
Logo Retrieval in Document Images
Rajiv Jain and David Doermann

University of Maryland, College Park, MD, USA
rajivj@cs.umd.edu and doermann@umiacs.umd.edu

Abstract—This paper presents a scalable algorithm for
segmentation free logo retrieval in document images. The
contributions include the use of the SURF feature for logo
retrieval, a novel indexing algorithm for efficient retrieval and
a method to filter results using the orientation of local features
and geometric constraints. Results demonstrate that logo
retrieval can be performed with high accuracy and efficiently
scaled to a large datasets.

Key Words: Logo retrieval; SURF; Indexing; Document Images;

I. INTRODUCTION
The most common information retrieval framework used

for document images continues to be based on indexing text
obtained from optical character recognition (OCR).
However, two major drawbacks of OCR are that it cannot
process graphical objects and is unable to accurately handle
unique or unusual fonts. One of the most important and
common graphical objects present in document image
datasets are logos. They are prevalent on a number of
document image genres including memos, letters, and
official documents and can be used to identify organizations
or symbols of interest on the page.

There are many challenges associated with performing
efficient and accurate logo retrieval in document images.
First, documents are often binary images that preclude many
texture based features. Second, the binarization of the images
adds noise that can distort the original logo. Third, scanned
document images are typically high resolution images
ranging from 2 to 5 megapixels and logos can be comprised
of less than 1% of the document’s surface areas. Fourth, all
of the current approaches rely heavily on training on the
logos of interest. In a typical retrieval scenario, however, the
logos being queried for are not known ahead of time.

In recent years, there have been a number of papers about
the related topics of logo detection, recognition, and retrieval
for document images. Given a document image, logo
detection can be defined as the problem of finding a logo’s
boundary on the page without regard to class. Logo
recognition (or matching) on the other hand is the problem of
determining which class a given logo belongs to. Logo
retrieval can be viewed as a combination of the two
problems where one wants to simultaneously detect and
recognize a logo across a dataset given some query image.

Logo detection was recently explored by [16], [17] and
[18]. In [16], Zhu detects logos on a page using connected
component features and a Fisher classifier. Wang uses a
decision tree to grow rectangle boundaries around candidate
logos in [17]. In [18], Li uses local descriptors found using
difference of Gaussians and described using connected
component features to detect logos. A comparison of their
work is shown in Table 1 on the Tobacco 800 dataset.

In [20], Rusinol explores efficient logo retrieval on logos

Approach Training Images Recall Precision Speed
Zhu [16] 50 84.2% 73.5% 680 ms
Wang [17] 100 80.4% 93.3% -
Li [18] 50 86.5% 99.4% 340 ms

Table 1: Logo detection scores

by indexing shape context descriptors. He achieves 82.6
mean average precision (MAP) on the Tobacco 800 dataset.
Zhu extends his detection work in [8] to build a retrieval
system and performs recognition by matching local shape
context descriptors. He reports a MAP score of 82.6%. The
closest work to ours has been done by Rusinol [2], which
performs logo retrieval using a bag of SIFT features. He
reports a true positive rate of 90.2 % and a false positive rate
of 1%, but the experiments are done on a different dataset
that is not publically available making direct comparison
difficult.

The main goal of this work is to design a retrieval
algorithm that scales to a million image corpora without
training on logos of interest. An ideal solution would be to
index features extracted from a document as we do with
words in text retrieval [21]. Unfortunately image features
are often high dimensional and exact indexing remains an
open research challenge due to the “Curse of
Dimensionality”, which causes traditional indexing
approaches to perform worse than linear search on high
dimensional data [22]. A number of researchers have used
approximate nearest neighbor techniques such as KD-trees
[4] and locality sensitivity hashing (LSH) [5] to try and
address this problem, but they do not scale to large corpora
where each local feature is indexed independently because
they work best when stored in memory. Others such as [2]
use a bag of features framework by assigning each feature
vector a codeword. This method also begins to degrade as
the vocabulary size grows because of the hard quantization
when assigning code words with high dimensional data
[15]. We instead chose an approach that indexes feature
vectors that are distinct along the same dimensions together.

