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Abstract—We propose a contour based shape decomposition 
approach that provides local segmentation of touching 
characters. The shape contour is linearized into edgelets and 
edgelets are merged into boundary fragments. The connection 
cost between boundary fragments is obtained by considering 
local smoothness, connection length and a stroke-level property 
called the Same Stroke Rate. Samples of connections among 
boundary fragments are randomly generated and the one with 
the minimum global cost is selected to produce the final 
segmentation of the shape. To obtain a bipartite segmentation 
using this approach, we perform an iterative search for the 
parameters that finally yields two components on a shape. 
Experimental results on synthetic shape images and the LTP 
dataset show that this contour based shape decomposition 
technique is promising and it is effective for providing local 
segmentation of touching characters.  

Keywords-touching; segmentation; shape decomposition; 
smoothness 

I. INTRODUCTION  
Robust segmentation of touching characters remains an 

open problem in offline handwritten document analysis, 
despite extensive research. Generally an integrated 
segmentation-evaluation strategy is employed where 
multiple segmentation hypotheses are first generated by 
analysis of contour, skeleton, background or projection 
profile, then an optimal decision is selected by recognition or 
other evaluation methods. 

 

 
Figure 1.  Challenging touching samples 

We are interested in the generation of local segmentation 
hypotheses. In the literature, skeleton and foreground/ 
background analysis methods [1-3] which detect 
intersections on skeletons, are prone to error caused by 
inadequate thinning. Contour analysis methods [4-6] use 
angle and curvature features, and propose multiple 
hypotheses. A set of rules that consider global configurations 
have to be designed, and they often depend on the 

application. Using only simple local properties of contour, it 
is difficult to process complicated touching cases without 
context like those shown in Fig 1.  

Consider however how humans make judgments for this 
problem. Our eyes trace the contour and decompose the 
touching shape into smooth strokes with maximum 
homogeneity. So we believe a reasonable segmentation on a 
local touching region is often possible, if we can fully exploit 
contour and stroke properties. 

In this paper we propose a contour based shape 
decomposition method that can be used to make local 
segmentation decisions on touching characters. Inspired by 
the contour analysis in [8], the decomposition starts with a 
piecewise linear representation of “edgelets”. Edgelets are 
then grouped into boundary fragments that are basic units 
used to generate the segmentation. To compute connection 
costs between each pair of boundary fragments, we consider 
local smoothness, connection length, and a stroke level 
property called the Same Stroke Rate. Samples of 
connections among boundary fragments are randomly 
generated and the one with the minimum global cost is 
selected to produce the final segmentation of the shape. This 
shape decomposition method is able to segment a character 
shape into multiple strokes. To apply this method to obtain a 
binary segmentation on a local touching pattern, we perform 
an iterative search for the parameters that yield exactly two 
result components. 

II. SHAPE DECOMPOSITION  

A. Edgelets and boundary fragments 
To generate the edgelet representation we employ the 
Ramer-Douglas-Peucker algorithm [11] to fit contour points 
to a simplified polygon. The only parameter of the 
algorithm is the tolerance that represents the largest distance 
a point deviates from its fitted line, and is chosen as 1/5 
stroke width of the connected component, which is 
estimated by a distance transform. We refer to each edge on 
the polygon as an edgelet and define the turning angle as the 
angle between neighboring edgelets. Edgelets then are 
grouped into boundary fragments considering the saliency 
of turns, i.e. boundary fragments only break at salient turns. 
Assume two edgelets are denoted as AB and BC, and the 
turning angle between them is �, then the turn is salient if 
and only if  
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Figure 2.  (a)Edgelets. (b)Boundary fragments in different colors. (c) 

Polygons. (d) Resulting components (yellow for overlapping). 

 � � ��� �� �	 
 ���������� ������� 	� �� 
 ��� (1) 

where ��  is a threshold and ��  denotes the stroke width. 
Empirically we set �� � ��� . The intuition here is that 
either a large turning angle or a small angle with two large 
edgelets will indicate a salient turn. One more constraint is 
that the boundary fragment will not break at a turn towards 
the inside of the shape. Fig 2(a) and (b) show an example of 
edgelets and boundary fragments obtained for a shape 
contour.  

 
Figure 3.  Example of turning angles and immediate/across connection. 

B. Connections between boundary fragments  
Each boundary fragment has two ends, and each end is to 

be connected to another. There are two kinds of connections 
between ends— immediate and cross. An immediate 
connection occurs when two neighboring boundary 
fragments share the same end point. A cross connection 
occurs when two ends are separate and connected by a 
virtual edgelet. Consider the example in Fig 3, ABC, CDE 
and FGH are three boundary fragments. If ABC and CDE are 
connected at C, then the two boundary fragments are 
connected by an immediate connection. If ABC and FGH are 
connected by the virtual edgelet CF,  it is a cross connection.  

Spline interpolation is used in [8] to generate virtual 
connections, and the cost of a virtual connection cvirt is 
measured by the integral of curvature square as follows 

 ���� � !"#$ #%& '()*, (2) 

where )* and )+ are infinitesimals of curve length and angle 
respectively. However in practice we find such a measure is 
not scale-invariant. For two curves with similar shape but 
different sizes, the larger and longer one has smaller cost 
under that measure. 

 
 

 
Figure 4.  Two configurations of connections among boundary fragments. 

