Preprocessor Directives
Pointers and Memory

Advanced C Concepts
2501ICT/7421ICTNathan

René Hexel

School of Information and Communication Technology
Griffith University

Semester 1, 2012

René Hexel Advanced C Concepts



Outline

0 Preprocessor Directives

9 Pointers and Memory
@ Pointers, Arrays, and Strings

René Hexel Advanced C Concepts



Preprocessor Directives

#include Reviewed

@ Includes global or local header files
@ Header files are just files that get inserted instead of the
#include statement
@ No protection against multiple inclusion!
o will cause problems with #define, struct, ...
@ Can be overcome by conditional compilation

@ #if/#ifdef/#else/ #endif
e evaluates #define macros and selectively passes code to
the compiler

René Hexel Advanced C Concepts



Preprocessor Directives

Preprocessor conditionals

@ #ifdef macro
e only includes the subsequent code if macro was #defined
#1ifndef macro

e only includes the subsequent code if macro was not
#defined

#1if expression
e only includes the subsequent code if expression is true
@ #else
o reverses the effects of the previous #if
#elif expression
e combines #else with the effects of #1f
#endif

e ends the conditional block started by #if or #ifdef
@ each #if or #ifdef needs exactly one #endif

René Hexel Advanced C Concepts



Preprocessor Directives

#ifdef / #else Example

Example (What does this code print)

#define DEBUG 1 // turn on debugging

int main (void)
{
#ifdef DEBUG

printf ("debugging is on, DEBUG is %d\n", DEBUG) ;
#else

printf ("debugging is off, DEBUG is not defined\n");
#endif

return 0;
}

debugging is on, DEBUG is 1

René Hexel Advanced C Concepts



Preprocessor Directives

#ifdef / #else Example

Example (What does this code print)

#define DEBUG 0 // turn on debugging

int main (void)
{
#ifdef DEBUG

printf ("debugging is on, DEBUG is %d\n", DEBUG) ;
#else

printf ("debugging is off, DEBUG is not defined\n");
#endif

return 0;
}

debugging is on, DEBUG is 0

René Hexel Advanced C Concepts



Preprocessor Directives

#if / #elif Example

Example (What does this code print)

#define DEBUG_LEVEL 3 // define deb

level to be 3

int main (void)
{
#if DEBUG_LEVEL < 1 // test the actual value of DEBUG_LEVE
printf ("debugging is off\n");
#elif DEBUG_LEVEL == 1
printf ("debugging is on\n");
#else
printf ("debugging is verbose, DEBUG_LEVEL is %d\n", DEBUG_LEVEL) ;
#endif

return 0;
}

debugging is verbose, DEBUG_LEVEL is 3

René Hexel Advanced C Concepts



Preprocessor Directives

#include Protection

Example (a protected header file profit.h)

#ifndef PROFIT_H // only if PROF was not defined yet
#define PROFIT_H // now define P H for protection
struct Profit // definition of a ’'Profit’ structure
{

int year;

double dollars;

#endif // PROFIT_H

How does this header protection work?

@ PROFIT_H is not #defined to begin with
@ PROFIT_H gets defined the first time profit.h gets
#included

@ The nexttime profit.h gets #included, everything
betweeen the #ifdef and #endif is ignored!

René Hexel Advanced C Concepts



Pointers and Memory Pointers, Arrays, and Strings

Copying Strings

@ A String is an array of characters
e one character after the other in memory
@ Strings need to be copied character by character
— loop that stops when the end of string is reached

René Hexel Advanced C Concepts



Pointers and Memory Pointers, Arrays, and Strings

String Copying Example

int main (void)
{

charb[8], a[6] = "Hello";
inti = 0;
do {
b[i] = al[il;
} while (a[i++] != 7\0’)

printf ("$s\n", b);

return 0;

Explanation

@ String a gets copied to b character by character
@ Integer i counts up the current index into the array
@ '\ 0’ denotes the end of the string

e needs to be copied before finishing the loop

René Hexel Advanced C Concepts



Pointers and Memory Pointers, Arrays, and Strings

Printing Strings Revisited

Example (How does this all work?)

int main (void)

{
chars[6] = "HELLO"; // (1) how much space is needed for this string?
printf("%s\n", s); // (2) how does printf print the string s?
return 0;

}
@ the string s needs memory space for 6 characters
@ printf () reads the string from the memory location of s

v

René Hexel Advanced C Concepts



Pointers and Memory Pointers, Arrays, and Strings

Pointer Variables

Example (A Character Pointer)

int main (void)
{

chars[6] = "Hello";
char *p; // a pointer variable
P = 57 // store the address of ’'s’ in p

printf ("$s\n", s);
printf ("$s\n", p); // the same string as ’s’ (not a copy!)

return 0;

Explanation

@ char =« is a character pointer type.
@ pis called a character pointer variable.

