
Abstract Data Types – Collections
Collection Implementations

Abstract Data Types
2501ICT/7421ICTNathan

René Hexel

School of Information and Communication Technology
Griffith University

Semester 1, 2012

René Hexel Abstract Data Types



Abstract Data Types – Collections
Collection Implementations

Outline

1 Abstract Data Types – Collections
Collection Types
Collection Operations

2 Collection Implementations
Linear Collections

René Hexel Abstract Data Types



Abstract Data Types – Collections
Collection Implementations

Collection Types
Collection Operations

Collections

ADTs and Data Structures
Collection Categories
Common Collection Operations
Traversal
Serialisation
Collection Implementations
C, Objective-C

René Hexel Abstract Data Types



Abstract Data Types – Collections
Collection Implementations

Collection Types
Collection Operations

ADTs

Abstract Data Type
Describes a collection of data items and the associated
operations that can be applied
High-level concept of data organisation (what)
Data Structure
Physical Implementation of an ADT
How to represent ADT concept
There is no ‘best’ Implementation under All Conditions

René Hexel Abstract Data Types



Abstract Data Types – Collections
Collection Implementations

Collection Types
Collection Operations

Collections

Definition
a Collection is a group of items forming a conceptual unit

Collections are
→ represented by ADTs, and
→ implemented through Data Structures

René Hexel Abstract Data Types



Abstract Data Types – Collections
Collection Implementations

Collection Types
Collection Operations

Collection Categories

Linear
Arrays, Lists, Stacks, Queues, . . .

Hierarchical
Heaps, Trees, Hashes, . . .

Connected
Graphs

Unordered
Sets, Bags, Maps, . . .

→ Play an Important role in almost all Non-Trivial Programs!

René Hexel Abstract Data Types



Abstract Data Types – Collections
Collection Implementations

Collection Types
Collection Operations

Linear Collections

D1 D2 D3

Low Level Properties
Array/List operations
e.g. dynamic array, singly/doubly linked list

High Level View
Stack/Queue/. . . functionality
e.g. Push-Down Stack, Priority Queue, Pipe

René Hexel Abstract Data Types



Abstract Data Types – Collections
Collection Implementations

Collection Types
Collection Operations

Hierarchical Collections

Binary Tree
Binary Search Tree
Generic Tree
Heap
Red/Black Tree
. . .

D1

D2 D3

René Hexel Abstract Data Types



Abstract Data Types – Collections
Collection Implementations

Collection Types
Collection Operations

Graphs

Undirected Graph
Nondirectional

D1

D2

D3

D4 D5

René Hexel Abstract Data Types



Abstract Data Types – Collections
Collection Implementations

Collection Types
Collection Operations

Graphs (2)

Directed Graph
Directional

D1

D2

D3

D4 D5

René Hexel Abstract Data Types



Abstract Data Types – Collections
Collection Implementations

Collection Types
Collection Operations

Unordered Collections

Set
Bag
Map

Dictionary
Table

D1

D2

D3

D4 D5

René Hexel Abstract Data Types



Abstract Data Types – Collections
Collection Implementations

Collection Types
Collection Operations

Common Operations

Search and Retrieval
→ given certain search criteria (search properties)
→ return item or position (if found)
→ return distinguishing value like nil or −1 if not found

Removal
→ delete a given item
→ delete item at specific position

René Hexel Abstract Data Types



Abstract Data Types – Collections
Collection Implementations

Collection Types
Collection Operations

Common Operations (2)

Insertion
add a new item
usually at some particular position

→ e.g. at head, at tail, after item x, . . .
Replacement

combination of Removal and Insertion
‘in place’ replacement

→ when atomic action is required

René Hexel Abstract Data Types



Abstract Data Types – Collections
Collection Implementations

Collection Types
Collection Operations

Common Operations (3)

Traversal
visit each item
“do something” with that item

Test (the whole collection)
for equality
greater than, more elements
less than, fewer elements

René Hexel Abstract Data Types



Abstract Data Types – Collections
Collection Implementations

Collection Types
Collection Operations

Common Operations (4)

Size
Number of items
Byte size

Cloning
‘deep copy’
copy an entire collection
each item needs to be cloneable!

