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Abstract—With increasing computational power, researchers
in the area of off-line signature verification have been able to
investigate feature extraction techniques that produce large-
dimensional feature vectors. However, a large feature vector is
not necessarily associated with high performance. This paper
investigates the performance of a small feature set consisting
of 33 feature values. In the experiments using Support Vector
Machines (SVMs), an average error rate (AER) of 16.80% was
obtained together with a low false acceptance rate (FAR) for
random forgeries of 0.19%. The significant reduction of the
error rate was obtained when the proposed global features
were employed, which demonstrates their astonishingly high
discriminant power. These results suggest that the use of global
features for the off-line signature verification problem is worth
further investigation.

Keywords-Off-line signature verification; Support Vector Ma-
chine; Variance feature; Energy feature; rotation invariant
feature

I. INTRODUCTION

Signature are a convenient form of biometric that have

been legally accepted and widely used in society. This can

be seen in the case of important government documents as

well as day to day transactions using credit cards or personal

cheques. Distinct from other biometrics, the collection and

verification of signatures does not require special instru-

ments. With the advent of computers and imaging capable

gadgets, much effort has been put into the construction of

reliable security systems based on the static image of signa-

tures. Nevertheless, this problem remains unsolved despite

decades of active research.

A crucial process often seen in signature verification

systems is feature extraction. In this process, information

that helps to distinguish the genuine signatures from the

forgeries is extracted and retained. The technique employed

in feature extraction can be categorized to be local or global

based on the scope it uses to compute each component value.

A component value of a local feature is computed using a

small portion of the input pattern whilst the whole pattern

must be inspected in order to compute any component

value of a global feature. Compared to global features, local

features tend to possess higher discriminating power due

to the larger amount of information it captures from input

patterns.

From the literature, it may be noted that researchers

have employed local features favorably. Baltzakis and Papa-

markos [1] used a feature set consisting of a 96-dimensional

local feature and 16 global features. Justino et al. [2]

employed a grid-based feature extraction scheme, which

produces massive 2520-dimensional feature vectors. The

feature values belong to four categories: Pixel Density,

Gravity Center, Segment Curvature, and Predominant Slant.

Variants of these features with other grid dimensions were

also employed in the research of Swanepoel and Coetzer

[3]. Ferrer et al. [4] used a 128-dimensional feature vector

extracted from the polar and the Cartesian coordinates. Wen

et al. [5] reported their best result was obtained using

144-dimensional rotation invariant Ring-Peripheral Features

(RPF). Bertolini et al. [6] investigated combinations of 64

grid-based local features using a genetic algorithm. The

dimension of the feature vectors employed in their research

were ranging from 20 to 250.

Apart from the work of Baltzakis and Papamarkos, the

reviewed literature indicates that global features did not

attract much attention from researchers. Nevertheless, it is

suggested that the discriminating power of a single global

feature may be insignificant but the combination of multiple

global features could produce a reverse effect. The present

paper introduces a feature set consisting of a 24-D local

feature and 4 global features. Despite the compact size of

the 33-dimensional feature vector, encouraging results were

obtained.

The remainder of this paper is organized as follows:

The next section introduces the background and details

of the proposed feature extraction techniques. After that,

the experimental settings are described in Section III. It is

followed by results and discussion in Section IV. Finally,

Section V concludes and proposes directions for future

research.

II. FEATURE EXTRACTION

The feature set investigated in the present research con-

sists of a local feature and four global features. The newly

proposed global features are the Trajectory Length and

Moment features. Both features are rotation invariant. The

other two global features, Energy and Ratio features, were
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previously described in [7]. The following sub-sections

describes the newly proposed feature extraction techniques.

A. Variance Feature

The mean and variance are important measures in proba-

bility and statistics. The variance describes how far numbers

of a set are distributed from the mean value. It can be noted

that in signature patterns, the mean and variance extracted

from adjacent rows or columns are generally approximate.

A sudden change in both mean and variance often indicates

the existence of one or more strokes. It is proposed that

an appropriate representation of these values could produce

encouraging verification accuracies in signature verification.

Algorithm 1 Variance Feature Extraction

Require: Binary image I(x, y)
Require: Number of groups in the horizontal Ghor and

vertical Gver directions.