In our approach, we measure the connection cost �,-.  as 
a product of four terms that describe both local and global 
relations between boundary fragments: 

 �,-. � 	 �/01 
	��/� 
 �230 
 �445 . (3) 

We will explain each term in the following paragraphs. 
The first term �/01  is a concave function of the total 

turning angle at the connection. For an immediate connection 
the total turning angle is simply the turning angle at the 
connection point, while for a cross connection the total 
turning angle is interpreted as the sum of the two turning 
angles formed by the virtual edgelet connecting the two 
boundary fragment ends. In Fig 3,  ��( is the total turning 
angle for the immediate connection at C, and "�(( 6 �(7' 
for the cross connection CF. If the total turning angle is �, 
the then its angle term �/01"�' is expressed as  

 �/01"�' � 89 ":;'& 6 * , (4) 

where * is a small positive offset preventing zero cost. We 
choose to use a positive concave function here. Fig 4 shows 
an example of two possible configurations of connections for 
four boundary fragments. If we only consider the angle term, 
the upper configuration leads to a total cost of �� �
�/01"<' 6 �/01"�', and the lower one of �( � �/01"��:' 6
�/01"��:'. The upper configuration is preferred for shape 
segmentation, i.e. we need �� � �(, thus a concave function 
for the angle term is required. 

The total turning angle is an intuitive measure that 
reflects the local smoothness where a connection is made. 
But in reality when the contour of a shape is noisy, the total 
turning angle may be large even if two boundary fragments 
are supposed to have a globally smooth connection. Thus a 
non-local measure of contour smoothness is needed. 

The second term is the angular variance ��/� . In [10] 
curve smoothness is measured by the angular variance to 
select the optimal solution in segmenting touching strokes 
between text lines. For our problem the angular variance 
term involves either one or two turning angles at the 
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connection, and two supporting angles. The
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bipartite segmentation, we need to limit the number of 
resulting components to two. 

A practical method is to alter the threshold ��  used in 
merging edgelets into boundary fragments. We use an 
iterative search to find the parameters that yield only two 
components, as shown in Fig 6. 

 

 
Figure 6.  Iterative search for the parameter T1. 

Experimentally, we observed that complicated touching 
samples usually need more iterations to achieve a binary 
segmentation and get lower accuracy. Based on this fact we 
consider the iteration number as a reflection of confidence 
for the segmentation. A larger iteration number indicates 
lower confidence in the segmentation. With this measure of 
confidence we can efficiently generate segmentations only 
with high confidence by setting a threshold for iteration 
number, and leave difficult samples for other segmentation 
techniques that are finer and cost more time. 

 

IV. EXPERIMENTAL RESULTS 
We first apply our shape decomposition to a number of 

synthetic shape images. A few examples are shown in Fig 7. 
As we can see the proposed approach is able to decompose a 
shape into stroke-level components.   

We applied the proposed approach with binary 
segmentation adaption on the LTP dataset [14]. There are 
744 local touching patches each for training and testing 
respectively. The evaluation protocol is the same as [14] 
using MatchScore, and segmentation with a MatchScore 
above 0.80 is considered as a correct one. We optimized the 
parameters on the train data and evaluated the performance 
on the testing data.  

Performances under different rejection thresholds were 
recorded. As illustrated in Fig 8, rejecting all samples with 
more than one iterations yields the maximum accuracy on 
accepted samples, and the accuracy drops as the rejection 

threshold increases. This result demonstrates that the 
rejection strategy is effective.  

 

 
Figure 7.  Examples of synthetic shapes segmented into stroke-level 

components. 

 
Figure 8.  The accuracy of accepted segmentation varies with rejection  

In Table I we compare the accuracy and efficiency of the 
proposed method with the template based method [14]. We 
can see the proposed method consumes significantly less 
time than [14] and its performance is fairly good when 
rejecting about half of the samples. 

TABLE I.  ACCURACY AND EFFICIENCY 

 Template 
based[14] Proposed 

Rejection rate/ 
threshold 0% 0%  57.1% / 1 iteration 

Accuracy 71.4% 54.7% 71.2% 
Relative 

average time 
cost 

1 0.051 0.014 

 
Fig 9 shows a few segmentation examples. Some difficult 

examples are segmented fairly well, with resulting 
components being smooth strokes. 

V. CONCLUSION 
We proposed a contour based shape decomposition 

approach that provides local segmentation of touching 
characters. On synthetic data, the proposed method 
decomposed shapes into stroke-level components. 
Experiments carried on LTP dataset showed that the 
proposed approach is efficient and by reasonably rejecting 
part of samples, it achieves a fairly good accuracy on 
providing local segmentation of touching characters.  
 

 

 

N : number of resulted components 
Seg(T1) : do segmentation with parameter T1 
L : left bound of T1 
R : right bound of T1 
M: maximum iteration allowed 
 
WHILE iteration number less than M 
 N = Seg(T1); 

IF N > 2  
        L = T1; 
        IF R is not set  
            T1 = T1*2; 
        ELSE 
            T1 = (T1 + R)/2; 
ELSEIF  N < 2 
        R = T1; 
        IF L is not set 
            T1 = T1/2; 
        ELSE 
            T1 = (T1 + L)/2; 
ELSE 
        break; 
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Figure 9.  Segmentation examples. Yellow indicates the part is shared by red and green.  
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