
Learning domain-specific feature descriptors for document images

Kandan Ramakrishnan
Dept. of Computer Science and Engineering

University of Minnesota
Minneapolis, MN 55455

rama0146@umn.edu

Evgeniy Bart
Intelligent Systems Lab

Palo Alto Research Center
Palo Alto, CA 94304

bart@parc.com

Abstract—Many machine learning algorithms rely on feature
descriptors to access information about image appearance.
Using an appropriate descriptor is therefore crucial for the
algorithm to succeed. Although domain- and task-specific
feature descriptors may result in excellent performance, they
currently have to be hand-crafted, a difficult and time-
consuming process. In contrast, general-purpose descriptors
(such as SIFT) are easy to apply and have proved successful
for a variety of tasks, including classification, segmentation,
and clustering. Unfortunately, most general-purpose feature
descriptors are targeted at natural images and may perform
poorly in document analysis tasks. In this paper, we propose a
method for automatically learning feature descriptors tuned to
a given image domain. The method works by first extracting
the independent components of the images, and then build-
ing a descriptor by pooling these components over multiple
overlapping regions. We test the proposed method on several
document analysis tasks and several datasets, and show that it
outperforms existing general-purpose feature descriptors.

Keywords-Feature descriptors, feature learning, classification

I. INTRODUCTION

Analyzing document appearance is critical for tasks such
as classification and segmentation. Many machine learning
algorithms access this appearance information via feature
descriptors. A familiar example of such a descriptor is SIFT
[1]. Since the descriptor is often the algorithm’s main point
of access to the appearance information, using an appropriate
descriptor is crucial for the algorithm to succeed.

Although hand-crafting feature descriptors can achieve
excellent results, it is often difficult and time-consuming.
In contrast, general-purpose descriptors (such as SIFT) are
easy to apply and have proved succesful in a variety of
tasks. Unfortunately, most general-purpose feature descrip-
tors (including SIFT, SURF, HoG, and others [1], [2], [3],
[4], [5]) are targeted at natural images and may perform
poorly in document analysis tasks. In this paper, we propose
a method for automatically learning feature descriptors tuned
to a given type of images. The method is called Indepen-
dent Component Feature Transform, or ICFT. It works by
extracting the independent components of the images and
pooling these components over multiple overlapping regions
of the image. The overall architecture is inspired by the
biological visual processing hierarchy, as well as by existing

Figure 1. Filter dictionary obtained from the MNIST dataset. Note that
the filters are quite different from the traditional edge detectors.

feature descriptors. By exploiting example images from the
target domain, the descriptor becomes tuned to a particular
image type. As a result, it outperforms existing general-
purpose descriptors. Note that only example images, but not
annotations, are necessary for this tuning. Domain-specific
descriptors can thus be learned in a completely unsupervised
manner.

The remainder of this paper is organized as follows. In
section II, we survey the relevant previous work. In section
III, we describe the proposed feature learning method.
The experimental evaluation of this method is presented in
section IV, followed by conclusions in section V.

II. RELATED WORK

Perhaps the simplest way to represent the appearance of
an image patch is to use the raw pixel values. Although
this method may be useful in some cases [6], raw pixel
values are not robust to image distortions, such as translation
or scaling. In addition, this representation may be highly
redundant, especially for large patches. In many applications,
descriptors that are more succinct and that have some degree
of invariance are desirable.

Various versions of edge and blob detectors (such as
Gabor filters) have been used as descriptors [7]. Some of the
most popular descriptors today use histograms of responses
of these detectors [1], [2], [3], [4], [5]. For example, SIFT
computes gradient magnitudes in a region, then pools and
histograms them over small sub-regions. This architecture
is desirable because filtering the image with edge detection
provides sparsity, and accumulating filter responses over
small image areas makes the descriptors more invariant
under small transformations. In most cases, the sub-regions

2012 10th IAPR International Workshop on Document Analysis Systems

978-0-7695-4661-2/12 $26.00 © 2012 IEEE

DOI 10.1109/DAS.2012.49

415

are simply defined by a regular grid, although adaptive
partitioning is also possible [8]. A similar architecture was
used in [9], where chain code directions are pooled rather
than gradients.

A drawback common to the descriptors presented above
is that they were manually designed with a particular kind
of images in mind. As a result, their performance degrades
when they are applied to images from different or unex-
pected domains (see section IV).

