
Parsing tables by probabilistic modeling of perceptual cues

Evgeniy Bart
Intelligent Systems Lab

Palo Alto Research Center
Palo Alto, CA 94304

bart@parc.com

Abstract—In this paper, we propose a method for automati-
cally parsing images of tables, focusing in particular on ‘simple’
matrix-like tables with rectilinear layout. Such tables account
for over 50% of tables in business documents. The main novelty
of the proposed method is that it combines intrinsic properties
of table cells with properties of cell separators, as well as
table rows, columns, and layout, in a single global objective
function. This is in contrast to previous methods which focused
on either separators alone or intrinsic cell properties alone. Our
method uses a variety of perceptual cues, such as alignment and
saliency, to characterize these properties. Candidate parses are
evaluated by comparing their likelihoods, and the parse that
optimizes the likelihood is selected. The proposed approach
deals successfully with a wide variety of tables, as illustrated
on a dataset of over 1,000 images.

Keywords-table parsing, document analysis

I. INTRODUCTION

Tables are widely used to arrange data for display. They
are especially prevalent in business documents (such as
invoices) and scientific literature. Many web sites also use
tabular layout to provide access to an underlying database
(such as a database of cars for sale or a database of
gene sequences). Parsing such tables automatically would
allow access to large quantities of data and has therefore a
significant practical value. This access could also become the
first step towards a more intelligent use of data, for example,
for the purposes of data mining and business analytics.

Tables may have different structure and may be displayed
in a variety of layouts [1]. In this paper, we focus on the
class of ‘simple’ tables. These are matrix-like tables where
cells are laid out on a rectilinear two-dimensional grid. In
some of these tables, neighboring cells may be merged into
‘compound cells’; tables with such compound cells are not
considered here. A consequence of not having compound
cells is that cell separators span (uninterrupted) the entire
extent of the table. Several examples of such simple tables
are shown in Figures 1, 3. Although not all tables are simple,
simple tables do account for a significant fraction of tables
in business documents. We surveyed invoices received by
one medium and two large companies and found that in
each company, over 50% of all invoices contain only simple
tables. Large businesses may process tens of thousands of
invoices per day, and manually processing a single invoice

Figure 1. An example table parsed by the proposed algorithm. Top: the
original table image. Bottom: the parse obtained by the algorithm. The blue
lines denote the parsed structure. Note that the table is parsed correctly even
though different rows occupy different number of text lines.

can cost up to 9 Euro [2]. Automating even a fraction of this
processing could therefore provide significant cost savings.

In this paper, we propose a method for automatically
parsing images of simple tables. The main novelty of the
proposed method is that it combines intrinsic properties of
table cells with properties of cell separators, as well as
table rows, columns, and layout, in a single global objective
function. This is in contrast to previous methods which
focused on either separators alone or intrinsic cell properties
alone. Our method uses a variety of perceptual cues, such
as alignment and saliency, to characterize these properties.
The Naive Bayes model is used to estimate the likelihood of
a given parse. The likelihoods of multiple candidate parses
are compared, and the parse that optimizes the likelihood
is selected. The proposed approach deals successfully with
a wide variety of tables, as illustrated on a dataset of over
1,000 images.

The remainder of this paper is organized as follows.
In section II, we survey the relevant previous work. In
section III, we describe the proposed table parsing method.
The experimental evaluation of this method is presented in
section IV, followed by conclusions in section V.

II. A SURVEY OF PREVIOUS WORK

In this section, we discuss several approaches to table
parsing that are most relevant to our proposed method.
Additional discussion can be found in [3], [4], [1].

2012 10th IAPR International Workshop on Document Analysis Systems

978-0-7695-4661-2/12 $26.00 © 2012 IEEE

DOI 10.1109/DAS.2012.67

409

One of the most widely used approaches to table parsing
is based on identifying row and column separators. Once
separators are identified, the location and content of each
cell is uniquely determined. Cues such as alignment of text,
presence of whitespace, and rule lines, are often used to
detect separators [5], [6], [7], [8]. These cues exploit the
observation that text in rows and columns of a table is often
aligned, and cell boundaries are often indicated by rule lines
and whitespace. Additional cues may be used for specialized
applications. For example, in [9], the focus is on tables found
in invoices. Such tables typically list products and the price
for each. In many cases, the price is the only real number
in each row; in this case, finding a real number is a good
indication of where one row ends and another begins.

