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Abstract—This paper presents a scalable algorithm for 
segmentation free logo retrieval in document images.  The 
contributions include the use of the SURF feature for logo 
retrieval, a novel indexing algorithm for efficient retrieval and 
a method to filter results using the orientation of local features 
and geometric constraints. Results demonstrate that logo 
retrieval can be performed with high accuracy and efficiently 
scaled to a large datasets.  
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I.  INTRODUCTION 
The most common information retrieval framework used 

for document images continues to be based on indexing text 
obtained from optical character recognition (OCR). 
However, two major drawbacks of OCR are that it cannot 
process graphical objects and is unable to accurately handle 
unique or unusual fonts. One of the most important and 
common graphical objects present in document image 
datasets are logos. They are prevalent on a number of 
document image genres including memos, letters, and 
official documents and can be used to identify organizations 
or symbols of interest on the page. 

There are many challenges associated with performing 
efficient and accurate logo retrieval in document images. 
First, documents are often binary images that preclude many 
texture based features. Second, the binarization of the images 
adds noise that can distort the original logo. Third, scanned 
document images are typically high resolution images 
ranging from 2 to 5 megapixels and logos can be comprised 
of less than 1% of the document’s surface areas. Fourth, all 
of the current approaches rely heavily on training on the 
logos of interest. In a typical retrieval scenario, however, the 
logos being queried for are not known ahead of time.  

In recent years, there have been a number of papers about 
the related topics of logo detection, recognition, and retrieval 
for document images.  Given a document image, logo 
detection can be defined as the problem of finding a logo’s 
boundary on the page without regard to class. Logo 
recognition (or matching) on the other hand is the problem of 
determining which class a given logo belongs to. Logo 
retrieval can be viewed as a combination of the two 
problems where one wants to simultaneously detect and 
recognize a logo across a dataset given some query image. 

Logo detection was recently explored by [16], [17] and 
[18]. In [16], Zhu detects logos on a page using connected 
component features and a Fisher classifier. Wang uses a 
decision tree to grow rectangle boundaries around candidate 
logos in [17].  In [18], Li uses local descriptors found using 
difference of Gaussians and described using connected 
component features to detect logos. A comparison of their 
work is shown in Table 1 on the Tobacco 800 dataset. 

In [20], Rusinol explores efficient logo retrieval on logos 

Approach Training Images Recall Precision Speed  
Zhu [16] 50 84.2% 73.5% 680 ms 
Wang [17] 100 80.4% 93.3% - 
Li [18] 50 86.5% 99.4% 340 ms 

Table 1: Logo detection scores 
 

by indexing shape context descriptors. He achieves 82.6 
mean average precision (MAP) on the Tobacco 800 dataset. 
Zhu extends his detection work in [8] to build a retrieval 
system and performs recognition by matching local shape 
context descriptors. He reports a MAP score of 82.6%. The 
closest work to ours has been done by Rusinol [2], which 
performs logo retrieval using a bag of SIFT features. He 
reports a true positive rate of 90.2 % and a false positive rate 
of 1%, but the experiments are done on a different dataset 
that is not publically available making direct comparison 
difficult. 

The main goal of this work is to design a retrieval 
algorithm that scales to a million image corpora without 
training on logos of interest. An ideal solution would be to 
index features extracted from a document as we do with 
words in text retrieval [21]. Unfortunately image features 
are often high dimensional and exact indexing remains an 
open research challenge due to the “Curse of 
Dimensionality”, which causes traditional indexing 
approaches to perform worse than linear search on high 
dimensional data [22]. A number of researchers have used 
approximate nearest neighbor techniques such as KD-trees 
[4] and locality sensitivity hashing (LSH) [5] to try and 
address this problem, but they do not scale to large corpora 
where each local feature is indexed independently because 
they work best when stored in memory. Others such as [2] 
use a bag of features framework by assigning each feature 
vector a codeword. This method also begins to degrade as 
the vocabulary size grows because of the hard quantization 
when assigning code words with high dimensional data 
[15]. We instead chose an approach that indexes feature 
vectors that are distinct along the same dimensions together. 