1: for x = 1...width do
2: V col

x ← var(yi : I(x, yi) = 1)
3: M col

x ← mean(yi : I(x, yi) = 1)
4: end for
5: for y = 1...height do
6: V row

y ← var(xi : I(xi, y) = 1)
7: Mrow

y ← mean(xi : I(xi, y) = 1)
8: end for
9: sizehor ← width/Ghor

10: sizever ← height/Gver

11: for i = 1...Ghor do
12: fHmean

i ← Σi∗sizehor

(i−1)∗sizehor
M col

i

13: fHvar
i ← Σi∗sizehor

(i−1)∗sizehor
V col

i

14: end for
15: for j = 1...Gver do
16: fV mean

j ← Σj∗sizever

(j−1)∗sizever
M col

j

17: fV var
j ← Σj∗sizever

(j−1)∗sizever
V col

j

18: end for
19: return {{fHmean

i }, {fHvar
i }, {fV mean

j }, {fV var
j }}

To compute the Variance Feature, the mean and variance

of the x and y coordinates of the black pixels are first

computed for each row and column of the signature image.

After that, the adjacent values of each type in either the

horizontal or vertical direction are grouped together and

the average values are calculated for each group. The final

feature vector is created by rearranging the average values

obtained in the previous step. The purpose of the averaging

procedure is to create feature vectors with a predefined

dimension. The whole process is presented in Algorithm 1.

B. Trajectory Length Feature

The first rotation invariant feature investigated in this

research is Trajectory Length. This global feature utilizes

(a) (b)

Figure 1: Line segments having unequal length and area

represented by the same number of pixels due to digitization

information derived from the length of the pen move-

ment/trajectory.

One notable characteristic of the length of the trajectory

of a signature or handwriting is its invariability with respect

to rotation. Moreover, the length of the pen’s trajectory

correlates with the total amount of energy consumed during

the production of signatures, which is believed to be rela-

tively stable between writing sessions for each individual.

Although the length of the trajectory can be approximated

with high precision directly from the trajectory of the pen,

this information is not readily available in the static image of

signatures. In the present work, the length of the trajectory

is approximated by dividing the total length of all contours

by 2. Another issue with the computation of the Trajectory

Length feature is that line segments of different length can

be represented by the same number of foreground pixels as

a result of digitization. In order to obtain a more accurate

approximation of trajectory length an adapted version of

Harrington’s curve length approximation algorithm [8] was

employed.

The trajectory length feature described above was inspired

by the Image Area feature employed by Papamarkos and

Baltzakis in their signature verification research [9]. In that

work, the Image Area feature was computed by simply

counting the number of the foreground pixels of the skeleton

representation of the signature. The advantages of the newly

proposed trajectory length extraction technique over Papa-

markos and Baltzakis’s technique are both simplicity and

accuracy. Skeletonization often requires more computation

than contour extraction. The error rates produced by the

counting technique employed by Papamarkos and Baltzakis

for a single segment can be as high as 40%. This is illustrated

in Fig. 1

C. Moment-based Feature

In the area of pattern recognition, researchers have inves-

tigated rotation invariant moments for many years. In his

1962 paper, Hu [10] described a set of 10 rotation invariant

geometric moments up to the 3rd order. However, high

order moments introduce numerical instabilities and noise

sensitivity, Kotoulas and Andreadis [11] commented. The

following describes a feature based on Central moments.

From Hu’s work, it can be seen that all the proposed

rotation invariant moments utilizes the rotation invariant
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property of the center (x̄ = m10
m00

, ȳ = m01
m00

) of the central

moment

μpq =
ˆ ∞
−∞

ˆ ∞
−∞

(x−x̄)p(y−ȳ)qρ(x, y)d(x−x̄)(y−ȳ) (1)

where mpq denotes the (p+q)th order moment

mpq =
ˆ ∞
−∞

ˆ ∞
−∞

xpyqρ(x, y)dxdy (2)

and ρ(x, y) is a continuous density function. For an image

I(x, y) of size M ×N , the (p+q)th moment is

μpq = Σ∞−∞Σ∞−∞(x− x̄)p(y − ȳ)qI(x, y) (3)

Since the center is fixed in relation to any point of the set,

the distance between any points and the geometric center

does not change as the signature image rotates. In other

words, these distances are rotation invariant. The following

two feature values exploit that property:

f1 = ΣM
x=0Σ

N
y=0

√
(x− x0)

2 + (y − y0)
2
I(x, y), (4)

f2 = ΣM
x=0Σ

N
y=0

1√
(x− x0)

2 + (y − y0)
2
I(x, y) (5)

The first feature value is the sum of the distances from every

black pixel to the moment center and the second feature

value is the sum of the inversions of those distances. These

feature values are then divided by predefined constants to

obtain values within the range 0..1. As the shape and size of

genuine of signatures of an individual are relatively stable,

its center of gravity and the above feature values can be

considered stable as well and they can be used to distinguish

genuine signatures from the forgeries.