— stores the memory address of a character
o (the first character (* H") of the string "Hello™")

René Hexel Advanced C Concepts



Pointers and Memory Pointers, Arrays, and Strings

The Address Operator &

@ The ampersand character « is the address operator.
e It returns the memory address of any variable

@ For an array, the name of the array is a shortcut to the
memory address of the first element

int main (void)
{
chars[6] = "Hello"; // the same string as in the previous example

printf ("$s\n", s);
printf ("$s\n", &s[0]);

as the above!

return 0;

René Hexel Advanced C Concepts



Pointers and Memory Pointers, Arrays, and Strings

Printing Memory Addressess using $p

Example (Printing a Memory Address)

int main (void)
{
chars[6] = "Hello";

char xp = s;

printf ("$p\n", s);
printf ("$p\n", &s[0]);
printf ("$p\n", p);

/ will print th

return 0;

Explanation

@ %p prints a memory address (in hexadecimal notation)
@ all three printf ()’s are equivalent
= print the same address!

René Hexel Advanced C Concepts



Pointers and Memory Pointers, Arrays, and Strings

More Pointer Examples

Example (Pointers to other types than char)

int main (void)
{

char aCharacter = 'A’; // some normal variables
int anInteger = 12345;
double aDouble = 12.45;

char *a = &aCharacter;
int *b = &anInteger;
double xc = saDouble;

printf ("%p %p %p\n", a, b, ¢);

return 0;

4

Explanation

@ Every variable occupies space in memory
= pointers can be defined for any type!

@ Different variables are stored in different memory locations
= all addresses printed in the example will be different!

René Hexel Advanced C Concepts



Pointers and Memory Pointers, Arrays, and Strings

Pointers to Pointers

int main (void)
{
intx = 7;

int xa = &x;
int xxb = ga;

printf ("$p %p\n", a, b);

return 0;

v

Explanation

@ Like normal variables, pointers occupy memory space as
well!

= &a will return the address of the pointer a
@ int x«b is a pointer to a pointer
— every additional » adds a level of indirection

René Hexel Advanced C Concepts



Pointers and Memory Pointers, Arrays, and Strings

How to use Pointers — de-referencing using *

@ The question is how can memory be accessed using a
pointer?
@ The asterisk (star) character « is the de-referencing
operator.
e It accesses the content of the memory address pointed to
by a pointer.
— opposite of the & operator!
@ Allows to manipulate variables indirectly

e without knowing the name of the variable at he point where
it gets manipulated

René Hexel Advanced C Concepts



Pointers and Memory Pointers, Arrays, and Strings

Pointer de-referencing example

Example (What does this program print~

int main (void)

{
int x = 5;
intxp = &x; // P now to the x
int vy = xp; // get the value at the address pointed to by p
*p = 7; // set the value at the address pointed to by p

printf ("x = %d, y = %d\n", x, y);

return 0;

René Hexel Advanced C Concepts



Pointers and Memory Pointers, Arrays, and Strings

Call-by-reference through Pointers

Example (What does this program print?)

void manipulate (int «p)

{
*p = *p / 2; // change the memory content pointed to by p
}
int main (void)
{
intx = 8;
manipulate (&x) ; // pass address of variable x so x can be manipulated

printf ("x = %d\n", x);

return 0;
}

René Hexel Advanced C Concepts



Pointers and Memory Pointers, Arrays, and Strings

Pointer Arithmetic

@ Pointers store memory addresses
@ just numbers telling the processor which memory cell to
access

@ Adding 1 to a pointer makes it point to the next memory
location

@ Subtracting 1 from a pointer makes it point to the previous
memory location

@ Subtracting two pointers from each other shows how much
space is between the memory locations pointed to by the
pointers

@ Pointers “know” the sizes of the variables they point to

e adding to an int pointer will probably result in a different
address than adding to a char pointer

René Hexel Advanced C Concepts



Pointers and Memory Pointers, Arrays, and Strings

Pointers and Arrays

@ Arrays store elements of the same kind in adjacent
memory addresses
@ Pointers can store array locations

@ Pointer and array notations are often interchangeable
e E.g. for char +p
@ p[4] isthesame as = (p + 4)
@ ¢p[4] isthesameas (p + 4)

= Strings can be represented by pointers as well as arrays

René Hexel Advanced C Concepts



Pointers and Memory Pointers, Arrays, and Strings

Pointer and Array Example: Strings

Example (What does this program print?)

void print (char «text)

N

{ printf ("$s\n", text); // print the string pointed to by ’text’
}
int main (void)
( char s[10] = "fantastic"; // a string
char xp = s; // a pointer to the same string
*(p + 3) = '\O'; // manipulate the memory pointed to by p+3
print (s); // print the string s
return 0;
}
fan