The paper is laid out as follows: Section II discusses our 
use of SURF features, section III explains indexing of these 
features, section IV covers geometric filtering used to 
improve retrieval performance, section V describes the 
experiments and section VI analyzes the results. 

II. FEATURE EXTRACTION 
Our use of local descriptors was motivated by the work 

of Ke, Sukthankar, and Huston [1], which showed excellent 
results for the near duplicate image retrieval problem when 
using the SIFT descriptor. One can imagine logo retrieval in 
document images as an extension of the near duplicate image 
retrieval problem in computer vision, where one wishes to 

2012 10th IAPR International Workshop on Document Analysis Systems

978-0-7695-4661-2 2012

U.S. Government Work Not Protected by U.S. Copyright

DOI 10.1109/DAS.2012.54

135



find all similar images that could have been created from 
simple image transformations such as cropping, scaling, or 
rotating. Thus local features that are scale and rotation 
invariant are desirable for logo retrieval because of their 
ability to match sub sections of images with these 
transformations. Large affine translations are not a concern 
for logo retrieval in this work since document images are 
generally created by scanning on a flat surface. We were 
further encouraged by the work of Rusinol and Llados [2], 
which used SIFT features in a bag of features framework to 
spot logos in binary scanned document images.   

We chose the Fast Hessian interest point detector for this 
paper because the work in [3] shows that it outperforms the 
Difference of Gaussian and Harris-Laplace interest point 
detectors while being three times faster to compute per 
image. The SURF descriptor was chosen instead of the SIFT 
descriptor because [3] showed that it is more resilient to 
noise, which often occurs from the binarization process.  

The SURF descriptor for a given patch is calculated by 
first equally subdividing a given patch into a 4x4 grid. For 
each subsection, the Haar wavelet response Dx and Dy are 
computed in the x and y directions respectively. The original 
SURF descriptor calculates the following 4 attributes ( Dx, 

Dy,  |Dx|, |Dy| ) per interest point. However, the first 
2 features Dx and Dy contain very little information in 
binary images. Hence they are excluded to form a more 
compact 32 dimensional feature vector, which is ¼ the size 
of the SIFT descriptor, without any loss in accuracy. 

To build a naïve retrieval system using these descriptors 
one would first extract and store SURF features from each 
document image offline. Then at query time one would 
extract SURF features from the logo, perform a pairwise 
comparison between all the features extracted from the 
document and the logo, and then choose the document with 
the most matches. We will refer to this approach as the brute 
force method. Given that on average 7000 features are 
extracted from each document, 500 features are extracted 
from each logo, and 32 calculations are required for each 
feature comparison, it becomes quickly apparent that this 
approach will not scale to large datasets due to its 
computational requirements. 

III. FEATURE INDEXING 

A. Generating Index Keys 
In this paper we explore a method motivated by a 

recently proposed indexing technique for near duplicate 
images [6], which attempts to groups feature vectors that are 
distinct along the same dimensions together. They define the 
distinctiveness  D for a given feature vector v as: 
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Where ��
 and �� are the mean and standard deviation for 

the distribution of position i over the feature vector. We 
found that the method proposed in that paper did not 
perform well because the equation they use to quantify the 
distinctiveness was rewarding, instead of penalizing, 

dimensions with high variance and the direction of the 
distinctiveness is lost by taking the absolute value. We 
propose an alternative distinctiveness measure using the Z-
score from statistics as follows: 
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Both ��
and ��  are computed offline for each of the 32 

dimensions in the SURF feature vector using features 
extracted from randomly selected documents in the CDIP 
collection. We then create 2 index keys for each feature 
vector by taking the 6 positions with the highest 
distinctiveness and the 6 positions with the lowest 
distinctiveness score and sorting the values numerically. 
Note there are 3 times fewer index keys than the 6 required 
for the algorithm presented in [6]. The index is further 
expanded by using one bit to represent the sign of the 
Laplacian in the fast Hessian detector and another bit to 
represent whether the hash came from the highest or lowest 
distinctness scores. This indexing scheme provides a hash 
space of 3,624,768 possible hashes. 

