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Abstract— In the field of information security, biometric 
systems play an important role. Within biometrics, automatic 
signature identification and verification has been a strong 
research area because of the social and legal acceptance and 
extensive use of the written signature as an individual 
authentication. Signature verification is a process in which the 
questioned signature is examined in detail in order to 
determine whether it belongs to the claimed person or not. 
Despite substantial research in the field of signature 
verification involving Western signatures, very few works have 
been dedicated to non-Western signatures such as Chinese, 
Japanese, Arabic, or Persian etc. In this paper, the 
performance of an off-line signature verification system 
involving Bangla signatures, whose style is distinct from 
Western scripts, was investigated. The Gaussian Grid feature 
extraction technique was employed for feature extraction and 
Support Vector Machines (SVMs) were considered for 
classification. The Bangla signature database employed in the 
experiments consisted of 3000 forgeries and 2400 genuine 
signatures. An encouraging accuracy of 90.4% was obtained 
from the experiments. 

Keywords- Offline verification systems, signature verification, 
biometrics, authentication systems, Gaussian Grid feature, 
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1. INTRODUCTION 

The field of biometrics is an important area of study as it 
offers many advantages over more commonly used 
authentication methods such as photo ID cards, magnetic 
strip cards etc. Nowadays, biometric technologies are 
increasingly and more frequently being used to ensure 
identity verification. Signatures often incorporate complex 
geometric patterns that make them a relatively secure means 
for authorization for high security environments. For 
historical reasons, the handwritten signature continues to be 
the most commonly accepted form of transaction 
confirmation, as well as being used in civil law contracts, 
acts of volition, or authenticating one's identity. Signature 
verification has been a topic of intensive research during the 
past several years due to the important role it plays in 
numerous areas, including in financial applications. 

Signatures have been accepted as an official means to 
verify personal identity for legal purposes on such 
documents as cheques, credit cards, wills etc. The 
handwritten signature is therefore well established and 
accepted as a behavioral biometric. Considering the large 
number of signatures verified daily through visual 
inspection by people, the construction of a robust and 
accurate automatic signature verification system has many 
potential benefits for ensuring authenticity of signatures and 
reducing fraud and other crimes. 

The goal of an automatic signature verification system is 
to be able to verify the identity of an individual, based on 
the analysis of his or her signature through a process that 
discriminates a genuine signature from a forgery. The 
verification of human signatures is particularly concerned 
with the improvement of the interface between human-
beings and computers [2]. A signature verification system 
and the associated techniques used to solve the inherent 
problems of authentication can be divided into two classes 
[3]: (a) on-line methods [4] to measure temporal and 
sequential data by utilizing intelligent algorithms [5] and (b) 
off-line methods [6] that use an optical scanner to obtain 
handwriting data written on paper. Off-line signature 
verification deals with the verification of signatures, which 
appear in a static format [7]. On-line signature verification 
has been shown to achieve much higher verification rates 
than off-line verification [6], as a considerable amount of 
dynamic information is not readily available in the off-line 
mode. However, off-line systems have a significant 
advantage that they do not require special processing 
devices when the signatures are produced. Moreover, the 
off-line systems have many more practical application areas 
than their on-line counterparts. 

Signatures represent a particular writing style and very 
often are a combination of symbols and strokes. So it is 
obviously necessary to deal with a signature as a complete 
image with a special distribution of pixels, representing a 
particular writing style and is not considered as a collection 
of letters and words [8]. It is often difficult for a human to 
instantly verify two signatures of the same person because 
signature samples from the same person are similar but not 
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identical, and signatures can change depend
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signatures were collected from different
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representation of the signature into cells of equal size. For 
each cell, the contours are traversed and the number of 
movements are counted for each of the four main directions 
(horizontal, vertical, left-diagonal, and right-diagonal) and 
are stored in four separate matrices. A 2D Gaussian filter is 
then applied on these matrices before the values are rescaled 
to be within the range of [0,1]. From these four 
matrices, two additional matrices of the same dimensions 
are created by manipulating pairs of matrices for 
perpendicular directions. The value of each cell is computed 
by dividing the minimum value by the maximum value of 
two corresponding cells of the pair of input matrices. 

As mentioned above, the Gaussian Grid feature was 
initially developed for Western signatures, which are 
significantly different from Bengali signatures. By visual 
inspection, one could easily distinguish these two types of 
signatures. Bengali signatures tend to be wider and shorter. 
The existence of a baseline in Bengali signatures is also 
more evident than Western signatures. It is of interest to 
investigate the robustness of the Gaussian Grid feature, 
which was optimized for Western signatures on another 
style of signature like Bengali. 