D. The Camastra Feature

In the area of cursive handwritten character recognition,

Thornton et al. [12] reported that the MDF was outper-

formed by the 34D feature set proposed by Camastra [13].

Camastra’s feature set consists of a core 32D local feature

and two global features aspect ratio ( width
height ) and the relative

position of the baseline to the character itself. Having the

number of feature values approximating the dimension of

the proposed feature set, it is of interest to compare the

performance of the Camastra feature with the proposed

feature set.

In its recommended configuration for cursive character

recognition, the input image is segmented using a 4 × 4
grid. The width and height of each grid cell are the rounded

up value of corresponding dimensions divided by 4:

w =
⌈

imgwidth

4

⌉
(6)

Table I: Experimental Settings

Phase Genuine Forgeries
Random Targeted

Training 12 400 -
Testing 12 59 15

and

h =
⌈

imgheight

4

⌉
(7)

where �·� denotes the ceiling operator. Whilst the first three

rows or columns of the grid are non-overlapping, the last two

columns or rows of cells may be overlapped up to 3 pixels

where the width or height is not divisible by 4. The impact of

the overlap can be considered insignificant in images having

large dimensions.

Once the grid lines have been determined, two distinct

values are extracted from each grid cell. The first one is

density, which is the proportion between the number of

foreground pixels ni in each cell and the area of a grid

cell:

f1 =
ni

cellwidth × cellheight
(8)

The other feature value is the difference between the sums

of the second order of the number of pixels in the horizontal

and vertical directions:

f2 =
1
2

(
1 +

1
hw2

Σh
i=1n

2
i −

1
h2w

Σw
j=1n

2
j

)
(9)

where h and w are the width and height of each cell,

respectively. In total, the core local feature consisted of

4× 4× 2 = 32 elements.

Although the baseline feature had been integrated in the

original work of Camastra, this information is not readily

available in signatures. Consequently, Ratio feature was the

only global feature employed along with the 32D local

feature in the implementation of the Camastra feature in

the present research. It should be kept in mind that the

lack of the baseline feature may potentially be a factor

that deteriorates the performance of the Camastra Feature

in signature verification.

III. EXPERIMENTAL SETTINGS

To facilitate the comparison of results, a subset of the

publicly available GPDS-960 [14] signature database was

employed in this research. The subset consists of the first

160 signature sets taken from the GPDS-960. Each set

consisted of 24 genuine and 30 targeted forgeries. The

signature images were in black and white with the resolution

of 300dpi.

It is essential to employ a suitable number of genuine

samples for the construction of signature models. Employing

a large number of genuine signature may increase the
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verification accuracy but the system will be less practi-

cal. Considering this trade-off between performance and

robustness, only 12 genuine signatures were employed in

the experiment with each signature set. Since the random

forgeries can be collected more easily, the negative samples

employed for training were generous with 400 genuine

signatures randomly chosen from 100 other writers, four

genuine signatures from each. In the testing process, the

remaining 12 unused genuine signatures were employed.

The forgeries for testing were 15 randomly selected forgeries

of the signature set and 59 genuine signatures taken from

the remaining 59 signature sets, one from each set. Table

I summarizes the sample configuration for the training and

testing phases. The experiment with each signature set was

performed 30 times in order to obtain more stable results.

The construction of signature models in this research were

performed using Support Vector Machines (SVMs) [15].

The choice of kernel for the SVMs varies depending on

the classification problem and feature extraction techniques.

Within the area of off-line signature verification, researchers

often reported that their best results were obtained using

the Radial Basis Function (RBF) kernel [4], [16]. Results

from our previous investigation also concurs with this.

Consequently, the RBF kernel was chosen. The experiments

were conducted using SVMlight v6.01 software [17].

IV. RESULTS AND DISCUSSION

Generally speaking, the detection of random forgeries

are much easier compared to simulated or skilled forgeries.

