
Preprocessor Directives
Pointers and Memory

Advanced C Concepts
2501ICT/7421ICTNathan

René Hexel

School of Information and Communication Technology
Griffith University

Semester 1, 2012

René Hexel Advanced C Concepts

Preprocessor Directives
Pointers and Memory

Outline

1 Preprocessor Directives

2 Pointers and Memory
Pointers, Arrays, and Strings

René Hexel Advanced C Concepts

Preprocessor Directives
Pointers and Memory

#include Reviewed

Includes global or local header files
Header files are just files that get inserted instead of the
#include statement
No protection against multiple inclusion!

will cause problems with #define, struct, . . .
Can be overcome by conditional compilation

#if / #ifdef / #else / #endif
evaluates #define macros and selectively passes code to
the compiler

René Hexel Advanced C Concepts

Preprocessor Directives
Pointers and Memory

Preprocessor conditionals

#ifdef macro
only includes the subsequent code if macro was #defined

#ifndef macro
only includes the subsequent code if macro was not
#defined

#if expression
only includes the subsequent code if expression is true

#else
reverses the effects of the previous #if

#elif expression
combines #else with the effects of #if

#endif
ends the conditional block started by #if or #ifdef
each #if or #ifdef needs exactly one #endif

René Hexel Advanced C Concepts

Preprocessor Directives
Pointers and Memory

#ifdef / #else Example

Example (What does this code print)
#define DEBUG 1 // turn on debugging

int main(void)
{
#ifdef DEBUG

printf("debugging is on, DEBUG is %d\n", DEBUG);
#else

printf("debugging is off, DEBUG is not defined\n");
#endif

return 0;
}

Answer
debugging is on, DEBUG is 1

René Hexel Advanced C Concepts

Preprocessor Directives
Pointers and Memory

#ifdef / #else Example

Example (What does this code print)
#define DEBUG 0 // turn on debugging

int main(void)
{
#ifdef DEBUG

printf("debugging is on, DEBUG is %d\n", DEBUG);
#else

printf("debugging is off, DEBUG is not defined\n");
#endif

return 0;
}

Answer
debugging is on, DEBUG is 0

René Hexel Advanced C Concepts

Preprocessor Directives
Pointers and Memory

#if / #elif Example

Example (What does this code print)
#define DEBUG_LEVEL 3 // define debug level to be 3

int main(void)
{
#if DEBUG_LEVEL < 1 // test the actual value of DEBUG_LEVEL

printf("debugging is off\n");
#elif DEBUG_LEVEL == 1

printf("debugging is on\n");
#else

printf("debugging is verbose, DEBUG_LEVEL is %d\n", DEBUG_LEVEL);
#endif

return 0;
}

Answer
debugging is verbose, DEBUG_LEVEL is 3

René Hexel Advanced C Concepts

Preprocessor Directives
Pointers and Memory

#include Protection

Example (a protected header file profit.h)
#ifndef PROFIT_H // only if PROFIT_H was not defined yet
#define PROFIT_H // now define PROFIT_H for protection

struct Profit // definition of a ’Profit’ structure
{

int year;
double dollars;

};

#endif // PROFIT_H

How does this header protection work?
PROFIT_H is not #defined to begin with
PROFIT_H gets defined the first time profit.h gets
#included
The next time profit.h gets #included, everything
betweeen the #ifdef and #endif is ignored!

René Hexel Advanced C Concepts

Preprocessor Directives
Pointers and Memory

Pointers, Arrays, and Strings

Copying Strings

A String is an array of characters
one character after the other in memory

Strings need to be copied character by character
→ loop that stops when the end of string is reached