A general criticism of approaches that rely on separator
finding is that separators are often ambiguous. For example,
in Figure 1 the spaces between multiple lines within a
single row are similar to the spaces between different rows.
Distinguishing row separators from text line separators based
on properties of these spaces alone is therefore difficult.

In addition to finding cell boundaries, characterizing the
properties of cells themselves is useful, particularly in situ-
ations where boundaries are ambiguous. For example, using
word bigrams to estimate coherence of a block of text was
used in [10]. Other examples include [11], where cells that
produce satisfiable constraints are favored; and [12], where
formatting similarity is favored across cells. An additional
novelty of the method proposed here is that it introduces
several additional cell properties that significantly improve
performance.

There exist many table styles and formatting conventions.
Case-based reasoning may be used to deal with each style
separately; this refers to assigning a given input table (ex-
plicitly or implicitly) to a particular style and then invoking a
style-specific parser. Styles may be defined at different levels
of granularity. For example, in [7], a database of vendor-
specific table structures is used to parse tables in invoices;
each vendor thus has a narrowly-defined table style. In [13],
[5], wider style definitions are used: tables are grouped by
their periodicity structure in [13], and by the separator type
in [5]. A benefit of case-based reasoning is that it may be
easier to tune an algorithm for a subset of inputs. The main
disadvantage is that it may be difficult to encompass all cases
of interest. In contrast, generic methods such as [6], [11] are
able to deal with unknown or unanticipated table styles.

III. THE PROPOSED METHOD

In this section, we describe the proposed table parsing
method in detail.

First, note that the input image is assumed to only contain
the table to be parsed. In a complete system, this would be
achieved by a separate table detection stage; see e. g. [6],
[8], as well as the discussion in section V.

Figure 2. Candidate cell separators in a table, denoted by green lines.
Note that some of these candidates are spurious and do not correspond to
any real separator.

The input image is first preprocessed by deskewing and
denoising. Next, OCR is run and text tokens are extracted
(these usually correspond to individual words or characters).
Finally, projection profiles are calculated and thresholded to
find candidate cell (row or column) separators. Typically,
we obtain 5–15 candidate vertical separators per table, and
one candidate horizontal separator between every pair of text
lines. These are illustrated in Figure 2. Note that many of
these candidates are spurious and do not correspond to any
real cell separator. However, we do assume that the threshold
is high enough that all real separators are captured.

The task now becomes to determine which of the can-
didate separators are real (i. e. correspond to a real cell
separator) and which ones are spurious. This task is solved
by optimizing an objective function over the set of separa-
tors. This objective function has one boolean variable for
every candidate separator; a true value indicates that the
corresponding separator is real and a false value indicates
that it is spurious. The function measures the likelihood that
the parse produced by the set of real separators is correct.
The objective function is described next, and we describe
the optimization at the end of this section.

The objective function includes several terms, each cor-
responding to a different aspect of a table. The aspects that
are considered are the row/column separators; the individual
cells; entire rows and columns; and repeatability of table
structure. The terms for each aspect are detailed below.

A. Separators

The purpose of this term is to evaluate the quality of the
proposed cell separators. This is performed by extracting
features for each separator, and using a Naive Bayes clas-
sifier to compute the log-likelihoods of these features. This
process is detailed next.

The following features are extracted for each separator:

• Width and height.
• Width of rule lines (if any) within the current separator.
• Number of tokens aligned at endpoints of the separator.
• Number of tokens that intersect the separator.

A Naive Bayes model is trained to categorize separators
as either real or spurious. A manually annotated set of
tables is used for this training. All candidate separators are
extracted; separators which correspond to a ground truth
cell boundary become positive examples, and the remaining

410

(a)

(b)

Figure 3. Additional examples of tables parsed by the proposed algorithm. In each box, the top part is the original table image, and the bottom part is
the parse produced by the algorithm. Note that the tables are parsed correctly despite lack of clear separators, lack of periodicity, mixed separator types,
and presence of empty cells.