The paper is laid out as follows: Section II discusses our
use of SURF features, section III explains indexing of these
features, section IV covers geometric filtering used to
improve retrieval performance, section V describes the
experiments and section VI analyzes the results.

II. FEATURE EXTRACTION
Our use of local descriptors was motivated by the work

of Ke, Sukthankar, and Huston [1], which showed excellent
results for the near duplicate image retrieval problem when
using the SIFT descriptor. One can imagine logo retrieval in
document images as an extension of the near duplicate image
retrieval problem in computer vision, where one wishes to

2012 10th IAPR International Workshop on Document Analysis Systems

978-0-7695-4661-2 2012

U.S. Government Work Not Protected by U.S. Copyright

DOI 10.1109/DAS.2012.54

135

find all similar images that could have been created from
simple image transformations such as cropping, scaling, or
rotating. Thus local features that are scale and rotation
invariant are desirable for logo retrieval because of their
ability to match sub sections of images with these
transformations. Large affine translations are not a concern
for logo retrieval in this work since document images are
generally created by scanning on a flat surface. We were
further encouraged by the work of Rusinol and Llados [2],
which used SIFT features in a bag of features framework to
spot logos in binary scanned document images.

We chose the Fast Hessian interest point detector for this
paper because the work in [3] shows that it outperforms the
Difference of Gaussian and Harris-Laplace interest point
detectors while being three times faster to compute per
image. The SURF descriptor was chosen instead of the SIFT
descriptor because [3] showed that it is more resilient to
noise, which often occurs from the binarization process.

The SURF descriptor for a given patch is calculated by
first equally subdividing a given patch into a 4x4 grid. For
each subsection, the Haar wavelet response Dx and Dy are
computed in the x and y directions respectively. The original
SURF descriptor calculates the following 4 attributes (Dx,

Dy, |Dx|, |Dy|) per interest point. However, the first
2 features Dx and Dy contain very little information in
binary images. Hence they are excluded to form a more
compact 32 dimensional feature vector, which is ¼ the size
of the SIFT descriptor, without any loss in accuracy.

To build a naïve retrieval system using these descriptors
one would first extract and store SURF features from each
document image offline. Then at query time one would
extract SURF features from the logo, perform a pairwise
comparison between all the features extracted from the
document and the logo, and then choose the document with
the most matches. We will refer to this approach as the brute
force method. Given that on average 7000 features are
extracted from each document, 500 features are extracted
from each logo, and 32 calculations are required for each
feature comparison, it becomes quickly apparent that this
approach will not scale to large datasets due to its
computational requirements.

III. FEATURE INDEXING

A. Generating Index Keys
In this paper we explore a method motivated by a

recently proposed indexing technique for near duplicate
images [6], which attempts to groups feature vectors that are
distinct along the same dimensions together. They define the
distinctiveness D for a given feature vector v as:

 ���� � ��	
 �
�	
�
 �	 (2)

Where ��
 and �� are the mean and standard deviation for

the distribution of position i over the feature vector. We
found that the method proposed in that paper did not
perform well because the equation they use to quantify the
distinctiveness was rewarding, instead of penalizing,

dimensions with high variance and the direction of the
distinctiveness is lost by taking the absolute value. We
propose an alternative distinctiveness measure using the Z-
score from statistics as follows:

���� �

��
���

��

 (3)

Both ��
and �� are computed offline for each of the 32

dimensions in the SURF feature vector using features
extracted from randomly selected documents in the CDIP
collection. We then create 2 index keys for each feature
vector by taking the 6 positions with the highest
distinctiveness and the 6 positions with the lowest
distinctiveness score and sorting the values numerically.
Note there are 3 times fewer index keys than the 6 required
for the algorithm presented in [6]. The index is further
expanded by using one bit to represent the sign of the
Laplacian in the fast Hessian detector and another bit to
represent whether the hash came from the highest or lowest
distinctness scores. This indexing scheme provides a hash
space of 3,624,768 possible hashes.