René Hexel Abstract Data Types



Abstract Data Types – Collections
Collection Implementations

Collection Types
Collection Operations

Traversal

Need for Sequential Traversal
ADTs differ in Data Organisation
Enumerator (iterator) is required
Object or Function that makes traversal possible
-nextObject for NSEnumerator

return next item and advance
return nil if no next item exists

++ for STL iterators

begin() andend() methods mark start and beginning

René Hexel Abstract Data Types



Abstract Data Types – Collections
Collection Implementations

Collection Types
Collection Operations

Casting

Problem: Collections may Contain Objects of Any Type
Cast to required subclass necessary in C++ for non-virtual
methods!
→ unchecked: (string) – also works in C, Objective-C
→ checked: static_cast<string> – C++ only

Primitive types (e.g. int) need a wrapper
→ e.g. NSNumber in Objective-C
→ e.g. intValue and setIntValue: access methods

limited compile-time type checking!
type of object can be tested during run-time using
isKindOf:

René Hexel Abstract Data Types



Abstract Data Types – Collections
Collection Implementations

Collection Types
Collection Operations

Casting in plain C

No ‘Collection’ Infrastructure
Implement your own or use add-on library
Use void * for generic objects
Cast to Required ‘Object’ Pointer
Primitive types (e.g. int) may need a wrapper
No compile-time type checking – type of object cannot be
tested during run-time!
Casting to wrong pointers causes crashes!

René Hexel Abstract Data Types



Abstract Data Types – Collections
Collection Implementations

Collection Types
Collection Operations

Saving Data on Disk

Serialised stream representation of each object
NSCoding Objective-C Protocol for write/read

- encodeWithCoder: and - initWithCoder:
Abstract set of Methods (NSCoder)

→ Structured Files and XML: NSKeyedArchiver,
NSKeyedUnArchiver

→ Network Connections: NSPortCoder
No API support in C++
→ traverse STL collection using iterator
→ read/write data using stream classes

René Hexel Abstract Data Types



Abstract Data Types – Collections
Collection Implementations

Collection Types
Collection Operations

Saving Data in Objective-C

Example
#import <Foundation/Foundation.h>

int main(int argc, char *argv[])
{

@autoreleasepool
{

NSArray *array = [NSArray arrayWithObjects: @"1", @"2", @"3", @"4", nil];

/*
* save the array to disk, to a file called "Array.bin"

*/
[NSKeyedArchiver archiveRootObject: array toFile: @"Array.bin"];

}

return EXIT_SUCCESS;
}

René Hexel Abstract Data Types



Abstract Data Types – Collections
Collection Implementations

Collection Types
Collection Operations

Loading Data in Objective-C

Example (prints: Array: 1 2 3 4 )
#import <Foundation/Foundation.h>

int main(int argc, char *argv[])
{

@autoreleasepool
{

/*
* load the array from disk (from the "Array.bin" file)

*/
NSArray *array = [NSKeyedUnarchiver unarchiveObjectWithFile: @"Array.bin"];

NSEnumerator *e = [array objectEnumerator];
id object;
printf("Array: ");
while ((object = [e nextObject]) != nil)

printf("%s ", [[object description] UTF8String]);
putchar(’\n’);

}

return EXIT_SUCCESS;
}

René Hexel Abstract Data Types



Abstract Data Types – Collections
Collection Implementations

Collection Types
Collection Operations

Saving Data in C++

Example
#include <iostream>
#include <fstream>
#include <vector>
#include <string>

using namespace std;

int main(int argc, char *argv[])
{

vector<int> array(5, 0); // an array of ints
for (int i = 0; i < 5; i++) array[i] = 2*i; // initialise

/*
* write vector to a file "Vector.txt"

*/
fstream outputFile("Vector.txt", fstream::out);
vector<int>::iterator enumerator = array.begin();
while (enumerator != array.end())

outputFile << *enumerator++ << endl;
outputFile.close();

return outputFile.fail() ? EXIT_FAILURE : EXIT_SUCCESS;
}

René Hexel Abstract Data Types



Abstract Data Types – Collections
Collection Implementations

Collection Types
Collection Operations

Loading Data in C++

Example (prints: 0 2 4 6 8 )
#include <iostream>
#include <fstream>
#include <vector>
#include <string>

using namespace std;

int main(int argc, char *argv[])
{

vector<int> array(0); // an array of ints
string line;

fstream inputFile("Vector.txt", fstream::in); // read vector from file
while (getline(inputFile,line))
{

int element = atoi(line.c_str()); // convert line to int
array.push_back(element); // add to array

}
vector<int>::iterator enumerator = array.begin();
while (enumerator != array.end()) // traverse array

cout << *enumerator++ << " ";
cout << endl;

return !inputFile.eof() ? EXIT_FAILURE : EXIT_SUCCESS;
}

René Hexel Abstract Data Types



Abstract Data Types – Collections
Collection Implementations

Collection Types
Collection Operations

Machine-Independent Files

Use Text-Based File Format
→ e.g. XML

Write: Traverse each Element
print out content into stream, e.g. using fprintf(),
-encodeWithCoder:, . . .