Methods that allow learning domain-specific feature de-
scriptors are more flexible, because they can be adapted to
the stimuli at hand. Supervised methods for learning de-
scriptors have long been used with neural networks (notably,
convolutional networks such as LeNet) and related models
[6], [10]. The main drawback of these methods is that they
require large amounts of labeled training data. In addition,
they must be trained for a specific task and thus cannot
be trained ahead of time, before the task is determined. In
contrast, the method proposed here does not require labeled
data to learn feature descriptors, and may be pre-trained.

Unsupervised feature learning methods do not require
labeled training examples; as a result, it is much easier
to apply them to new domains, since no data needs to
be annotated. In addition, they can be trained before a
specific task is determined for the new domain. Most of
the existing unsupervised methods learn descriptors that
optimize reconstruction quality of the original image while
encouraging sparsity [11], [12], although methods that don’t
consider reconstruction quality explicitly have also been
used [13]. The proposed ICFT method also belongs to the
general category of unsupervised methods. Compared to
the approaches described above, the ICFT has a different
objective function: it optimizes conditional independence of
feature activations, rather than sparseness. This allows the
method to deal with non-sparse activations. Similar ideas
have been used successfully in a variety of applications [14].
An experimental evaluation of ICFT is presented in section
IV.

III. INDEPENDENT COMPONENT FEATURE TRANSFORM

In section III-A, we describe the inspiration for the
proposed method. In section III-B, a detailed description of
the method itself is given.

A. Inspiration

The proposed method is inspired by a widely used model
of the animal visual system. This model involves a hierarchy
of processing stages. The first stage in the hierarchy com-
putes responses of a dictionary of filters to the input image.
These filters (sometimes also called ‘simple cells’) are often
sensitive to edges of different orientations and scales, as
well as blobs of varying sizes. The second stage involves
pooling filter responses at neighboring image locations by
computing the maximum activation within a region. The

units that perform this pooling are also called ‘complex
cells’. These two stages may be stacked several times
[15], [16], [13]. As discussed in section II, applying the
initial filter dictionary reduces redundancy, while subsequent
pooling enables robustness to distortions. Some of the most
successful feature descriptors used in computer vision follow
a similar architecture [1], [3], [4], [5].

In normal animals, the initial filter dictionaty was ob-
served to consist of edge and blob detectors [17], [18],
[19]. However, it is known that visual experience may affect
this dictionary [20]. It is therefore of interest to explore the
criteria which could lead the visual system to favor one set
of filters over another. A variety of possible criteria have
beed suggested, including sparsity [18], [21], information
maximization [22], and statistical independence [19]. The
latter ICA-based approach is particularly interesting, because
ICA has some appealing properties: it estimates filters which
are as statistically independent as possible and thus may
uncover the underlying processes by which the signal was
generated [14].

B. Implementing ICFT

The ICFT feature descriptor proposed here uses an ar-
chitecture similar to that described above. The computation
of the descriptor involves two stages. In the first stage, a
dictionary of filters is applied to the input image at all
locations. In the second stage, the responses of these filters
are pooled over neighboring locations to produce the final
descriptor. This computation process relies on having a basic
dictionary of filters. This filter dictionary is learned using
ICA on unlabeled example images from the target domain.
These two processes (filter dictionary learning and descriptor
computation) are detailed next.

1) Learning target domain filters: To learn the filter
dictionary, a set of image patches is extracted from the
example images of the target domain. In our experiments,
patches of size 10× 10 pixels were found to work well, but
this patch size can easily be adjusted as needed. Depending
on the experiment, between 20,000 and 50,000 patches are
extracted at random from the example images. ICA is then
applied to find the independent components of these patches.
We used the FastICA algorithm [14]. Typically, N = 20
to N = 50 independent components were used. These
independent components are filters of size 10×10 pixels, and
they are used as the filter dictionary in ICFT. This process
is illustrated in Figure 2 (top panel) for the case of N = 30
filters.

2) Computing the ICFT descriptor: A typical ICFT de-
scriptor is computed for image patches of size 20×20 pixels.
As mentioned above, this computation involves two stages.
First, the responses of the N filters in the filter dictionary
(found in the previous stage) are computed at all points
within the 20 × 20 image patch. Next, these responses are
pooled over neighboring pixels to form the final descriptor.

