
Linear Compression of Digital Ink via Point Selection

Vadim Mazalov and Stephen M. Watt

Ontario Research Centre for Computer Algebra
Department of Computer Science

University of Western Ontario
London, Canada

vmazalov@uwo.ca, Stephen.Watt@uwo.ca

Abstract—We present a method to compress digital ink
based on piecewise-linear approximation within a given error
threshold. The objective is to achieve good compression ratio
with very fast execution. The method is especially effective
on types of handwriting that have large portions with nearly
linear parts, e.g. hand drawn geometric objects. We compare
this method with an enhanced version of our earlier func-
tional approximation method, finding the new technique to
give slightly worse compression while performing significantly
faster. This suggests the presented method can be used in
applications where speed of processing is of higher priority
than the compression ratio.

Keywords-digital ink; compression; sandwich algorithm;
functional approximation

I. INTRODUCTION

Handwriting is one of the most common forms of human

expression and, today, in this information era, pen-based

devices are able to capture handwriting in digital form. Ink is

typically represented as a sequence of points sampled from

a traced curve, often taken uniformly in time. Points are

typically given as x and y values in a rectangular coordinate

system, (x0, y0), (x1, y1), ..., (xn, yn), but other coordinates,

such as pressure and angles, may be given as well. The

sampling frequency and spatial resolution of hardware has

been increasing over time, creating opportunities and chal-

lenges for ink processing applications. The opportunities are

associated with the possibility of more detailed analysis,

since a device can capture in high precision variations of

pen movement. On the other hand, such high volumes of

ink data require extra resources for processing and storage.

In this work we address the question of how to preserve

the high precision of a curve, while decreasing the number

of points representing it. In simple terms, this problem is

solved by removing points that do not affect the shape of

the curve significantly, while the error between the original

and the approximating curves remains within a threshold.

The method can be viewed as a dynamic adjustment of the

density of points, depending on the shape of a stroke. More

points are removed from straighter regions than regions with

high curvature. Thus, we would expect geometric drawings

with many lines to compress particularly well.

We have two subproblems that need to be solved:

1) decomposition of digital ink into pieces, suitable for

compression, and

2) compression of the individual pieces.

We present fast, easy to implement solutions to both of

these problems and show experimentally that the technique

yields good compression for handwritten text and even

better compression for hand drawn geometric objects. The

discussed method is most useful for compression of linear

pieces of a curve and can be implemented as a part of a

multipurpose hybrid compression algorithm.

We also implement an enhanced version of the com-

pression method [1], based on functional approximation,

by representing coefficients in a more compact form. We

measure the compression rate and time required to process

the experimental datasets and compare with the performance

of the linear method. While losing in compression, the linear

method is found to perform more than 100× faster.

The paper is organized as follows. Section II gives a few

background comments on existing compression approaches

and on linear approximation. An improvement to the func-

tional approximation method is proposed in Section III. The

linear compression algorithm is explained in Section IV.

Section V presents details about the experimental setting

and the results obtained. Section VI concludes the paper.

II. RELATED WORK

Digital ink compression: A number of digital ink

compression algorithms have been developed to date. One

of the most popular lossless schemes is to use second

differences followed by secondary compression [2]. The

algorithm computes the second order differences of the

data items in each information channel. For X the second

difference is

Δ2
iXi = Δi(Xi+1 −Xi) = Xi+2 − 2Xi+1 +Xi.

As consecutive coordinate values tend to be close, the first

differences will be small, and the second differences smaller

and suitable for an entropy encoding algorithm.

An efficient lossy method was developed in [1]. This was

based on piecewise functional approximation of curves by

truncated orthogonal polynomial series and representation

2012 10th IAPR International Workshop on Document Analysis Systems

978-0-7695-4661-2/12 $26.00 © 2012 IEEE

DOI 10.1109/DAS.2012.51

429

of the pieces by the approximating series coefficients. The

desired approximation accuracy is achieved by dynamically

changing the degree of approximation and the size of pieces.

Another lossy algorithm was presented in [3], based

on stroke simplification. It suggests to eliminate exces-

sive points, forming a skeleton of the original curve. The

algorithm is based on iterative computation of chordal

deviation – the distance between the original curve and

its approximation. Points with the minimal distance are

removed until the distance becomes larger than a threshold.

