On the Interoperability of Distributed Ledgers

Dileban Karunamoorthy
@dileban

Contributors: Dileban Karunamoorthy, Ziyuan Wang, Hoang Tam Vo, John Wagner, and Ermyas Abebe
Outline

• Need for Interoperability
• Examples
• Mechanisms for Interoperability
• Challenges in Interoperability
What is Interoperability?

- Exchange of data or value between networks
- Preserve properties of decentralization
Need for Interoperability

• Data and Value Silos

• Drivers
 Ledgers are Application Specific
 Market Competition and Forks
 Partitioning and Scalability
 Confidentiality of Agreements and Data
 Security
 Governance
 Regulations
Examples

• Financial Services
• Supply Chain
Decentralized Asset Exchange (DEX)

- Global network of asset-backed (securities, commodities, real-estate) tokens providing increased liquidity and price discovery and access to investors
 - Retail Investors
 - Institutional Investors

- Crypto currencies representing a store of value and medium of exchange or utility networks that provide decentralized services
 - Anonymous Entities

- Identity
 - Self-sovereign identity network allowing holders to provide verifiable credentials while preserving privacy
 - Identity Owners (legal entity or thing)
 - Identity Issuers
 - Identity Verifiers

- Decentralized Asset Exchange (DEX)

- Private Equity Secondary Market
 - Secondary market for buying and selling equity investments
 - Institutional Investors
 - Private Equity Secondary Funds

- Private Network
- Public Network
Mechanisms for Interoperability

• Interoperability on a Shared Platform
• Interoperability via Message Exchanges (and Accompanying Proofs)
• Interoperability via Protocols
• Interoperability Frameworks
Interoperability on a Shared Platform

Multiple Dapps deployed on the same smart contract platform
(e.g. Ethereum, Fabric*, Corda)
Interoperability via Message Exchanges

Pass messages and accompanying proofs between networks (e.g. Signed records and histories, Merkle proofs)
Interoperability Protocols

Standard protocols for exchanging value
(e.g. HTLCs - Atomic Swaps, Inter-Ledger Protocol)
Interoperability Frameworks

An inter-blockchain framework with guarantees enforced by a shared “relay” chain (e.g. Polkadot, Cosmos, Sidechains, Plasma)
Interoperability Challenges

• Trust and Integrity
• Global Guarantees and Invariants
• Privacy and Confidentiality
• Discovery and Addressability
• Regulation, Law and Compliance
• Standards
• Governance
Interoperability Challenges

- Trust and Integrity
- Global Guarantees and Invariants
- Privacy and Confidentiality
- Discovery and Addressability
- Regulation, Law and Compliance
- Standards
- Governance

Methods to reason about trust and integrity that can be exposed to applications that drive cross-network workflows.
Interoperability Challenges

- Trust and Integrity
- Global Guarantees and Invariants
- Privacy and Confidentiality
- Discovery and Addressability
- Regulation, Law and Compliance
- Standards
- Governance

Mechanisms for preserving guarantees or invariants across disparate networks.
Interoperability Challenges

- Trust and Integrity
- Global Guarantees and Invariants
- Privacy and Confidentiality
- Discovery and Addressability
- Regulation, Law and Compliance
- Standards
- Governance

Mechanisms for preserving privacy and confidentiality when exchanging messages between networks, preventing leakage.
Interoperability Challenges

- Trust and Integrity
- Global Guarantees and Invariants
- Privacy and Confidentiality
- Discovery and Addressability
- Regulation, Law and Compliance
- Standards
- Governance

The discovery of classes or specific instances of assets and data, and the addressability of assets and data along with their histories and dependencies.
Interoperability Challenges

- Trust and Integrity
- Global Guarantees and Invariants
- Privacy and Confidentiality
- Discovery and Addressability
- Regulation, Law and Compliance
- Standards
- Governance

Complying with regulations and laws when interoperating with networks across different jurisdictions.
Interoperability Challenges

- Trust and Integrity
- Global Guarantees and Invariants
- Privacy and Confidentiality
- Discovery and Addressability
- Regulation, Law and Compliance
- Standards
- Governance

Standards play a key role in driving interoperability. History has shown that driving standardization is always a challenge.
Interoperability Challenges

- Trust and Integrity
- Global Guarantees and Invariants
- Privacy and Confidentiality
- Discovery and Addressability
- Regulation, Law and Compliance
- Standards
- Governance

Independent governance structures around each of the networks poses challenges for each of the above, making interoperability between existing networks difficult.
Summary

- Emerging data and value silos will create challenges in interoperability
- If designing decentralized networks is hard, interoperability is harder
- Designing a set of interoperability primitives that are easy to analyze and reason under different conditions will allows us to construct complex workflows
- Standards will play a key role