Read: Parse input Data⇒ e.g. NSScanner
→ create Data Structure as you go
→ add each one to your collection

René Hexel Abstract Data Types



Abstract Data Types – Collections
Collection Implementations

Collection Types
Collection Operations

Saving XML Data in Objective-C

Example
#import <Foundation/Foundation.h>

int main(int argc, char *argv[])
{

@autoreleasepool
{

NSArray *array = [NSArray arrayWithObjects: @"1", @"2", @"3", @"4", nil];
NSMutableData *data = [NSMutableData new];
NSKeyedArchiver *archiver = [[NSKeyedArchiver alloc]

initForWritingWithMutableData: data];
[archiver setOutputFormat: NSPropertyListXMLFormat_v1_0];
[archiver encodeObject: array forKey: @"root"]; // create XML
[archiver finishEncoding];
[archiver release];

[data writeToFile: @"Array.xml" atomically: YES]; // write file
[data release];

}

return EXIT_SUCCESS;
}

René Hexel Abstract Data Types



Abstract Data Types – Collections
Collection Implementations

Collection Types
Collection Operations

Loading XML Data in Objective-C

Example (prints: Array: 1 2 3 4 )
#import <Foundation/Foundation.h>

int main(int argc, char *argv[])
{

@autoreleasepool
{

/*
* load the array from disk (from the "Array.xml" file)

*/
NSArray *array = [NSKeyedUnarchiver unarchiveObjectWithFile: @"Array.xml"];

NSEnumerator *e = [array objectEnumerator];
id object;
printf("Array: ");
while ((object = [e nextObject]) != nil)

printf("%s ", [[object description] UTF8String]);
putchar(’\n’);

}

return EXIT_SUCCESS;
}

René Hexel Abstract Data Types



Abstract Data Types – Collections
Collection Implementations

Linear Collections

ADT Implementations

High-level Decisions
accessing head/tail only?
random access needed?
map/dictionary functionality needed?

Low-level Decisions
arrays (static vs. dynamic)
linked lists (linked data structures)
hash maps

René Hexel Abstract Data Types



Abstract Data Types – Collections
Collection Implementations

Linear Collections

ADT Implementations (2)

Often: Multiple Implementations
time/space tradeoff

Linear Collections
arrays
linked lists
hash maps

Hierarchical Collections
different linkage models

René Hexel Abstract Data Types



Abstract Data Types – Collections
Collection Implementations

Linear Collections

Arrays

One of the Most Commonly Used Low Level Data
Structures
Access Elements by Index Position
Index Operation is Very Fast
Constant time to access any element
Element position does not affect access speed

René Hexel Abstract Data Types



Abstract Data Types – Collections
Collection Implementations

Linear Collections

Physical Array Size

Capacity (max. size) of an Array
C: use sizeof (size in Bytes!)
char *students[100];
sizeof(students) / sizeof(students[0]) = 100;
Objective-C

transparent, but NSMutableArray can be optimised for a
given capacity!
NSMutableArray s = [NSMutableArray

arrayWithCapacity: 100];

C++ vector class is also transparent, but optimised for a
fixed size

René Hexel Abstract Data Types



Abstract Data Types – Collections
Collection Implementations

Linear Collections

Logical Array Size

Number of Valid Items
e.g. 4 items have been added to the array:

D1 D2 D3 D4

A Dedicated Counter Variable is needed to Keep Track of
the Size

René Hexel Abstract Data Types



Abstract Data Types – Collections
Collection Implementations

Linear Collections

Adding an Item to an Array

Check if logical size equals physical size
If so, we need to Increase the size of the array:
Create a new, larger array
Copy old array to new array
Refer the old array variable to the new array
Add the Item to the new array

René Hexel Abstract Data Types



Abstract Data Types – Collections
Collection Implementations

Linear Collections

Resizing in Plain C

Example (expanding an array in C)
struct Object *temp;
int i;

if (logsz == physz)
{
physz++; /* increase physical size */
temp = malloc(physz * sizeof(struct Object)); /* allocate new memory */

for (i=0; i < physz; i++) /* copy old array to new */
temp[i] = array[i];

free(array); /* free old array */
array = temp; /* use new array */

}

René Hexel Abstract Data Types



Abstract Data Types – Collections
Collection Implementations

Linear Collections

Complexity

Resizing is Costly
complexity shoots up from O(1) to O(n)