A “substantially lossless” method was proposed in [4]. It

allows the compression error’s magnitude to be not greater

than the sampling error’s magnitude. In this approach, the

original curve is split into segments and each segment is

represented by some predefined shape, such as a polygon,

ellipse, rectangle or Bezier curve. It is not mentioned how

to obtain the shapes from a curve and what compression this

approach gives.

Approximation of univariate convex functions: Several

“sandwich” algorithms have been proposed for approxima-

tion of univariate convex functions. For example, see [5]

for a method that requires derivative information along with

the function values, and [6] for an iterative algorithm when

only function values are available. The latter technique can

be briefly described as follows. Consider a convex function

defined on an interval I and some threshold of approxima-

tion error δ. Approximation on the interval is obtained by

joining its boundary points. Let the approximation error of

the interval I be δI and δI > δ. Then the interval I is split in

subintervals, according to a partitioning rule. The procedure

is repeated until the approximation error becomes less than

δ for each subinterval. Several partitioning rules are consid-

ered, e.g. the maximal error rule that selects the point located

on the maximal distance to the approximation curve. The

algorithm converges quadratically if certain conditions on

derivatives are satisfied, and linearly under other conditions.

Decomposition of digital curve in inflection-free parts:
Several methods exist for decomposition of digital curves

in segments without inflection, e.g. see [7], [8]. However,

these algorithms are primarily designed for digital images

to extract convex/concave pieces of an object to determine

meaningful parts. In contrast, we are interested in the decom-

position of digital ink. We note that the methods developed

for binary images are in most cases not suitable for our

purpose, since digital ink is represented as a sequence of

points on a curve, rather than as a field of pixels in two

dimensions.

III. ENHANCED COMPRESSION

VIA FUNCTIONAL APPROXIMATION

We propose a way to improve the functional approxima-

tion technique developed in [1]. As mentioned earlier, that

method is based on piecewise approximation of curves by

truncated series in an orthogonal polynomial basis. In [1] we

experimented with Chebyshev, Legendre, Legendre-Sobolev

polynomials and Fourier series and found Chebyshev poly-

nomials to yield the best compression, as expected. In this

work our goal is to improve performance of the method

with Chebyshev polynomials as the orthogonal basis. The

improvement is to be achieved by representing coefficients

in a more compact form.

We consider the adaptive segmentation scheme of [1]. For

each trace, the degree d of the approximation is selected

dynamically. A higher degree provides a more accurate ap-

proximation of a curve, but increases the compressed size. In

the adaptive scheme, the size of coefficients is also selected

for each trace independently. Coefficients are recorded as

floating-point numbers with base 2. The significand and the

exponent are two’s complement binary integers, encoded

in a and p bits respectively. The value of p is fixed, and

the value of a is dynamically adjusted for each stroke. The

following representation of each information channel of a

trace i is proposed:

• Encode the 0 order coefficient in 2a+p bits, since this

coefficient regulates the initial position of the trace and

is typically larger than the rest of the coefficients. This

number of bits is device-dependent.

• Find the coefficient cM = max |ci|, i = 1..d and encode

it in a+ p bits.

• Encode coefficients cj , j = 1..d, as two’s complement

binary integers rj =
⌊
|cM |
cj

⌉
in br bits, where �x�

represents rounding of x to the integer.

Thus, a trace i is recorded as

aidiλ1c10c1Mr11...r1diλ2c20c2Mr21...r2di ...λD

where ai is the number of bits for encoding the significand;

di is the degree of approximation; λj is the initial value of

parameterization of a piece j; cj0 is the 0-order coefficient;

cjM = max |cjk|, k = 1..d; rjk =
⌊ |cjM |

cjk

⌉
, cjk is the k-th

coefficient of the j-th piece. This differs from the method

of [1] by having the coefficients cj represented as scalings

rounded to integers rather than as significand-exponent pairs.

IV. THE LINEAR COMPRESSION ALGORITHM

A. Decomposition into inflection-free parts

The method described in [6] is not suitable for digital ink

as originally presented, since it requires parameterization

and segmentation. We develop a method that does not

require parameterization and can be used as the first step

in processing.