An example for a 10 dimensional feature vector and an
index made of 3 positions is given in Table 2 to help clarify
the indexing procedure. Here the index keys become the
positions with the 3 highest distinctiveness scores
(highlighted in blue) and the positions with the 3 lowest
distinctiveness scores (highlighted in yellow) sorted
numerically. The first (or high) key is (6, 7, 10) and the
second (or low) key is (4, 5, 8).

As with all approximate nearest neighbor algorithms
there is no guarantee that two points indexed to the same
key truly match. To solve this problem we store a low
dimensional representation of the feature vector along with
the index key and verify an indexed feature vector falls
within a given distance threshold of the query at runtime. To
minimize the storage cost and computational requirements
of this matching, the SURF feature vector is reduced to 8
dimensions using PCA. This indexing scheme is used to
create an inverted index as follows:

Key 1 -> Doc ID -> X, Y coordinates, Orientation, Feature Vector
Key 2 -> Doc ID -> X, Y coordinates, Orientation, Feature Vector

Each index key points to the unique ID for the document

it was computed from and its associated feature vector. The
X and Y coordinates as well as the orientation of the interest
point are stored for geometric filtering discussed in the next
section.

X 1 2 3 4 5 6 7 8 9 10
�	 5 7 3 2 1 9 8 0 6 10
�� 5 5 5 5 5 5 5 5 5 5
�� 1 1 1 1 1 1 1 1 1 1
���� 0 2 -2 -3 -4 4 3 -5 1 5

Table 2: Distinctiveness scores for an example feature vector

136

Figure 1: Graph of the index key frequencies sorted by their rank.

B. Properties of the Index
Figure 1 shows the document frequency of a given hash

for a set of 1000 scanned documents and approximately 7
million interest points. The hashes clearly follow a power
law distribution and this phenomenon has been noticed in
several previous papers using local descriptors [14]. In this
case, the most frequent hashes appear to be associated with
straight lines, which occur very frequently throughout the
dataset. The 1000 indexes with the high frequency are put
on a stop wordlist because these points are not
discriminative and occur several times in most documents.
This removes approximately 20% of the interest points from
the index as well as significantly speeds up query
performance since indexes with the largest number of
entries take the longest time to load from disk.

This indexing scheme is designed to reside on disk. Each
entry in the index is 19 bytes (6 bytes for the document ID, 4
bytes for the X, Y coordinates, 1 byte for the Direction, and
8 bytes for the Feature Vector). Thus an average image with
7000 features, each with 2 entries, requires approximately
266Kb of disk space. Once the high frequency hashes are
removed, this is reduced to 212KB of disk space per image.

IV. FILTERING USING GEOMETRIC CONSTISTENCY
Image retrieval systems built on indexing local

descriptors have traditionally used RANSAC [12] to perform
geometric verification. Others such as [13] have used Hough
transforms for the same purpose because RANSAC
performance degrades if a significant portion of matching
features are outliers. Both of these approaches are designed
to identify a valid 3D pose for object recognition, but are not
necessarily the best fit for document images where
transformations in a 2D plane are of concern.

Since affine transformations are not a concern, a much
simpler 2-step approach is used. The first step takes
advantage of the orientation information provided by interest
points found using the fast hessian detector. The orientation
difference of valid matching points between a logo query and
document image should be relatively constant and equal to

Figure 2: An illustration of the triangle filter.

Figure 3: (a) no filters, (b) orientation filter, (c) triangle filter

the skew between the images. Thus, the orientation of each
query interest point is subtracted from all matching interest
points in the database and normalized to fall within 0 and
360 degrees. For a given image with matching interest
points, a sliding scale of 6 degrees is used. Interest points
that fall within the window with the largest number of
matches are kept and the rest are discarded. In cases of
images with erroneously matched interest points this can
significantly reduce error rate. The sliding window is trivial
in cost and can be programmed on the order of O(n), where
n is the number of matching points. Note how the number of
false matches is significantly reduced in Figure 3b.