René Hexel Advanced C Concepts

Preprocessor Directives
Pointers and Memory

Pointers, Arrays, and Strings

String Copying Example

Example
int main(void)
{

char b[8], a[6] = "Hello"; // two character arrays
int i = 0; // index for copying string a to b

do { // loop to copy string a to b
b[i] = a[i]; // copy one character at a time

} while (a[i++] != ’\0’) // until we have reached the end of the string

printf("%s\n", b); // now we can print the string copy b

return 0;
}

Explanation
String a gets copied to b character by character
Integer i counts up the current index into the array
’\0’ denotes the end of the string

needs to be copied before finishing the loop

René Hexel Advanced C Concepts

Preprocessor Directives
Pointers and Memory

Pointers, Arrays, and Strings

Printing Strings Revisited

Example (How does this all work?)
int main(void)
{

char s[6] = "HELLO"; // (1) how much space is needed for this string?

printf("%s\n", s); // (2) how does printf print the string s?

return 0;
}

Answer
1 the string s needs memory space for 6 characters
2 printf() reads the string from the memory location of s

René Hexel Advanced C Concepts

Preprocessor Directives
Pointers and Memory

Pointers, Arrays, and Strings

Pointer Variables

Example (A Character Pointer)
int main(void)
{

char s[6] = "Hello";

char *p; // a pointer variable

p = s; // store the address of ’s’ in p

printf("%s\n", s);
printf("%s\n", p); // the same string as ’s’ (not a copy!)

return 0;
}

Explanation
char * is a character pointer type.
p is called a character pointer variable.
→ stores the memory address of a character

(the first character (’H’) of the string "Hello")

René Hexel Advanced C Concepts

Preprocessor Directives
Pointers and Memory

Pointers, Arrays, and Strings

The Address Operator &

The ampersand character & is the address operator.
It returns the memory address of any variable

For an array, the name of the array is a shortcut to the
memory address of the first element

Example
int main(void)
{

char s[6] = "Hello"; // the same string as in the previous example

printf("%s\n", s); // shortcut notation
printf("%s\n", &s[0]); // exactly the same as the above!

return 0;
}

René Hexel Advanced C Concepts

Preprocessor Directives
Pointers and Memory

Pointers, Arrays, and Strings

Printing Memory Addressess using %p

Example (Printing a Memory Address)
int main(void)
{

char s[6] = "Hello";

char *p = s;

printf("%p\n", s); // while we won’t know upfront what the
printf("%p\n", &s[0]); // memory address is, all three printf()
printf("%p\n", p); // will print the same address

return 0;
}

Explanation
%p prints a memory address (in hexadecimal notation)
all three printf()’s are equivalent
⇒ print the same address!

René Hexel Advanced C Concepts

Preprocessor Directives
Pointers and Memory

Pointers, Arrays, and Strings

More Pointer Examples

Example (Pointers to other types than char)
int main(void)
{

char aCharacter = ’A’; // some normal variables
int anInteger = 12345;
double aDouble = 12.45;

char *a = &aCharacter; // pointers to different types
int *b = &anInteger; // storing the addresses of the
double *c = &aDouble; // corresponding variables above

printf("%p %p %p\n", a, b, c); // print the three addresses

return 0;
}

Explanation
Every variable occupies space in memory
⇒ pointers can be defined for any type!

Different variables are stored in different memory locations
⇒ all addresses printed in the example will be different!

René Hexel Advanced C Concepts

Preprocessor Directives
Pointers and Memory

Pointers, Arrays, and Strings

Pointers to Pointers

Example
int main(void)
{

int x = 7; // normal integer variable

int *a = &x; // pointer to the address of x
int **b = &a; // pointer to the address of a

printf("%p %p\n", a, b); // a and b are different!

return 0;
}

Explanation
Like normal variables, pointers occupy memory space as
well!
⇒ &a will return the address of the pointer a
int **b is a pointer to a pointer
→ every additional * adds a level of indirection

René Hexel Advanced C Concepts

Preprocessor Directives
Pointers and Memory

Pointers, Arrays, and Strings

How to use Pointers – de-referencing using *

The question is how can memory be accessed using a
pointer?
The asterisk (star) character * is the de-referencing
operator.

It accesses the content of the memory address pointed to
by a pointer.