Our compression method works with pieces locally curv-

ing in one direction or the other, but not changing back and

forth. To be more precise, the curve should be decomposed

into parts where the second derivative has constant sign, i.e

the normal vector in the Frenet frame is pointing to the same

side of the curve.

430

Algorithm 1 FormInflectionFreeSegments()

Input: Points – a stream of input points
Output: C – a list of inflection-free segments

C ← [] {list of inflection-free segments found}
S ← [] {current segment being collected}
i ← 0 {index of current point without duplication}
while Points.hasNext() do

P ← Points.getNext()
if i = 0 or P �= Pi−1 then

Pi ← P
if |S| ≥ 2 then

if Pi = P0 then
Append the list S to the end of the list C
S ← []

else
Ai ← Angle(Pi−2, Pi−1, Pi)− π
ABeg ← Angle(Pi, P0, P1)− π
AEnd ← Angle(Pi−1, Pi, P0)− π
if Ai ×Ai−1 < 0
or Ai ×AEnd < 0 or ABeg ×AEnd < 0 then

Append the list S to the end of the list C
S ← []

end if
end if
Append Pi to the end of the list S
i← i+ 1

end if
end if

end while
If S is non-empty, append it to the end of the list C
return C

Definition We say that a sequence of points

(x1, y1), (x2, y2), ..., (xn, yn) is an inflection-free segment
if and only if the polygon formed by these points, after

joining (x1, y1) and (xn, yn), is convex.

The property of a convex polygon that every internal angle

is less than or equal to π is used in the online decomposition

Algorithm 1. The algorithm, in the body of the while loop,

lists operations performed on each incoming ink point to

obtain a sequence of inflection-free segments. This takes into

account that

• Two points are considered equal, if their coordinates

are equal.

• |P | denotes the number of points in the list P .

• Angle(P,Q,R) is the “oriented” angle between vectors−−→
QP and

−−→
QR. In other words, Angle(P,Q,R) = 2π −

Angle(R,Q, P). These angles can be found with the

dot and cross products of given vectors.

• ABeg is the complement of the oriented angle made

by the beginning vector
−−−→
P0P1 and the last point. AEnd

is the complement of the oriented angle made by the

ending vector
−−−−→
Pi−1Pi and the first point. Ai is the

complement of the oriented angle made by the most

current three points.

• We test for products less than zero to detect changes in

direction of curvature. Two angles in the same direction

will give a positive product (either as +×+ or −×−)

and three collinear points will give a zero product.

B. Compression of inflection-free parts

Once the curve is decomposed as a collection of

inflection-free segments, each piece is a subject to compres-

sion. Our compression technique is similar to the sandwich

algorithm proposed in [6]. However, rather than looking

at the lower and upper bounds of a function, we find the

distance between a curve and its approximation. If either the

maximal error || · ||max or the root mean square error || · ||rms

on an interval is greater than the respective thresholds εmax

or εrms, the curve is split into two parts. Other norms on

the space of curves could be used if desired. The steps are

presented in Algorithm 2, considering that j.first and j.last
are respectively the first and the last points of the interval j.

Definition We write pw(L) for the piecewise linear curve

defined by the list of points L. If two points a and b occur

in a list L, with a preceding b, then we say that [a, b] is an

interval in L. We write L|I for the sublist of L restricted to

the interval I .

The point of division is found with one of the partitioning

rules:

Rule 1: Based on the maximal distance: the decomposition

point is selected based on the distance from the point to the

line that goes through the boundary points of the interval.

Rule 2: Based on the angle formed at the point: if all of

the oriented angles within the segment are less than π then

the minimal angle is considered, otherwise (when all of the

angles are greater than π) the maximal angle is found.

C. Complexity

The decomposition algorithm processes each incoming

point in constant time O(1). There are no additional op-

erations at the last input. It is online, in that after each point

a valid decomposition is maintained.

The best case time complexity of compression of a piece

is O(n). If the splits always divide a segment into two equal

parts, and continue until there is a split at every point, the

cost is O(n log n). If the splits are made unequally, always

splitting n points as 1 and n− 1, then the cost is O(n2).