An example for a 10 dimensional feature vector and an 
index made of 3 positions is given in Table 2 to help clarify 
the indexing procedure. Here the index keys become the 
positions with the 3 highest distinctiveness scores 
(highlighted in blue) and the positions with the 3 lowest 
distinctiveness scores (highlighted in yellow) sorted 
numerically. The first (or high) key is (6, 7, 10) and the 
second (or low) key is (4, 5, 8). 

As with all approximate nearest neighbor algorithms 
there is no guarantee that two points indexed to the same 
key truly match.  To solve this problem we store a low 
dimensional representation of the feature vector along with 
the index key and verify an indexed feature vector falls 
within a given distance threshold of the query at runtime. To 
minimize the storage cost and computational requirements 
of this matching, the SURF feature vector is reduced to 8 
dimensions using PCA. This indexing scheme is used to 
create an inverted index as follows: 

 
Key 1 -> Doc ID -> X, Y coordinates, Orientation, Feature Vector 
Key 2 -> Doc ID -> X, Y coordinates, Orientation, Feature Vector 

 
Each index key points to the unique ID for the document 

it was computed from and its associated feature vector. The 
X and Y coordinates as well as the orientation of the interest 
point are stored for geometric filtering discussed in the next 
section.   

 
X 1 2 3 4 5 6 7 8 9 10 
�	  5 7 3 2 1 9 8 0 6 10 
��  5 5 5 5 5 5 5 5 5 5 
�� 1 1 1 1 1 1 1 1 1 1 
���� 0 2 -2 -3 -4 4 3 -5 1 5 

Table 2: Distinctiveness scores for an example feature vector 
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Figure 1: Graph of the index key frequencies sorted by their rank. 

B. Properties of the Index 
Figure 1 shows the document frequency of a given hash 

for a set of 1000 scanned documents and approximately 7 
million interest points. The hashes clearly follow a power 
law distribution and this phenomenon has been noticed in 
several previous papers using local descriptors [14]. In this 
case, the most frequent hashes appear to be associated with 
straight lines, which occur very frequently throughout the 
dataset. The 1000 indexes with the high frequency are put 
on a stop wordlist because these points are not 
discriminative and occur several times in most documents. 
This removes approximately 20% of the interest points from 
the index as well as significantly speeds up query 
performance since indexes with the largest number of 
entries take the longest time to load from disk. 

This indexing scheme is designed to reside on disk. Each 
entry in the index is 19 bytes (6 bytes for the document ID, 4 
bytes for the X, Y coordinates, 1 byte for the Direction, and 
8 bytes for the Feature Vector). Thus an average image with 
7000 features, each with 2 entries, requires approximately 
266Kb of disk space. Once the high frequency hashes are 
removed, this is reduced to 212KB of disk space per image.  

IV. FILTERING USING GEOMETRIC CONSTISTENCY 
Image retrieval systems built on indexing local 

descriptors have traditionally used RANSAC [12] to perform 
geometric verification. Others such as [13] have used Hough 
transforms for the same purpose because RANSAC 
performance degrades if a significant portion of matching 
features are outliers. Both of these approaches are designed 
to identify a valid 3D pose for object recognition, but are not 
necessarily the best fit for document images where 
transformations in a 2D plane are of concern.  

Since affine transformations are not a concern, a much 
simpler 2-step approach is used. The first step takes 
advantage of the orientation information provided by interest 
points found using the fast hessian detector. The orientation 
difference of valid matching points between a logo query and 
document image should be relatively constant and equal to 

 
Figure 2: An illustration of the triangle filter. 