→ opposite of the & operator!
Allows to manipulate variables indirectly

without knowing the name of the variable at he point where
it gets manipulated

René Hexel Advanced C Concepts

Preprocessor Directives
Pointers and Memory

Pointers, Arrays, and Strings

Pointer de-referencing example

Example (What does this program print?)
int main(void)
{

int x = 5;
int *p = &x; // p now points to the address of x

int y = *p; // get the value at the address pointed to by p

*p = 7; // set the value at the address pointed to by p

printf("x = %d, y = %d\n", x, y);

return 0;
}

Answer
x = 7, y = 5

René Hexel Advanced C Concepts

Preprocessor Directives
Pointers and Memory

Pointers, Arrays, and Strings

Call-by-reference through Pointers

Example (What does this program print?)
void manipulate(int *p)
{

*p = *p / 2; // change the memory content pointed to by p
}

int main(void)
{

int x = 8;

manipulate(&x); // pass address of variable x so x can be manipulated

printf("x = %d\n", x);

return 0;
}

Answer
x = 4

René Hexel Advanced C Concepts

Preprocessor Directives
Pointers and Memory

Pointers, Arrays, and Strings

Pointer Arithmetic

Pointers store memory addresses
just numbers telling the processor which memory cell to
access

Adding 1 to a pointer makes it point to the next memory
location
Subtracting 1 from a pointer makes it point to the previous
memory location
Subtracting two pointers from each other shows how much
space is between the memory locations pointed to by the
pointers
Pointers “know” the sizes of the variables they point to

adding to an int pointer will probably result in a different
address than adding to a char pointer

René Hexel Advanced C Concepts

Preprocessor Directives
Pointers and Memory

Pointers, Arrays, and Strings

Pointers and Arrays

Arrays store elements of the same kind in adjacent
memory addresses
Pointers can store array locations
Pointer and array notations are often interchangeable

E.g. for char *p
p[4] is the same as *(p + 4)
&p[4] is the same as (p + 4)

⇒ Strings can be represented by pointers as well as arrays

René Hexel Advanced C Concepts

Preprocessor Directives
Pointers and Memory

Pointers, Arrays, and Strings

Pointer and Array Example: Strings

Example (What does this program print?)
void print(char *text)
{

printf("%s\n", text); // print the string pointed to by ’text’
}

int main(void)
{

char s[10] = "fantastic"; // a string
char *p = s; // a pointer to the same string

*(p + 3) = ’\0’; // manipulate the memory pointed to by p+3

print(s); // print the string s

return 0;
}

Answer
fan

René Hexel Advanced C Concepts

Preprocessor Directives
Pointers and Memory

Pointers, Arrays, and Strings

Copying Strings revisited

Example (a more efficient string copy)
void string_copy(char *dst, char *src) // copy a string from src to dst
{

while (*dst++ = *src++) ; // copy and test each character
}

int main(void)
{

char b[8], *a = "Hello"; // destination array and source string

string_copy(b, a); // copy a to b

printf("%s\n", b); // now we can print the string copy b

return 0;
}

Explanation
in C each assignment has a value that can be tested
any non-zero result is treated as TRUE in C
the end-of-string character \0 is treated as FALSE

René Hexel Advanced C Concepts

Preprocessor Directives
Pointers and Memory

Pointers, Arrays, and Strings

Arrays of Pointers

A pointer is just another data type
⇒ arrays of pointers can be defined like any other array

E.g. int *x[6]
an array of 6 integer pointers

E.g. char *a[4]
an array of 4 character pointers

⇒ an array of 4 strings

René Hexel Advanced C Concepts

Preprocessor Directives
Pointers and Memory

Pointers, Arrays, and Strings

Array of Strings Example

Example (What does this program print?)
int main(void)
{

char *s[3] = { "one", "two", "three"};

printf("%s\n", s[1]);

return 0;
}

Answer
two

René Hexel Advanced C Concepts

Preprocessor Directives
Pointers and Memory

Pointers, Arrays, and Strings

Passing Command Line Parameters

Example (Command Line Parameters)
int main(int argc, char *argv[]) // a main() that takes parameters
{

int i;

printf("argc = %d\n", argc); // print the number of parameters

for (i = 0; i < argc; i++) // loop through all parameters
printf("argv[%d] = ’%s’\n", i, argv[i]); // and print each one of them

return 0;
}

Points to remember
Command line parameters are passed as an array of
strings (argv)
The first argument (argc) contains the number of
elements in the array
argv[0] always contains the program name itself