D. Correctness

The termination condition of CompressCurve merits at-

tention. If a function satisfies a maxnorm bound on each

element of a partition, then it satisfies the maxnorm over

the union of the parts. For RMS, note that if a domain D

is partitioned as D1, ..., Dn and
√∑

a∈Di
f(a)/|Di| < ε,

then (
∑

a∈D1
+ · · ·+∑

a∈Dn
)f(a) < (|D1|+· · · |Dn|)ε2 so√∑

a∈D f(a)/|D| < ε, and take f(a) = (S(a)− S∗(a))2.

431

Algorithm 2 CompressCurve(S,R)

Input: S – a list of points for an inflection-free segment
R – a partitioning rule (rule 1 or 2)

Output: L – a list of points such that
||pw(S)− pw(L)||max < εmax and
||pw(S)− pw(L)||rms < εrms

{J is a stack of intervals to be refined.}
J ← [Interval with first and last point of S]
L← []
while J �= [] do

j ← Pop an interval from J
a← j.first; b← j.last
if ||pw(S|j)− pw(j)||max > εmax

or ||pw(S|j)− pw(j)||rms > εrms then
{Split j according to rule R at some point c in S}
j1 ← [a, c]
j2 ← [c, b]
Push j2 and then j1 onto the stack J

else
Append a and then b to the end of list L

end if
Remove element j from J

end while
return L

E. Discussion

Binary Encoding of Points: The sequence of points of

a compressed trace can be encoded in binary for compact

representation. Coordinates in our dataset have absolute

value not greater than 213 and can be recorded as two’s

complement integers in a sequence of groups of 14 bits.

Drifting of Approximation: The presented compression

method is not suitable for repeated resampling. While the

approximation to each inflection-free segment will lie within

any required error bound, the approximation will lie com-

pletely on one side of the input curve. If the resulting piece-

wise linear function is then resampled and recompressed

repeatedly, systematic drift may occur. To address the issue

of drift under repetitive resampling and recompression, the

line segments could be positioned to cross the original curve

so that the error is equal on both sides of the original.

V. EXPERIMENTS

A. Experimental Setting

The experimental dataset was collected in the Ontario

Research Centre for Computer Algebra with a tablet device

with the following specifications: 2540 dpi resolution, 133

pps data rate, and ±.02 sampling error.

Two types of digital ink were collected for the experi-

ments

• Handwriting. Different individuals have provided var-

ious parts of regular English text to ensure variations

in length of strokes and writing styles. From the whole

collection, we randomly selected 46 traces containing,

on average, 51 points each.

• Geometric objects. We collected simple two-

dimensional geometric objects, such as triangles,

rectangles and lines. Then we randomly selected 33

traces containing, on average, 68 points each.

In the experiments, the root mean square error was taken

as a portion of the maximal error εrms =
3
4εmax. Unlike the

results reported in [1], we look at the absolute, not relative,

approximation error and the binary stream of coefficients

does not undergo further gzip compression. The compressed

size is reported as Sc/So where Sc is the size of the

compressed dataset and So is the size of the original dataset.

The compression algorithms were implemented and run

on Maple 13 on an Intel Core 2 Duo 2.40 GHz CPU

with 2GB RAM, running Ubuntu Linux version 2.6.24-19-

generic.

B. Experimental Results

Optimal values of p and br: In the experiments we

measure compressed size for different values of approxi-

mation error. Figure 1 shows an original curve and linear

approximation for different maximal error thresholds. From

the figure, one can observe that compressing the curve

with the maximal error of up to 5 has almost no effect

on representation of the curve and can be used in the

applications that do not require high precision of ink, e.g.

recognition.

In the first set of experiments, we look for the optimal

values of p and br, see Section III. With fixed br = 7,

the value of p was changed and the compressed size was

measured for both datasets. Results for handwriting and

geometric objects are shown in Tables I and II respectively.

The value of p = 4 was found to be the most efficient.

With fixed p = 4, br was changed to find the optimal

value. The compressed sizes for the datasets of handwriting

and geometric objects are shown in Tables III and IV

respectively. The value of br = 5 was selected.