 

     
Figure 3: (a) no filters, (b) orientation filter, (c) triangle filter  
 

the skew between the images. Thus, the orientation of each 
query interest point is subtracted from all matching interest 
points in the database and normalized to fall within 0 and 
360 degrees. For a given image with matching interest 
points, a sliding scale of 6 degrees is used. Interest points 
that fall within the window with the largest number of 
matches are kept and the rest are discarded. In cases of 
images with erroneously matched interest points this can 
significantly reduce error rate. The sliding window is trivial 
in cost and can be programmed on the order of O(n), where 
n is the number of matching points. Note how the number of 
false matches is significantly reduced in Figure 3b. 

The second step uses a stricter filter, but with the tradeoff 
that its computational cost is O(n3). Triangles are computed 
from all combinations of 3 matching points between the 
query and document image. Given paired triangles in the 
query and document image, the difference between the 
corresponding angles is computed. If the angles differ by 3 
degrees, the triangle is ignored. Features that are a part of at 
least 2 valid triangles are retained and the final score 
returned by this step for ranking results is the number of 
matching triangles. Similar approaches have been taken by 
[23] and [24]. Figure 2 illustrates this triangle filter. Figure 3 
shows how these two filters remove false positives.  

To limit the effect of a large number of matches on the 
computation of the triangle filter, the 25 matches with the 
smallest distances are stored per image before applying the 
second filter. To reduce the cost of the triangle filter in a 
large scale implementation, one could randomly sample the 
set of all triangles. However, in practice we found this 
filtering to be nominal in cost because there were rarely more 
than 10 erroneous matching points after the first filter was 
applied, so all triangles were sampled in our implementation. 
While efficiency is always a concern, the filtering can afford 
to be more expensive than the feature matching because only 
the top results need to be verified and these calculations can 
be offloaded onto the client’s machine in an actual system. 
 

 
Figure 4: 15 sample pages from the Tobacco 800 dataset 
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Figure 5: 5 example query logos 

V. EXPERIMENTS 

A. Tobacco 800 Dataset 
 

The UMD Tobacco 800 dataset ([9], [10
document/1290 page subset of a CD
document/42 million page dataset received 
company lawsuits. All images have been s
format and range in resolution from 150 D
Figure 4 shows how noisy the images can 
the binarization. It has become the standard p
work on logos in document images. Groun
the logos were created in ([7], [8]) and on
graphical portion of the logo. The dataset co
logos classes across 435 pages. Only logos 
more occurrences are used as query 
experiments. In our experiments we resize
have a greatest dimension of 2000 pixels
reduce the number of features generated 
higher resolution.  

B. Evaluation Metrics 
Average precision is a standard metric

retrieval that combines precision and recall 
can be calculated by Equation 3 where n i
results, P(k) is the precision at rank k, rel(k)
relevant and 0 otherwise, and R is the num
documents in the dataset: 

 ���
��������� �
� �����
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The score reported in the results for a giv

mean average precision (MAP) which is 
average precision scores across all queries. 
disproportionately represented in this data
score is also computed by taking the av
classes as well as all queries. Queries are su
of the ground truth logos provided by [7] 
pages of the Tobacco 800 dataset. Example
can be seen in Figure 5. 

VI. RESULTS 

A. Results on the Tobacco 800 dataset 
The following 3 configurations of the sy

and results are in Table 3: Brute force se
search with geometric verification, index
without geometric verification. 

The results using the graphical logo a
than expected. A close inspection of the res
the system was operating with high precisi
logos, but noisy logos that were heavily 
binarization or small logos that comprised o
of the entire page for which very few feature
had very low recall. One positive result from

       

0], [11]) is an 800 
DIP 7 million 
from the tobacco 
canned in binary 
DPI to 300 DPI. 
be as a result of 
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e each image be 
s or 180 DPI to 
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ven system is the 
the mean of the 
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aset so the MAP 
verage across all 
ubmitted for each 
against all 1290 
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impacted by the 

of a small portion 
es were extracted 

m this data was  

System MAP  per l
Brute force .67
Index with geometric 
verification

.57

Index without 
geometric verification

.35

Table 3: Results on the tobacco 800
 

that there was only a 10-14% d
between the brute force query and 
of this loss was due to a loss in rec
points. Another positive result from
geometric verification significantly 
increasing the MAP by 17-22%. Th
increase in precision. 