(spurious) separators become negative examples. The log-
likelihood ratio is then

L({fi}ni=1) = log
p({fi}ni=1|real)

p({fi}ni=1|spurious)
=

n∑

i=1

wi[fi], (1)

where fi is the value of the i’th feature and wi is the
weight assigned to that value. These weights are learned
by computing the probabilities p(fi = f0|real) and p(fi =
f0|spurious) from the training data and setting the weight
to wi[f0] = log p(fi=f0|real)

p(fi=f0|spurious) . Note that this process is
completely automatic. We compute a separate set of weights
for the horizontal and vertical separators to capture any
systematic differences in their properties. To compute the
overall quality of all separators in a table, the log-likelihoods
for each separator are simply added. The resulting quantity
is denoted Lseparators.

Note that by comparing the log-likelihood of each sepa-
rator to a threshold, we could obtain binary ‘real/spurious’
decisions. However, binary decisions at this early stage
would lead to poor performance, especially in cases where
the separators are ambiguous and cannot be determined by
their visual appearance alone. Therefore, we use the log-
likelihood as a component in a global optimization criterion
instead of making binary decisions.

B. Cells

The purpose of this term is to evaluate the coherence of
the table cells. Overall, this term is handled similarly to the
term above.

First, the cell locations are determined from the bound-
aries with the corresponding variables set to true (these
are the hypothesized real separators). For each cell, features
that measure the cell’s perceptual coherence are extracted.
These features are:

• The size of the largest horizontal whitespace within
the cell. The idea is that a coherent block of text is
usually typeset without large gaps; a large gap therefore
indicates that the candidate is in fact an aggregation of
multiple cells.

• The size of the largest vertical whitespace within the
cell.

• Whether the cell is ‘properly terminated’. The value of
this feature is 0 if the cell text is terminated improperly,
defined in our case as ending with a dash or a comma.
Otherwise, the cell is considered to be terminated
properly, and the value of this feature is 1. The idea
is that text rarely ends with these characters; therefore,
improper termination may indicate that the cell was
oversegmented. Note that a much more elaborate way
to measure proper continuation was proposed in [10]. It
is, however, difficult to apply it in our case. The reason
is that invoices often include product names, codes, and
other nonstandard words, and their statistics is quite
different from that of natural language.

• The number of text lines in the cell that only include
numeric characters (i. e., digits, periods, commas, and
dashes). The idea here is that data in a purely numerical
cell usually spans just one text line, and multi-line cells

411

usually include text rather than just numbers.
• The size of the largest unfilled space within a cell. A

space at the end of a text line is considered ‘unfilled’
if the first token on the subsequent text line could have
fit within it. The idea is, again, that multi-line cells are
typeset so that no large gaps are present; a large unfilled
space therefore indicates that the candidate is in fact an
aggregation of multiple cells.

The latter two features, while relatively straightforward, are
rarely used in the literature. However, they contribute quite
significantly to the method’s performance. When those fea-
tures are removed, the performance drops by 31 percentage
points.

As before, a Naive Bayes model is trained and used to
compute the log-likelihood for each cell. These individual
log-likelihoods are aggregated over all cells and the resulting
quantity is denoted Lcells.

C. Row and column coherence

One additional term is used to evaluate the coherence of
an entire row of the table. As above, the cells for a candidate
parse are determined. An entire row is considered at a time,
and the following features are measured:

• The number of empty cells in the current row
• The number of non-empty cells in the current row
• The degree of cell alignment (using top-, bottom-,

or center-alignment, whichever is best for the current
candidate).

The likelihood per row is learned using the Naive Bayes
model. The likelihood of all rows is aggregated in a term
denoted Lrows.

A similar term for columns (denoted Lcolumns) is com-
puted, based on similar features (the only difference is that
top-, bottom-, and center-alignment are replaced by left-,
right, and center-alignment, respectively).

D. Layout consistency

Finally, one more term is used to evaluate the consistency
of layout across the table rows. We use the model developed
in [14] for this purpose. The likelihood returned by this
method is denoted Llayout.