Comparison of functional approximation with linear
compression: The compression rate of the linear method

was measured for the two segmentation rules explained in

Section IV-B on both datasets. Figure 2 presents the results

of the functional approximation and linear compression

methods for different values of εmax. The partitioning rules

show similar performance on the handwriting dataset and

almost identical on geometric objects. As expected, due

to the nature of the linear algorithm, we obtained higher

compression of geometric objects than handwritten text. The

functional approximation method shows similar performance

on both datasets.

The compression time is given in Table V for the dataset

of handwriting and Table VI for geometric objects. The

linear method performs almost instantly, compared to the

compression with higher-order functional approximation.

One can observe a trend of increase of the execution time of

432

εmax = 1 εmax = 5 εmax = 10 εmax = 15

Figure 1. Approximation of a sample with different error thresholds (dash line) and the original curve (solid line)

Table I
COMPRESSED SIZE (%) AS A FUNCTION OF THE MAXIMAL ERROR (εmax) AND THE NUMBER OF EXPONENT BITS (p) FOR 7 COEFFICIENT BITS (br)

FOR THE HANDWRITING DATASET

�����p
εmax 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

3 21.5 14.7 12.5 11.6 10.3 9.6 9.0 8.5 8.1 7.9 7.6 7.3 7.1 6.9 6.7
4 19.2 13.2 11.3 10.3 9.2 8.7 8.1 7.6 7.3 7.1 6.8 6.5 6.3 6.2 6.0
5 19.0 13.6 11.7 10.8 9.5 8.9 8.3 7.9 7.5 7.3 7.0 6.7 6.5 6.4 6.2

Table II
COMPRESSED SIZE (%) AS A FUNCTION OF THE MAXIMAL ERROR (εmax) AND THE NUMBER OF EXPONENT BITS (p) FOR 7 COEFFICIENT BITS (br)

FOR THE DATASET OF GEOMETRIC OBJECTS

�����p
εmax 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

3 22.3 17.2 15.0 13.7 12.5 11.7 10.9 10.5 9.8 9.5 8.9 8.7 8.4 8.1 7.8
4 20.6 15.0 13.0 11.9 10.8 10.0 9.3 9.0 8.5 8.2 7.7 7.6 7.3 7.1 6.8
5 21.8 16.2 13.9 12.8 11.6 10.8 9.9 9.6 9.1 8.6 8.2 8.0 7.7 7.4 7.1

Table III
COMPRESSED SIZE (%) AS A FUNCTION OF THE MAXIMAL ERROR (εmax) AND THE NUMBER OF COEFFICIENT BITS (br) FOR 4 EXPONENT BITS (p)

FOR THE HANDWRITING DATASET

�����br

εmax 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

4 20.3 14.6 12.2 11.0 9.7 8.7 8.2 7.5 7.2 7.0 6.6 6.3 6.1 5.9 5.8
5 18.6 13.5 11.4 10.0 9.0 8.4 7.6 7.2 7.0 6.7 6.5 6.2 6.0 5.8 5.6
6 18.5 13.0 11.1 10.0 8.9 8.3 7.8 7.4 7.0 6.8 6.6 6.3 6.1 5.9 5.8
7 19.2 13.2 11.3 10.3 9.2 8.7 8.1 7.6 7.3 7.1 6.8 6.5 6.3 6.2 6.0
8 19.1 13.6 11.7 10.7 9.6 9.0 8.4 7.9 7.6 7.4 7.1 6.8 6.6 6.5 6.3

Table IV
COMPRESSED SIZE (%) AS A FUNCTION OF THE MAXIMAL ERROR (εmax) AND THE NUMBER OF COEFFICIENT BITS (br) FOR 4 EXPONENT BITS (p)