René Hexel Advanced C Concepts

Preprocessor Directives
Pointers and Memory

Pointers, Arrays, and Strings

Pointers to Structs

Example (What does this program print?)
struct Student
{

char *name; // student name
long num; // student ID

};

int main(void)
{

struct Student s; // a student variable s
struct Student *p = &s; // a pointer to that variable

(*p).name = "Peter"; // set the name
(*p).num = 1234567; // and student ID

printf("%s’s ID is %ld\n", s.name, s.num);

return 0;
}

Answer
Peter’s ID is 1234567

René Hexel Advanced C Concepts

Preprocessor Directives
Pointers and Memory

Pointers, Arrays, and Strings

Shortcut Notation

Example (Shortcut Notation)
struct Student
{

char *name; // student name
long num; // student ID

};

int main(void)
{

struct Student s; // a student variable s
struct Student *p = &s; // a pointer to that variable

p->name = "Peter"; // set the name -- shortcut notation
p->num = 1234567; // and student ID -- shortcut notation

printf("%s’s ID is %ld\n", s.name, s.num);

return 0;
}

Explanation
p->x is a shortcut for (*p).x

René Hexel Advanced C Concepts

Preprocessor Directives
Pointers and Memory

Pointers, Arrays, and Strings

Pointers to Remember

Call by Reference can be implemented through Pointers
→ can save copying lots of data
→ allows functions to indirectly manipulate data

Beware of Invalid Pointers!
no run-time checking for array boundaries and pointer
validity
accessing invalid memory may crash your program

⇒ never de-reference uninitialised pointers
⇒ never de-reference NULL pointers
⇒ never de-reference expired pointers

René Hexel Advanced C Concepts

Preprocessor Directives
Pointers and Memory

Pointers, Arrays, and Strings

Uninitialised Pointer Error Example

Example (What is Wrong with this Program?)
int main(void)
{

int *p; // an unitialised pointer

*p = 7; // ERROR: THE PROGRAM WILL PROBABLY CRASH HERE

printf("*p = %d\n", *p);

return 0;
}

Explanation
p does not point to a valid address!
typical errors are Bus Error and Segmentation Fault

René Hexel Advanced C Concepts

Preprocessor Directives
Pointers and Memory

Pointers, Arrays, and Strings

NULL Pointer Error Example

Example (What is Wrong with this Program?)
int main(void)
{

int *p = 0; // a NULL pointer

*p = 7; // ERROR: THE PROGRAM WILL PROBABLY CRASH HERE

printf("*p = %d\n", *p);

return 0;
}

Explanation
0 (NULL) is not a valid memory address!
unlike Java, there are no NULL pointer exceptions!
typical errors are Bus Error and Segmentation Fault

René Hexel Advanced C Concepts

Preprocessor Directives
Pointers and Memory

Pointers, Arrays, and Strings

Expired Pointer Error Example

Example (What is Wrong with this Program?)
int *function(void) // a function that returns an integer pointer
{

int x = 2;

return &x; // THIS IS WRONG: x will expire at the end of ’function’
}

int main(void)
{

int *p = function(); // assign the return value of function to p

*p = 7; // ERROR: THE PROGRAM WILL PROBABLY CRASH HERE

return 0;
}

Explanation
x expires at end of function(), memory will be re-used!
will probably only crash sometimes!
→ one of the hardest errors to find and correct!

René Hexel Advanced C Concepts

	Preprocessor Directives
	Pointers and Memory
	Pointers, Arrays, and Strings