416

FILTER DICTIONARY LEARNING

Input: a set of example images from the target domain
Output: a set of N = 30 filters of size 10× 10 pixels

1) Select a set of points on a grid in every training
image

2) Extract a 10× 10 image patch around each point
3) Run FastICA on the resulting set of patches and

extract N = 30 independent components

COMPUTING 270-ICFT
Input: an image patch of size 20× 20 pixels
Output: a 270-dimensional ICFT descriptor

1) At each pixel in the input patch, find the response
of each of the 30 filters (learned in the previous
stage) by computing the dot product of the image
and the filter

2) Divide the 20×20 patch into nine overlapping 10×
10 regions. For example, the first region spans rows
1–10 and columns 1–10; the second region spans
rows 1–10 and columns 6–15; etc.

3) For each of the nine regions and each of the 30
filters, compute the maximal activation of the filter
in the region

4) Combine the resulting 9 · 30 = 270 numbers into a
270-dimensional vector

Figure 2. Computing ICFT. For details, see section III.

This pooling is performed as follows. The 20× 20 patch
is divided into nine overlapping regions of size 10 × 10
pixels each, spaced equally within the 20 × 20 patch. The
outputs of each filter are pooled over each region. The
pooling operation for a given filter involves computing
the maximal value over that filter’s responses in a region.
(We have also tried computing the average and root mean
square responses, but these performed slightly poorer.) Thus,
we obtain nine number for each filter, with each number
representing the result of the pooling operation over one of
the regions. These numbers are then combined into a 9 ·N -
dimensional descriptor. This descriptor computation process
is summarized in Figure 2 (bottom panel). Alternatively, in
some experiments four non-overlapping 10×10 pixel regions
were used to obtain a 4 ·N -dimensional descriptor.

IV. EXPERIMENTS

In this section we illustrate the performance of ICFT on
two document analysis tasks.

A. MNIST classification

The MNIST database of handwritten digits [6] was used
in this experiment. Thirty independent components were
extracted from the MNIST training set. These components
are shown in Figure I. As can be seen, the components
are quite different from those typically obtained for natural

images [18], [19], and are more complex that gradient filters
used in SIFT.

Two descriptor types were evaluated: the 120-dimensional
descriptor obtained by pooling over four non-overlapping re-
gions within each patch, and the 270-dimensional descriptor
obtained by pooling over nine overlapping regions within
each patch.

A total of three experiments were performed. In the first
experiment, the entire MNIST character image was used as
input to the descriptor computation. A single descriptor for
each image was thus computed and used for classification. In
two additional experiments, the images were split into four
or nine non-overlapping regions (on a 2 × 2 or 3 × 3 grid,
respectively), and characterized by computing a descriptor
for each of these regions. These descriptors were then con-
catenated to form the final feature set. Note that this splitting
is in addition to the multiple regions used in computing each
individual descriptor.

An SVM with a Gaussian kernel was used to classify
digits based on these feature sets. (We have also tried linear
SVM, with similar results.) The results are reported in Table
I. SIFT descriptors were computed in a similar manner
and used for comparison. As can be seen, the proposed
120-dimensional ICFT descriptor outperformed SIFT in all
experiments. Note that SIFT is a 128-dimensional descriptor.
The 270-dimensional ICFT further improved performance
compared to SIFT.

Two conclusions can be made from this experiment.
First, using domain-specific filters improves performance
compared to using generic filters (such as those used in
SIFT). This conclusion holds even when descriptor di-
mensions are similar. Second, an additional advantage of
the proposed method is the flexibility to create a higher-
dimensional descriptor when needed (e. g., if the task is
difficult and a low-dimensional descriptor doesn’t provide
adequate performance).

Note that the main purpose of this experiment is to
compare ICFT and SIFT, and the MNIST dataset is used
as a convenient test bed. We do not suggest that comput-
ing descriptors on a regular grid is the optimal character
recognition method.

B. Text vs. image classification

In this experiment, image patches were classified as either
‘text’ (corresponding to text regions in a document) or
‘image’ (corresponding to figures). This classification task
was motivated by OCR engine design. Performing OCR
on image regions is not useful, consumes resources, and
introduces errors into OCR results. It is therefore useful to
classify page regions as either text or images, and exclude
image regions from OCR.

The 270-dimensional ICFT descriptor was used for this
classification task. The classifier using ICFT performed at
99.5% accuracy, compared to 89% accuracy using SIFT.

417

Grid type 120-ICFT 270-ICFT SIFT

1× 1 6.10 5.30 7.24
2× 2 1.89 1.33 2.11
3× 3 2.14 1.58 2.97

Table I
ERROR RATES ON THE MNIST DIGIT CLASSIFICATION TASK. LOWER

NUMBERS INDICATE BETTER PERFORMANCE.