FOR THE DATASET OF GEOMETRIC OBJECTS

�����br

εmax 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

4 19.5 14.6 12.8 11.6 10.6 9.8 9.1 8.8 8.2 7.9 7.4 7.2 6.9 6.7 6.3
5 19.5 14.4 12.4 11.4 10.4 9.7 9.0 8.7 8.0 7.7 7.3 7.1 6.8 6.6 6.3
6 20.2 14.7 12.6 11.6 10.5 9.9 9.1 8.8 8.3 7.9 7.5 7.3 7.1 6.8 6.6
7 20.6 15.0 13.0 11.9 10.8 10.0 9.3 9.0 8.5 8.2 7.7 7.6 7.3 7.1 6.8
8 20.2 14.7 12.6 11.6 10.5 9.9 9.1 8.8 8.3 7.9 7.5 7.3 7.1 6.8 6.6

Table V
TIME (IN SECONDS) FOR COMPRESSION OF THE HANDWRITING DATASET

�������Method
εmax 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

L 25 20 21 21 17 17 17 19 18 15 16 15 15 20 16
F 879 1083 1287 1498 1700 1982 2188 2326 2479 2618 2727 2915 3019 3138 3327

Table VI
TIME (IN SECONDS) FOR COMPRESSION OF THE DATASET OF GEOMETRIC OBJECTS

�������Method
εmax 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

L 12 10 8 9 8 7 8 8 9 9 9 8 8 9 8
F 1188 1355 1781 2034 2185 2346 2475 2593 2710 2830 2980 3086 3180 3281 3333

433

Handwriting Geometric objects

Figure 2. Compressed size depending on the maximal approximation error for handwriting and geometric objects: for Rule 1 (maximal distance) and
Rule 2 (based on the angle), and for enhanced functional approximation

the functional approximation technique with the increase of

the error threshold. In fact, the running time is around three

times higher for εmax = 15 compared to the execution time

for εmax = 1. This growth arises because more combinations

of approximation degree and number of coefficient bits

become suitable for approximation of pieces. Evaluation

of those combinations is computationally intensive and can

require significantly more time for high resolution devices.

VI. CONCLUSION

We have examined two methods for the compression

of digital ink or, more generally, sampled curves in any

dimension. One method selects a subset of the sample points

to give a piecewise linear function that is within a given

tolerance of the original. The second method adapts previous

work based on orthogonal series approximation, representing

the coefficients more efficiently. Our experiments show the

piecewise linear approximation method to perform about

100× faster than the functional approximation algorithm,

but it yields a less compact representation. The proposed

piecewise linear compression technique can be used when

simplicity or speed are important, such as for hardware

implementation and data transmission. On the other hand,

the functional approximation method is suitable for ap-

plications that require compact storage of ink. Depending

on the application and the choice of functional basis, in

this representation certain recognition operations may be

performed without decompression.

REFERENCES

[1] V. Mazalov and S. M. Watt, “Digital ink compression via
functional approximation.” in ICFHR’10, 2010, pp. 688–694.

[2] Ink serialized format specification, Microsoft Inc., 2007.

[3] Z. Liu, H. S. Malvar, and Z. Zhang, “System and method for
ink or handwriting compression,” United States Patent No US
7,302,106 B2, November 2007.

[4] M. Chatterjee, “System and method for ink or handwriting
compression,” United States Patent No US 6,549,675 B2, April
2003.

[5] B. Fruhwirth, R. E. Burkard, and G. Rote, “Approximation of
convex curves with application to the bicriterial minimum cost
flow problem,” European Journal of Operational Research,
vol. 42, pp. 326–338, 1989.

[6] A. Y. D. Siem, D. d. Hertog, and A. L. Hoffmann, “A
method for approximating univariate convex functions using
only function value evaluations,” INFORMS J. on Computing,
vol. 23, pp. 591–604, Oct. 2011.

[7] I. Debled-Rennesson, J.-L. Remy, and J. Rouyer-Degli, “Detec-
tion of the discrete convexity of polyominoes,” in Proceedings
of the 9th International Conference on Discrete Geometry for
Computer Imagery, ser. DGCI ’00. London, UK: Springer-
Verlag, 2000, pp. 491–504.

[8] H. Dorksen-Reiter and I. Debled-Rennesson, “Convex and
concave parts of digital curves,” in Geometric Properties
for Incomplete data, R. Klette, R. Kozera, L. Noakes, and
J. Weickert, Eds. Springer Netherlands, 2006, pp. 145–159.

434