B. What is a logo? 
The logo queries chosen from 

omit contextual text from the logo w
test set to graphical objects. How
logo there is almost always uniqu
text blocks adjacent to the logo that
a query image to boost performanc
is more consistent, prominent and
Three more image queries are ru
dataset using the indexed search wi
to compare how the contextual te
affects performance: Logo alone, T
The logos are reused from the prior
and Logo + Text images are man
page containing logo. The MAP p
logo class are again used as m
Examples of the Logo, Text, and L
be found in Figure 6.  

    The results in Table 4 show a 
gained by combining the textual an
indicate that graphical objects shou
its surrounding context when perfo
document images. For some docum
most distinctive features and for oth
the logos is more distinctive. By 
image query algorithm benefits from
and more descriptors. Since this the
high precision the additional text de
many more false positives. One ex
Morris” text image, which found 
images that contained the words but
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System MAP Score per 
logo class 

MAP Score per 
query 

Logo only .57 .45 
Text only .56 .63 
Logo + text .87 .88 

Table 4: Results for graphical and text logos 

C. Efficiency tests 
20 logo queries were run on datasets comprised of 10, 

100, 1290, 10875,108993 images to measure the impact of 
an increasing database size on query performance. The 
features for each of these datasets were indexed and 
geometric verification was performed for the top 100 results. 
The query images had about 500 features and required about 
1000 database lookups per query. The query performance 
was tested on a single 2.67 GHZ CPU with the index 
residing in memory, on a solid state drive (SSD), and on a 
traditional 5400 RPM hard drive to measure how different 
architectures effected performance using. The Linux disk 
cache was cleared prior to each query to ensure that the 
results were not skewed by the operating system. Code 
optimizations and system configurations could possibly 
further improve these results.  The results are shown in Table 
5 and do not include a constant time of 500 ms required to 
start the program and extract features from the query image. 
The brute force search took approximately 45 minutes for 1 
query to run on 1290 images and clearly could not scale to a 
large dataset so it was not rerun for each of these datasets.   

As expected, the results show that storing the index in 
memory is the most efficient. Given the high cost of 
memory, however, it is unlikely to be used in a large scale 
implementation. The hard disk was expected to have the 
worst performance because of the 10 ms random seek time. 
The index was laid out on disk sequentially and accessed in 
sorted order to minimize the number of disk rotation and 
head movements to achieve better then random seek times. 
The SSD used in this experiment had a random seek time of 
.2 ms and was thus expected to significantly outperform the 
hard disk. However, it appears to only be about 4X faster on 
the largest dataset, making it hard to justify its higher cost. 
Given these results it appears that the best approach to 
scaling would be to distribute the database across many 
traditional hard drives to reduce the cost of disk seek time in 
order to allow the database to scale to millions of images. 

 
Average query time (ms) 

# of Images # of features Disk SSD Memory 
10 58501 53.9 27.5 5.3 

100 577019 277.6 117.1 7.1 
1290 7382701 2059.4 190.7 16.4 

10887 66165019 3775.8 496.5 77.5 
108993 663512013 8661.4 2894.2 751.9 

Table 5: Query performance 

VII. CONCLUSION 
The results clearly demonstrate the effectiveness of 

SURF features for logo retrieval in document images. The 
indexing scheme used for this paper is shown to greatly 
improve efficiency, while only moderately impacting the 

accuracy of the SURF features. The retrieval results when 
combining the logos with its textual context performs at the 
state of the art for the tobacco 800 dataset. For future 
research we hope to expand this algorithm to the full 7 
million tobacco image corpus and compare the performance 
of image retrieval to OCR.  
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