E. The global objective function

The terms described above are used to specify a global
objective function. This objective function provides a nu-
merical score for a proposed set of cell separators. The
simplest way to combine all terms would be by adding
them. In practice, the terms corresponding to individual cells
(Lcells) and to the layout (Llayout) were found to be the most
important. These terms were therefore given (manually) a
larger weight. The resulting objective function is thus

O = Lseparators + 10 · Lcells + Lrows

+Lcolumns + 10 · Llayout. (2)

���������Train on
Test on

invoices 1 invoices 2

invoices 1 91% ± 1% 86%
invoices 2 88% 86% ± 2%

Table I
THE TABLE PARSING PERFORMANCE. SHOWN: % CORRECT (SEE

SECTION IV-A). HIGHER VALUES INDICATE BETTER PERFORMANCE.

In the future we plan to investigate ways of learning these
weights automatically.

F. Optimization

The objective function specified above provides a numeri-
cal score for a proposed set of cell separators. The parsing is
performed by selecting a subset of the candidate separators
which maximizes this objective function. This optimization
process is detailed below.

The column separators and considered in the order of de-
creasing separator score (section III-A). For each such subset
of column separators, the best subset of row separators is
selected as described below. The best (in terms of the overall
score) table is selected from this set as the optimal parse.

The selection of the optimal subset of row separators for
the given set of column separators is performed essentially
by a brute force search. One slight optimization is that this
search is done progressively from top to bottom. This is
possible because the bottommost rows only weakly affect
the decisions of the topmost rows.

Note again that both the parameter setting (tuning the
weights w) and the optimization process are completely
automatic. The only manual input into the system is the
set of ground truth table parses at the training stage.

IV. EXPERIMENTS

Two datasets were used in the experiments. Each of
the datasets contained tables from invoices received by a
particular company. The dataset called ‘invoices 1’ contained
111 tables, and the dataset called ‘invoices 2’ contained 976
tables. All tables had between two and 25 rows and between
two and 11 columns.

A. Evaluation

Several methods for evaluating table parsing exist [15]. Of
these, graph probing seems to measure accuracy in terms
that most closely reflect our target application. Originally,
graph probing methods included several types of queries.
It was therefore necessary somehow to set relative weights
between different query types. We have further adapted the
graph probing method to suit our target application. This
adaptation, described below, also eliminates the need for
weighting, since only one type of queries is used.

Our target application involves two scenarios. In one,
items from a database are looked up in the parsed invoice.
In another, the parsed table is used as an index into the

412

(a)

(b)

Figure 4. Typical examples of errors made by the algorithm. In each box, the top part is the original table image, and the bottom part is the parse
produced by the algorithm. The incorrect separators are shown in red. In both cases, spurious alignment of text has caused the algorithm to generate
incorrect separators. Some text in the bottom example is redacted for confidentialily.

database. It therefore is appropriate to pair one row (or
column) of the ground truth table with the most similar row
(or column) of the proposed parse, since this pairing will
occur when the database is matched to the parsed table or
vice versa. Once this matching has occured, the target metric
is the number of mismatches between the ground truth and
the parse. We use edit distance between the text content of
corresponding cells to calculate this number of mismatches,
and express it as percent of correct matches.

B. Results

The evaluation method outlined above was used in the
experiments. Four experiments were performed, where one
of the datasets was used for training the model and another
(possibly the same) dataset was used for testing. The results
are reported in Table I. Higher numbers indicate better
performance. When the same dataset was used for training
and testing (the diagonal entries in Table I), the training and
testing sets were disjoint; i. e., the model was trained on a
randomly selected subset of the data and tested on a disjoint
subset of the data. This process was repeated five times; the
average performance and the standard deviation are shown.
When the training and testing datasets were different (the
off-diagonal entries), all images in the training and testing
sets were used; therefore, only one number is shown.

As can be seen, the proposed method achieves above 85%
correct performance under all training and testing conditions.
Note in particular that the generalization performance (i. e.
the performance when training on one dataset and testing
on a different dataset) is good. This indicates that the model
generalizes easily to unfamiliar tables.