⇒ resize less often

Don’t just add 1, but double the size each time:
physz *= 2;

René Hexel Abstract Data Types



Abstract Data Types – Collections
Collection Implementations

Linear Collections

Decreasing Size

Similar to Increasing
Frees up wasted space

→ Create a temporary, smaller array
As costly as increasing

⇒ Don’t decrease too often!
Good strategy: decrease only if the logical size is less than
1
4 of the physical size
→ Decrease only by 1

2 to leave room for adding elements
again

René Hexel Abstract Data Types



Abstract Data Types – Collections
Collection Implementations

Linear Collections

Inserting an Item

Check Available Space
Resize if necessary: O(n)
Shift Items from target index to logical end one index down:
O(n)

D1 D2 D3

D1 D2 D3

D1 D2 D4 D3

René Hexel Abstract Data Types



Abstract Data Types – Collections
Collection Implementations

Linear Collections

Removing an Item

Shift Items from target index + 1 to logical end one index
up: O(n)
Check Wasted Space
Decrease size if necessary: O(n)

D1 D2 D3 D4

D1 D2 D4

D1 D2 D4

René Hexel Abstract Data Types



Abstract Data Types – Collections
Collection Implementations

Linear Collections

Array Problems

Insertions and Deletions incur some overhead
Shifting items to open or close a gap
Copying all items when resizing
O(n) Complexity in Time and Space
Only efficient if mostly static!

René Hexel Abstract Data Types



Abstract Data Types – Collections
Collection Implementations

Linear Collections

Array Problems (2)

Require Contiguous Memory
Expensive for large data structures
1:1 Correspondence Between

logical position of a cell and its
physical position in memory

Decouple Logical/Physical Pos.
→ linked data structure

René Hexel Abstract Data Types



Abstract Data Types – Collections
Collection Implementations

Linear Collections

Linked Data Structures

Consist of Elements Called Nodes
A Node Contains

The actual data
One or more links to other nodes

Dynamic Data Structures
Memory is allocated only as needed
Can be freed immediately if unneeded

René Hexel Abstract Data Types



Abstract Data Types – Collections
Collection Implementations

Linear Collections

Singly Linked Lists

Illustration:

Accessing a Node (an Item)
Follow the links from the Head
Last item has a null link
Dummy link indicating the end of the list

René Hexel Abstract Data Types



Abstract Data Types – Collections
Collection Implementations

Linear Collections

Nodes

Illustration of a Node

link

data

A Node stores
a Pointer to another Node (link)
an Object (the actual data)

René Hexel Abstract Data Types



Abstract Data Types – Collections
Collection Implementations

Linear Collections

Singly Linked Structures

Start With a Null Pointer (nil or NULL)

head NULL

Called the Head Pointer or an External Pointer
Contains no data!

René Hexel Abstract Data Types



Abstract Data Types – Collections
Collection Implementations

Linear Collections

Singly Linked Structures (2)

Add the first Node

head link

D1

NULL

Node Contains Actual Data
Let head point to this first node
Node itself points to NULL link as next node

René Hexel Abstract Data Types



Abstract Data Types – Collections
Collection Implementations

Linear Collections

Singly Linked Structures (3)

Add the second Node

head link

D1

link

D2

NULL

Then add third, fourth, etc.
All Nodes contain their own data and
→ a NULL Pointer when added at the tail

→ Pointers get updated as new Nodes are added

René Hexel Abstract Data Types



Abstract Data Types – Collections
Collection Implementations

Linear Collections

Removing a Node

To delete a Node

head link

D1

link

D2

link

D3

NULL

Aim predecessor (or head) pointer at following node
Release used up memory

René Hexel Abstract Data Types



Abstract Data Types – Collections
Collection Implementations

Linear Collections

Singly Linked List Complexity

Adding an Item: O(n)
Deleting an Item: O(n)
Linear Search: O(n)
Binary Search: O(n log n)
No direct access possible!
Cache pointers
Reduce frequent operations to O(1)

René Hexel Abstract Data Types


	Abstract Data Types – Collections
	Collection Types
	Collection Operations

	Collection Implementations
	Linear Collections


