vs. thousands of years or more!
- Complexity figure is significant for large values of n

Large Values of n

Example (comparing different efficiencies)

n	$n \log _{10} n$	n^{2}	2^{n}
5	3.49	25	32
10	10	100	1,024
100	200	10,000	10^{30}
1,000	3,000	$1,000,000$	10^{301}
10,000	40,000	$100,000,000$	10^{3010}

Influence of Lesser Terms

Example (Lesser Terms become Insignificant)

n	n^{2}	$n^{2}+14 n+26$	Influence
10	100	266	166%
100	10,000	11,426	14.3%
1,000	$1,000,000$	$1,014,026$	1.4%
10,000	$100,000,000$	$100,140,026$	0.14%

- n^{2} has the biggest effect
\Rightarrow lesser terms become insignificant!

Big-O Notation

- Less Significant Terms are Ignored
$\Rightarrow n^{2}+14 n+26$ becomes $\mathrm{O}\left(n^{2}\right)$
$\rightarrow \mathrm{O}\left(n^{2}\right)$ is read "Order n Squared"
- General Case
- factor with highest significance determines Order of Magnitude
$\rightarrow \mathrm{O}\left(n^{k}\right): a+b n+c n^{2}+\cdots+n^{k}$
$\rightarrow \mathrm{O}\left(k^{n}\right): a+b n+c n^{2}+\cdots+n^{k}+k^{n}$

Magnitude of Complexity

Example (most significant term matters)

$$
\begin{array}{ll}
2 n^{2}+6 & =\mathrm{O}\left(n^{2}\right) \\
n^{3}+3000 n^{2}+6 & =\mathrm{O}\left(n^{3}\right) \\
2^{n}+4 n^{1} 00+5 n & =\mathrm{O}\left(2^{n}\right)
\end{array}
$$

- Placement of data may influence algorithm complexity
- Best-Case, Average, and Worst-Case
\rightarrow Significant: Average and Worst-Case

Big-O Limitations

- Less Significant Terms
\rightarrow can be quite significant for small and medium size data sets!
- Constant of Proportionality
$\rightarrow 800 n^{2}$
- almost 3 orders of magnitude more complex than n^{2}

Common Orders of Magnitude

O(1) Constant
 O(log $n) \quad$ Logarithmic
 $\mathrm{O}(n) \quad$ Linear
 $O(n \log n)$ Log Linear
 $\mathrm{O}\left(n^{2}\right) \quad n$-Squared
 $\mathrm{O}\left(2^{n}\right) \quad$ Exponential

Example (Common Orders of Magnitude)

Common Cases

- Single loop processing n items
- O(n)
- Two nested loops of n items
- $\mathrm{O}\left(n^{2}\right)$
- Binary Search
- $\mathrm{O}\left(\log _{2} n\right)$
- Efficient Sort
- $\mathrm{O}\left(n \log _{2} n\right)$

Logarithms

- $\log _{2} n$ complexity is very common!
$\rightarrow \log n$
- Examples:
- Repeated doubling
- Start at 1, double until size reaches n
- Repeated halving
- Start at n, half data set until 1 is reached
- Binary searches, efficient sorting, ...