Many researchers have reported the false acceptance rate

for random forgeries (FAR1) of less than 0.1%. The perfor-

mance of their verification systems are often reported using

the lowest average error rate (AER) obtained which is the

average value of the false rejection rate (FRR) of genuine

signatures and the false acceptance rate for simulated forg-

eries (FAR2): AER = FRR+FAR2
2 . In the present research, the

experimental results are reported using these measurements.

Table II: Experimental Results of the Variance feature

σ FRR FAR1 FAR2 AER
4.0 20.15% 1.01% 25.08% 22.61%
6.0 21.49% 0.86% 23.17% 22.33%
8.0 23.03% 0.75% 21.37% 22.20%
10.0 24.80% 0.65% 19.76% 22.28%

Table II presents the experimental results of the Variance

feature. It can be seen that the performance of the Variance

feature, being used individually, is relatively low with the

AER being as high as 22.20%. However, these results were

not unexpected as the Variance feature is fairly simple with

only 24 feature values.

As can be seen from Table III, the best AER of the Ca-

mastra feature set without the baseline feature was 20.33%.

This result is nearly 2% better than the Variance feature due

Table III: Experimental Results of the Camatra feature

σ FRR FAR1 FAR2 AER
0.3 16.73% 1.25% 29.7% 23.22%
4 12.92% 0.94% 31.23% 22.08%
40 19.89% 0.23% 20.77% 20.33%
45 21.4% 0.2% 19.32% 20.36%

to the larger 33-D feature vector of the Camastra feature

compared to the 24-D feature vector of the Variance feature.

Table IV: Experimental Results of the Variance feature in

conjunction with the Global Features

σ FRR FAR1 FAR2 AER
7.0 13.43% 0.22% 20.48% 16.955%
8.0 15.16% 0.19% 18.43% 16.80%
9.0 17.23% 0.15% 16.66% 16.945%
10.0 19.18% 0.13% 14.98% 17.08%

When other global features were employed as compli-

ments to the Variance feature, the verification accuracy was

improved significantly. The new AER obtained was 16.80%,

which is a 5.4% improvement from the earlier 22.20%

AER. The corresponding false acceptance rate for random

forgeries (FAR1) at that operational point was also reduced

significantly, from 0.75% down to 0.19%. Table IV details

the results of this experiment. These figures compare favor-

ably to the results obtained using the MDF-based feature

sets previously reported in [7]. More importantly, the total

number of feature values of the newly proposed feature set is

only 33 compared to the dimension of more than 120 of the

MDF-based feature set. This AER of the proposed feature

set is also 3.53% better than the best result of the Camastra

feature.

Table V: Experimental Results of the Camastra feature in

conjunction with the Global Features

σ FRR FAR1 FAR2 AER
22 14.75% 0.12% 18.02% 16.385%
24 16.22% 0.11% 16.59% 16.405%
26 17.61% 0.09% 15.15% 16.38%
28 19.15% 0.08% 13.85% 16.5%

The proposed set of global features can also be used to

reduce the error rates of the Camastra feature. A significant

improvement of nearly 4% was observed when the global

features were combined with the Camastra feature. The

results of this experiment are presented in Table V.

Table VI and Fig. 2 conclude this section by summarizing

the dimension and the AER and depicting the ROC curves

of the feature sets investigated in this research.

V. CONCLUSIONS AND FUTURE WORK

Local feature extraction techniques have been investigated

intensively in the area of off-line signature verification. In

many cases, the dimensions of the feature vectors are large,
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Figure 2: The ROC curves of the feature sets as functions

of σ of the RBF kernel of the SVMs

Table VI: The performance comparison of the feature sets

Feature Set Size AER
MDF-based [7] 128 17.25%

Camastra + Global features 42 16.38%
Camastra 33 20.33%

Variance + Global features 33 16.80%
Variance 24 22.20%

ranging from hundreds to thousands. Large size features

tend to create a heavy load on the classifiers employed. In

addition, they can diminish the impact of “good” but small

sized add-on features. Nevertheless, the present research

has demonstrated that competitive results could be obtained

using relatively small dimensional feature set by employing

global features. Under the specific experimental settings

described, the proposed feature set compares favorably to the

MDF and Camastra features in terms of both discriminating

power as well as feature vector size.

Despite the encouraging results, there are significant gaps

between the performance of the proposed feature set and

other state-of-the-art local feature extraction techniques.

However, it is strongly believed that these performance gaps

could be bridged by employing more global features. Future

investigations will focus on other moment-based rotation

invariant features and the fusion of global features.
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