VI. CLASSIFIERS DETAILS 

SVM Classifier: 

In our experiments, we have used Support Vector 
Machines (SVM) as classifiers. SVMs have been originally 
defined for two-class problems and they look for the optimal 
hyper plane, which maximizes the distance and the margin 
between the nearest examples of both classes, namely 
support vectors (SVs). Given a training database of M data: 
{xm| m=1,..., M}, the linear SVM classifier is then defined 
as: 

 
where {xj} are the set of support vectors and the parameters 
αj and b have been determined by solving a quadratic 
problem [16]. The linear SVM can be extended to various 
non-linear variants; details can be found in [16, 17]. In our 
experiments, the RBF kernel SVM outperformed other non-
linear SVM kernels, hence we are reporting our recognition 
results based on the RBF kernel only.  

VII. EXPERIMENTAL SETTINGS 

In the field of signature verification, there is lack of a 
publicly available signature database. The quality of 
available databases also varies, as there has been no 
standard collection protocol. Besides, it is very costly to 
create a large corpus with different types of forgeries, 
especially skilled forgeries.  

For the experiments in the proposed research, our own 
database described in Section IV was used. For each 
signature set, an SVM was trained with 12 randomly chosen 

genuine signatures. The negative samples for training 
(random forgeries) were the genuine signatures of 63 other 
signature sets. Four signatures were taken from each set. In 
total, there were 63x4=252 random forgeries employed for 
training. For testing, the remaining genuine signatures and 
15 randomly selected skilled forgeries of the signature set 
being considered were employed. The random forgeries for 
testing were the 36 genuine signatures from the remaining 
signature sets, which were not involved in the training 
phase. From each set, one genuine signature was randomly 
selected. The training and testing process was repeated 30 
times and the error rates of the experiments were averaged 
before being reported so that the results obtained were more 
reliable. The number of samples for training and testing for 
experimentation with each signature set are shown in 
Table1.  
 

TABLE1. NUMBER OF SIGNATURE SAMPLES USED FOR 
EXPERIMENTATION 

 

VIII.   RESULTS AND DISCUSSION 

For training and testing of the system, 5400 Bangla 
signatures were employed.  

Using the Gaussian Grid feature, an AER as low as 9.6% 
was obtained. At this operational point, the FRR, FAR for 
random forgeries (FAR1), and FAR for skilled forgeries 
(FAR2) were 10.77%, 0.05%, and 8.42%, respectively. The 
AER obtained in this research is 4.33% lower than the AER 
obtained with the GPDS-160 database reported in [9] 
despite the smaller number of random forgeries (252 vs. 
400) employed in the training process. 

 
 

TABLE2. RESULTS BASED ON DIFFERENT TYPES OF FORGED 
SIGNATURES 

 
Sigma FRR (%) FAR1  FAR2 

2.9e-2 9.96 0.06 9.40 
3.0e-2 10.14 0.06 9.17 
3.1e-2 10.35 0.06 9.19 
3.2e-2 10.55 0.05 8.64 
3.3e-2 10.77 0.05 8.42 
3.4e-2 11.03 0.05 8.19 
3.5e-2 11.27 0.05 7.99 
3.6e-2 11.57 0.04 7.80 
3.7e-2 11.87 0.04 7.57 
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Training 12 252 n/a 
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Although the FRR and the FAR2 rates changed rapidly 
with sigma, the AER rate was more stable. The error rate 
obtained from our experiments is shown in Table 2. These 
encouraging results demonstrate the robustness of the 
Gaussian Grid feature extraction technique for signature 
verification. The results obtained in our experiments are 
shown by a graph in Fig. 6. 
 

 
 

Figure 6. Error rates based on the value of sigma 

IX.   CONCLUSIONS AND FUTURE WORK 

This paper presents an investigation of the performance 
of a signature verification system involving Bangla off-line 
signatures. The Gaussian grid feature and SVM classifiers 
were employed and encouraging results were obtained. To 
the best of our knowledge, a Bangla signature database has 
never been used for the task of signature verification. The 
proposed off-line verification scheme is the first 
investigation for Bangla signatures in the field of off-line 
signature verification. In the near future, we plan to extend 
our work considering more datasets of Bangla off-line 
signatures. 
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