The second step uses a stricter filter, but with the tradeoff
that its computational cost is O(n3). Triangles are computed
from all combinations of 3 matching points between the
query and document image. Given paired triangles in the
query and document image, the difference between the
corresponding angles is computed. If the angles differ by 3
degrees, the triangle is ignored. Features that are a part of at
least 2 valid triangles are retained and the final score
returned by this step for ranking results is the number of
matching triangles. Similar approaches have been taken by
[23] and [24]. Figure 2 illustrates this triangle filter. Figure 3
shows how these two filters remove false positives.

To limit the effect of a large number of matches on the
computation of the triangle filter, the 25 matches with the
smallest distances are stored per image before applying the
second filter. To reduce the cost of the triangle filter in a
large scale implementation, one could randomly sample the
set of all triangles. However, in practice we found this
filtering to be nominal in cost because there were rarely more
than 10 erroneous matching points after the first filter was
applied, so all triangles were sampled in our implementation.
While efficiency is always a concern, the filtering can afford
to be more expensive than the feature matching because only
the top results need to be verified and these calculations can
be offloaded onto the client’s machine in an actual system.

Figure 4: 15 sample pages from the Tobacco 800 dataset

137

Figure 5: 5 example query logos

V. EXPERIMENTS

A. Tobacco 800 Dataset

The UMD Tobacco 800 dataset ([9], [10
document/1290 page subset of a CD
document/42 million page dataset received
company lawsuits. All images have been s
format and range in resolution from 150 D
Figure 4 shows how noisy the images can
the binarization. It has become the standard p
work on logos in document images. Groun
the logos were created in ([7], [8]) and on
graphical portion of the logo. The dataset co
logos classes across 435 pages. Only logos
more occurrences are used as query
experiments. In our experiments we resize
have a greatest dimension of 2000 pixels
reduce the number of features generated
higher resolution.

B. Evaluation Metrics
Average precision is a standard metric

retrieval that combines precision and recall
can be calculated by Equation 3 where n i
results, P(k) is the precision at rank k, rel(k)
relevant and 0 otherwise, and R is the num
documents in the dataset:

 ���
��������� �
� �����

�
 !" #$

%
The score reported in the results for a giv

mean average precision (MAP) which is
average precision scores across all queries.
disproportionately represented in this data
score is also computed by taking the av
classes as well as all queries. Queries are su
of the ground truth logos provided by [7]
pages of the Tobacco 800 dataset. Example
can be seen in Figure 5.

VI. RESULTS

A. Results on the Tobacco 800 dataset
The following 3 configurations of the sy

and results are in Table 3: Brute force se
search with geometric verification, index
without geometric verification.

The results using the graphical logo a
than expected. A close inspection of the res
the system was operating with high precisi
logos, but noisy logos that were heavily
binarization or small logos that comprised o
of the entire page for which very few feature
had very low recall. One positive result from

0], [11]) is an 800
DIP 7 million
from the tobacco
canned in binary
DPI to 300 DPI.
be as a result of
public dataset for

nd truth labels of
nly consist of the
ontains 35 unique
classes with 2 or
images in our

e each image be
s or 180 DPI to
for images with

c in information
into one score. It
is the number of
) is 1 if result k is
mber of relevant

$&���
 (3)

ven system is the
the mean of the
A few logos are

aset so the MAP
verage across all
ubmitted for each
against all 1290

es of these logos

ystem were tested
earching, indexed
xed search with

alone were lower
sults showed that
ion for all of the
impacted by the

of a small portion
es were extracted

m this data was

System MAP per l
Brute force .67
Index with geometric
verification

.57

Index without
geometric verification

.35

Table 3: Results on the tobacco 800

that there was only a 10-14% d
between the brute force query and
of this loss was due to a loss in rec
points. Another positive result from
geometric verification significantly
increasing the MAP by 17-22%. Th
increase in precision.