Several examples of correctly processed tables are shown
in Figures 1, 3. Since most of the images in our datasets
contained proprietary data, an additional set of tables was
used for these illustrations. This set contained some of the
author’s personal invoices, as well as tables from scientific
publications. As can be seen, the proposed method can suc-
cessfully deal with lack of clear separators (Figures 1, 3(a),

where text line separators are identical to cell separators),
lack of periodicity (Figures 1, 3(a), where different rows
have different number of text lines), mixed separator types
(Figures 3(a), 3(b), where some row separators have rule
lines and others don’t), and the presence of empty cells
(Figure 3(b)). Traditionally such tables have been difficult
to deal with [13], [7], [9].

Despite not using a sophisticated search method, the pro-
posed approach is quite efficient computationally. Depending
on table size, 3–10 seconds are needed to parse a typical
table using our Java implementation on a 2.5 GHz CPU.
Most of this processing time is taken up by OCR.

Typical errors in parsing are illustrated in Figure 4. As can
be seen, repetition and spurious alignment of text created a
structure that is visually similar to a table column. Note that
the width of these spurious separators is similar to the width
of real separators (e. g. in Figure 4(a), both of the spurious
separators are wider than the leftmost correct separator).
In some cases, higher-level knowledge seems necessary to
deduce that these separators are spurious. Fortunately, in
other cases a better feature set seems sufficient to deal with
the problem. For example, in Figure 4(b), the thousands
digits in prices created a spurious column. A feature set
that models this and similar typesetting conventions could
be easily incorporated into the proposed framework.

V. DISCUSSION

We have presented a method for parsing simple tables.
The method uses a wide variety of perceptual cues to charac-
terize different aspects of the table, including the separators,
cells, rows, and columns. A probabilistic model is trained to
evaluate these characteristics and select the optimal parse.
The method achieves over 85% correct performance on a
variety of realistic datasets.

An important assumption in the proposed method is that
the table has already been detected in the image. This is
a common assumption in related methods (see section II).

413

Nevertheless, finding a more general table detection method
is a desirable extension. Additional directions for future
research include formulating better objective functions (for
example, by using models more sophisticated than Naive
Bayes) and better optimization techniques.

REFERENCES

[1] D. P. Lopresti and G. Nagy, “A tabular survey of automated
table processing,” in GREC ’99, 2000, pp. 93–120.

[2] B. Klein, S. Agne, and A. Dengel, “Results of a study on
invoice-reading systems in Germany,” in DAS, 2004.

[3] R. Zanibbi, D. Blostein, and J. R. Cordy, “A survey of
table recognition: Models, observations, transformations and
inferences,” IJDAR, vol. 7, no. 1, pp. 1–16, 2004.

[4] D. W. Embley, M. Hurst, D. Lopresti, and G. Nagy, “Table-
processing paradigms: a research survey,” IJDAR, vol. 8,
no. 2, pp. 66–86, 2006.

[5] K. Zuyev, “Table image segmentation,” in ICDAR, 1997.

[6] J. Hu, R. S. Kashi, D. P. Lopresti, and G. Wilfong, “Medium-
independent table detection,” in DRR VII, 2000.

[7] B. Klein, S. Gokkus, T. Kieninger, and A. Dengel, “Three
approaches to “industrial” table spotting,” in ICDAR, 2001.

[8] F. Shafait and R. Smith, “Table detection in heterogeneous
documents,” in DAS, 2010.

[9] Y. Belaid and A. Belaid, “Morphological tagging approach in
document analysis of invoices,” in ICPR, 2004.

[10] M. Hurst, “Layout and language: An efficient algorithm for
detecting text blocks based on spatial and linguistic evidence,”
in DRR VIII, 2001.

[11] ——, “A constraint-based approach to table structure deriva-
tion,” in ICDAR, 2003.

[12] I. A. Doush and E. Pontelli, “Detecting and recognizing tables
in spreadsheets,” in DAS, 2010.

[13] H. Hamza, Y. Belaı̈d, and A. Belaı̈d, “Case-based reasoning
for invoice analysis and recognition,” in Proc. 7th Intl. Conf.
on Case-Based Reasoning, 2007.

[14] E. Bart and P. Sarkar, “Information extraction by finding
repeated structure,” in DAS, 2010.

[15] J. Hu, R. S. Kashi, D. Lopresti, and G. T. Wilfong, “Evaluat-
ing the performance of table processing algorithms,” IJDAR,
vol. 4, no. 3, pp. 140–153, 2002.

414