René Hexel Advanced C Concepts



Pointers and Memory Pointers, Arrays, and Strings

Copying Strings revisited

Example (a more efficient string copy)

void string_copy (char »dst, char xsrc) // copy a string from src to dst
! while (xdst++ = xsrc++) ; // copy and test each character
}
int main (void)
{ charb[8], *a = "Hello"; // des ation array and source string
string_copy (b, a); // copy a to b
printf ("$s\n", b); // now we can print the string copy b
return 0;

}

Explanation
@ in C each assignment has a value that can be tested
@ any non-zero result is treated as TRUE in C

@ the end-of-string character \ 0 is treated as FALSE

René Hexel Advanced C Concepts



Pointers and Memory Pointers, Arrays, and Strings

Arrays of Pointers

@ A pointer is just another data type
= arrays of pointers can be defined like any other array
@ Eg. int *x[6]
e an array of 6 integer pointers
@ E.g. char xa[4]

e an array of 4 character pointers
= an array of 4 strings

René Hexel Advanced C Concepts



Pointers and Memory Pointers, Arrays, and Strings

Array of Strings Example

Example (What does this program print?)

int main (void)
{
char xs[3] = { "one", "two", "three"};

printf ("$s\n", s[11);

return 0;
}

two

René Hexel Advanced C Concepts



Pointers and Memory Pointers, Arrays, and Strings

Passing Command Line Parameters

Example (Command Line Parameters)

intmain (int argc, char xargv[]) // a main() that takes parameters
{
inti;
printf ("argc = %d\n", argc); // print the number of parameters

for (i = 0; i < argc; i++)

1 parameters
printf ("argv[%d] = ’%s’\n", i, argvl[i]); e

e of them

return 0;
}

’

Points to remember

@ Command line parameters are passed as an array of
strings (argv)

@ The first argument (argc) contains the number of
elements in the array

@ argv[0] always contains the program name itself

René Hexel Advanced C Concepts



Pointers and Memory Pointers, Arrays, and Strings

Pointers to Structs

Example (What does this program print?)

struct student
{

char xname;
long num;

i

int main (void)
{
struct student s; // &
struct student *p = &s; // a

(*p) .name
(*xp) .num

"Peter"; //
1234567; // a

rintf("%s’s ID is %1d\n", s.name, s.num);
P

return 0;
}

Peter’s ID is 1234567

René Hexel Advanced C Concepts



Pointers and Memory Pointers, Arrays, and Strings

Shortcut Notation

Example (Shortcut Notation)

struct student

{
char »name;
long num;

i

int main (void)
{

struct student s; // a s

struct student *p = &s; // a t variable

p->name = "Peter"; shortcut notation
p->num = 1234567; // shortcut notat

printf ("$s’s ID is %1d\n", s.name, s.num);

return 0;

ion

Explanation

p->x is a shortcut for (xp) .x

René Hexel Advanced C Concepts




Pointers and Memory Pointers, Arrays, and Strings

Pointers to Remember

@ Call by Reference can be implemented through Pointers

— can save copying lots of data
— allows functions to indirectly manipulate data
@ Beware of Invalid Pointers!
@ no run-time checking for array boundaries and pointer
validity
e accessing invalid memory may crash your program
= never de-reference uninitialised pointers
= never de-reference NULL pointers
= never de-reference expired pointers

René Hexel Advanced C Concepts



Pointers and Memory Pointers, Arrays, and Strings

Uninitialised Pointer Error Example

Example (What is Wrong with this Program?)

int main (void)
{

int *pj // an unitialised pointer
printf ("+p = %d\n", *p);

return 0;
}

Explanation

@ p does not point to a valid address!
@ typical errors are Bus Error and Segmentation Fault

René Hexel Advanced C Concepts



Pointers and Memory Pointers, Arrays, and Strings

NULL Pointer Error Example

Example (What is Wrong with this Program?)

int main (void)
{
int«p = 0;

o = 7;
printf ("+p = %d\n", *p);

return 0;
}

v

Explanation

@ 0 (NULL) is not a valid memory address!
@ unlike Java, there are no NULL pointer exceptions!
@ typical errors are Bus Error and Segmentation Fault

René Hexel Advanced C Concepts



Pointers and Memory Pointers, Arrays, and Strings

Expired Pointer Error Example

Example (What is Wrong with this Program?)

int «function (void) // a function that returns an integer pointer
{
intx = 2;
return &x; // THIS S WRONG: x wil expire at the end of ’function’

}

int main (void)
{
int xp = function();

*p = 7;

return 0;
}

v

Explanation

@ x expires at end of function (), memory will be re-used!
@ will probably only crash sometimes!
— one of the hardest errors to find and correct!

René Hexel Advanced C Concepts



	Preprocessor Directives
	Pointers and Memory
	Pointers, Arrays, and Strings