B. What is a logo?
The logo queries chosen from

omit contextual text from the logo w
test set to graphical objects. How
logo there is almost always uniqu
text blocks adjacent to the logo that
a query image to boost performanc
is more consistent, prominent and
Three more image queries are ru
dataset using the indexed search wi
to compare how the contextual te
affects performance: Logo alone, T
The logos are reused from the prior
and Logo + Text images are man
page containing logo. The MAP p
logo class are again used as m
Examples of the Logo, Text, and L
be found in Figure 6.

 The results in Table 4 show a
gained by combining the textual an
indicate that graphical objects shou
its surrounding context when perfo
document images. For some docum
most distinctive features and for oth
the logos is more distinctive. By
image query algorithm benefits from
and more descriptors. Since this the
high precision the additional text de
many more false positives. One ex
Morris” text image, which found
images that contained the words but

Logo Text

Figure 6: Examples of the text context f

ogo MAP per query
.59
.45

.28

0 dataset for graphical logos

drop in the MAP score
the indexed query. Most

call from fewer matching
m this data was that the
improved the results by

his was largely due to the

the ground truth of [7]
when possible to limit the
ever, in reality for each
uely identifying titles or
t could be used as part of
e. In many cases the text

d distinct then the logo.
un on the Tobacco 800
ith geometric verification
ext surrounding the logo
Text alone, Logo + Text.
r experiment and the Text
nually extracted for each
per query and MAP per

metrics for performance.
Logo + Text images can

significant improvement
nd logo information and
uld not be isolated from
orming logo retrieval on
ments, logos contain the
hers, the text surrounding
combining the two, the

m have more information
e algorithm operates with
escriptors do not result in
xception was the “Philip
several other document

t not the logos.

Logo + text

found with logos

138

System MAP Score per
logo class

MAP Score per
query

Logo only .57 .45
Text only .56 .63
Logo + text .87 .88

Table 4: Results for graphical and text logos

C. Efficiency tests
20 logo queries were run on datasets comprised of 10,

100, 1290, 10875,108993 images to measure the impact of
an increasing database size on query performance. The
features for each of these datasets were indexed and
geometric verification was performed for the top 100 results.
The query images had about 500 features and required about
1000 database lookups per query. The query performance
was tested on a single 2.67 GHZ CPU with the index
residing in memory, on a solid state drive (SSD), and on a
traditional 5400 RPM hard drive to measure how different
architectures effected performance using. The Linux disk
cache was cleared prior to each query to ensure that the
results were not skewed by the operating system. Code
optimizations and system configurations could possibly
further improve these results. The results are shown in Table
5 and do not include a constant time of 500 ms required to
start the program and extract features from the query image.
The brute force search took approximately 45 minutes for 1
query to run on 1290 images and clearly could not scale to a
large dataset so it was not rerun for each of these datasets.

As expected, the results show that storing the index in
memory is the most efficient. Given the high cost of
memory, however, it is unlikely to be used in a large scale
implementation. The hard disk was expected to have the
worst performance because of the 10 ms random seek time.
The index was laid out on disk sequentially and accessed in
sorted order to minimize the number of disk rotation and
head movements to achieve better then random seek times.
The SSD used in this experiment had a random seek time of
.2 ms and was thus expected to significantly outperform the
hard disk. However, it appears to only be about 4X faster on
the largest dataset, making it hard to justify its higher cost.
Given these results it appears that the best approach to
scaling would be to distribute the database across many
traditional hard drives to reduce the cost of disk seek time in
order to allow the database to scale to millions of images.

Average query time (ms)

of Images # of features Disk SSD Memory
10 58501 53.9 27.5 5.3

100 577019 277.6 117.1 7.1
1290 7382701 2059.4 190.7 16.4

10887 66165019 3775.8 496.5 77.5
108993 663512013 8661.4 2894.2 751.9

Table 5: Query performance

VII. CONCLUSION
The results clearly demonstrate the effectiveness of

SURF features for logo retrieval in document images. The
indexing scheme used for this paper is shown to greatly
improve efficiency, while only moderately impacting the

accuracy of the SURF features. The retrieval results when
combining the logos with its textual context performs at the
state of the art for the tobacco 800 dataset. For future
research we hope to expand this algorithm to the full 7
million tobacco image corpus and compare the performance
of image retrieval to OCR.