The conclusion is that ICFT outperforms general-purpose
descriptors when applied to document images.

V. CONCLUSION

We have presented Independent Component Feature
Transform (ICFT), a method for automatically learning
feature descriptors tuned to a given image domain. The
method works by extracting the independent components
from images and pooling these components over multiple
overlapping regions. The proposed method was validated ex-
perimentally on several document analysis tasks and several
datasets. We have shown that ICFT outperformed existing
general-purpose descriptors.

REFERENCES

[1] D. G. Lowe, “Distinctive image features from scale-invariant
keypoints,” IJCV, vol. 60, no. 2, pp. 91–110, 2004.

[2] H. Bay, A. Ess, T. Tuytelaars, and L. V. Gool, “SURF:
Speeded up robust features,” CVIU, vol. 110, no. 3, pp. 346–
359, 2008.

[3] N. Dalal and B. Triggs, “Histograms of oriented gradients for
human detection,” in CVPR, 2005.

[4] S. Lazebnik, C. Schmid, and J. Ponce, “Beyond bags of
features: Spatial pyramid matching for recognizing natural
scene categories,” in CVPR, 2006.

[5] K. Grauman and T. Darrell, “The pyramid match kernel:
Discriminative classification with sets of image features.” in
ICCV, 2005, pp. 1458–1465.

[6] Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner, “Gradient-
based learning applied to document recognition,” Proc. IEEE,
vol. 86, no. 11, pp. 2278–2324, 1998.

[7] J. Chen, H. Cao, R. Prasad, A. Bhardwaj, and P. Natarajan,
“Gabor features for offline arabic handwriting recognition,”
in DAS, 2010.

[8] Z. Zhang, L. Jin, K. Ding, and X. Gao, “Character-SIFT:
A novel feature for offline handwritten chinese character
recognition,” in DAS, 2009.

[9] T. Wu and S. Ma, “Feature extraction by hierarchical over-
lapped elastic meshing for handwritten chinese character
recognition,” in ICDAR, 2003.

[10] Y. LeCun, F.-J. Huang, and L. Bottou, “Learning methods
for generic object recognition with invariance to pose and
lighting,” in CVPR, 2004.

[11] K. Kavukcuoglu, M. Ranzato, R. Fergus, and Y. LeCun,
“Learning invariant features through topographic filter maps,”
in CVPR, 2009.

[12] G. E. Hinton, S. Osindero, and Y. Teh, “A fast learning
algorithm for deep belief nets,” Neural Computation, vol. 18,
pp. 1527–1554, 2006.

[13] T. Serre, L. Wolf, and T. Poggio, “Object recognition with
features inspired by visual cortex,” in CVPR, 2005.

[14] A. Hyvarinen and E. Oja, “Independent component analysis:
Algorithms and applications,” Neural Networks, vol. 13, no.
4–5, pp. 411–430, 2000.

[15] M. Riesenhuber and T. Poggio, “Hierarchical models of object
recognition in cortex,” Nature Neuroscience, vol. 2, pp. 1019–
1025, 1999.

[16] I. Lampl, D. Ferster, T. Poggio, and M. Riesenhuber, “In-
tracellular measurements of spatial integration and the max
operation in complex cells of the cat primary visual cortex,”
J. Neurophysiol., vol. 92, no. 5, pp. 2704–2713, 2004.

[17] D. H. Hubel and T. N. Wiesel, “Receptive fields of single
neurones in the cat’s striate cortex,” J Physiol, vol. 148, no. 3,
pp. 574–591, 1959.

[18] B. A. Olshausen and D. J. Field, “Emergence of simple-cell
receptive field properties by learning a sparse code for natural
images,” Nature, vol. 381, pp. 607–609, 1995.

[19] A. Bell and T. J. Sejnowski, “The ‘independent components’
of natural scenes are edge filters,” Vision Research, vol. 37,
pp. 3327–3338, 1997.

[20] H. V. B. Hirsch and D. N. Spinelli, “Visual experience
modifies distribution of horizontally and vertically oriented
receptive fields in cats,” Science, vol. 168, no. 3933, pp. 869–
871, 1970.

[21] M. S. Lewicki and B. A. Olshausen, “A probabilistic frame-
work for the adaptation and comparison of image codes,” J.
Opt. Soc. Amer. A, vol. 16, no. 7, pp. 1587–1601, 1999.

[22] B. Epshtein and S. Ullman, “Feature hierarchies for object
classification,” in ICCV, 2005.

418