REFERENCES
[1] Y. Ke, R. Sukthankar, and L. Huston. Ef�cient near-duplicate

detection and sub-image retrieval. In ACM Multimedia, 2004
[2] M. Rusinol and J. Llados. Logo spotting by a bag-of-words approach

for document categorization. ICDAR, 111–115. 2009.
[3] H. Bay, A. Ess, Tinne Tuytelaars, Luc J. Van Gool, SURF: Speeded

up robust features, CVIU, pp 346-359,
[4] J. Beis, and D. Lowe, “Shape indexing using approximate nearest-

neighbour search in high-dimensional spaces” CVPR, pp. 1000–1006,
1997,

[5] A. Andoni and P. Indyk. "Near-Optimal Hashing Algorithms for Near
Neighbor Problem in High Dimensions". FOCS, 2006.

[6] Auclair, A. Vincent, N. Cohen, L.D. Hash functions for near
duplicate image retrieval. WACV 2009. Pages 1-6.

[7] G. Zhu, Y, Zheng, D. Doermann,and S. Jaeger. Multi-scale Structural
Saliency for Signature Detection. CVPR, pp. 1'8, 2007.

[8] Guangyu Zhu and David Doermann. Automatic Document Logo
Detection. ICDAR, pp. 864'868, 2007.

[9] D. Lewis, G. Agam, S. Argamon, O. Frieder, D. Grossman, and J.
Heard, “Building a test collection for complex document information
processing,” SIGIR, pp. 665–666, 2006.

[10] G. Agam, S. Argamon, O. Frieder, D. Grossman, and D. Lewis, The
Complex Document Image Processing (CDIP) test collection project,
IIT 2006. http://ir.iit.edu/projects/CDIP.html.

[11] The Legacy Tobacco Document Library (LTDL), University of
California, San Francisco, 2007.http://legacy.library.ucsf.edu/.

[12] M. Fischler and R. Bolles. “Random sample consensus: a paradigm
for model fitting with applications to image analysis and automated
cartography”. Communications of the ACM, 24(6), June 1981.

[13] D. Lowe, Distinctive image features from scale-invariant keypoints,
IJCV 60 (2) (2004) 91–110.

[14] O. Chum, J. Philbin, and A. Zisserman. Near duplicate image
detection: min-hash and tf-idf weighting. In Proc. BMVC., 2008.

[15] J. Philbin et al.. Lost in quanti-zation: Improving particular object
retrieval in large scale image databases.In CVPR, 2008.

[16] G. Zhu and D. Doermann. Logo matching for document image
retrieval. In ICDAR ’09, pages 606–610, 2009.

[17] H. Wang and Y. Chen. Logo detection in document images based on
boundary extension of feature rectangles. ICDAR, p. 1335–39, 2009.

[18] Z. Li, M. Schulte-Austum, and M. Neschen. Fast Logo Detection
and Recognition in Document Images. ICPR , pages 2716 – 19, 2010

[19] M. Rusiñol, D. Aldavert, R. Toledo and J. Lladós Browsing
Heterogeneous Document Collections by a Segmentation-free Word
Spotting Method. ICDAR, pages 63-67. 2011.

[20] M. Rusiñol and J. Lladós. Efficient Logo Retrieval Through Hashing
Shape Context Descriptors. DAS 2010, pages 215-222.

[21] Baeza-Yates and R. Ribiero-Neto. Modern Information Retrieval.
Addison-Wesley, Longman, Boston, Mass, 1999.

[22] R. Bellman, Dynamic Programming, Princeton University. Press,
Princeton, NJ, 1957.

[23] T. Nakai, K. Kise, and M. Iwamura, “Use of affine invariants in
locally likely arrangement hashingfor camera-based document image
retrieval”, DAS, vol. 3872, pp.541–552, 2006.

[24] X. Liu and D. Doermann. Mobile retriever - finding documentwith a
snapshot. CBDAR. , pages 29–34, 2007.

139

