
Offline Handwritten English Character Recognition
based on Convolutional Neural Network

Aiquan Yuan, Gang Bai, Lijing Jiao, Yajie Liu

College of Information Technical Science
Nankai University

Tianjin City, China
{yuanaiquan123, jiaolijing0612, liuyajie1988}@mail.nankai.edu.cn, baigang@nankai.edu.cn

Abstract—This paper applies Convolutional Neural
Networks (CNNs) for offline handwritten English character
recognition. We use a modified LeNet-5 CNN model, with
special settings of the number of neurons in each layer and
the connecting way between some layers. Outputs of the CNN
are set with error-correcting codes, thus the CNN has the
ability to reject recognition results. For training of the CNN,
an error-samples-based reinforcement learning strategy is
developed. Experiments are evaluated on UNIPEN lowercase
and uppercase datasets, with recognition rates of 93.7% for
uppercase and 90.2% for lowercase, respectively.
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I. INTRODUCTION

Handwritten English Character Recognition (HECR) has

been a fairly challenging research topic in Optical Character

Recognition (OCR). Up to now, there have been lots of

fruitful researches for HECR [1][2][3][4]. However, most of

them are carried out with online information, or with online

and offline hybrid classifier; researches with pure offline

information are rare [1][2][4][5][6]. As handwritten char-

acters are unconstrained and topologically diverse, HECR

with pure offline information has much difficulty.
In 1995, Convolutional Neural Networks (CNNs) was

brought about by LeCun and caused huge attention imme-

diately [7]. In a CNN recognition system, 2-D image can

be directly input and feature extraction is thus avoided.

Many experiments with the CNN have seen moderately

good performance. However, until now, most researches with

CNNs are for handwritten digits [8][9][10][11], handwritten

words [12] (used to score the segments of words with com-

bination of HMMs), or printed character recognition [13].

We have not seen many applications for pure offline HECR

with CNN.
This paper focuses mainly on offline HECR on UNIPEN

dataset [14], with 26 characters for uppercase and lowercase,

respectively. Section II shows the common LeNet-5 model of

CNNs and the modifications we make on it. A training strat-

egy based on reinforcement of error-samples are described

in section III. Experiments and discussions are provided in

section IV.

II. CONVOLUTIONAL NEURAL NETWORK

A. Basic Architecture of LeNet-5

A common model of CNNs is the LeNet-5 model [8],

as shown in Figure 1. Each unit in the LeNet-5 model is

connected to a local neighborhood in the previous layer, thus

it can be seen as a local feature detector. Insensitivity to local

transformations is built into the network architecture and the

same features on different parts of the input are detected.

The outputs of the units in the same position in different

feature maps can be thought as a feature vector of the

same area. Increasingly complicated features are extracted

by neurons in the successive layers. Because of weight-

sharing, the number of free parameters in the system is

greatly reduced. CNN produces an output vector in every

layer. Each dimension in the output vector detects features

from different parts of feature maps in the previous layer.

Figure 1. The basic architecture of LeNet-5

Layer S1 (input layer) is an image of size 32× 32. Layer

C2 is the first convolutional layer with 6 feature maps of size

28×28. Each unit of each feature map is connected to a 5×5
neighborhood of the input in layer S1. Layer S3 is the second

subsampling layer with 6 feature maps of size 14×14. Each

unit in each feature map is connected to a 2×2 neighborhood

in the corresponding feature map in layer C2. Layer C4 is

the second convolutional layer with 16 feature maps of size

10×10. The connection way between layer S3 and layer C4

takes much importance for the feature formation [15]. Layer

S5 is the third subsampling layer with 16 feature maps of

size 5×5. Layer C6 is the third convolutional layer with 120
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feature maps of size 1 × 1. Each feature map is connected

to all 16 feature maps of layer S5. Layer F7 contains 130
units and is fully connected to layer C6. Finally, layer F8

(the output layer) is composed of Euclidean RBF units and

is fully connected to layer F7 [15].

B. Configuration of LeNet-5

The CNN model used in this paper is modified LeNet-5.

We try various modifications based on the basic architecture

of LeNet-5, to attain a tradeoff between time-cost and

recognition performance. First, we change the number of

neurons in each layer of a CNN, thus different models

are made, as shown in Table III. Detailed comparisons and

discussions of their performance in HECR are demonstrated

in section IV.

Moreover, in the original LeNet-5 model, connecting way

between layer C2 and layer C4 (between layer S3 and layer

C4 actually) is asymmetrical [15]. This can assure different

feature maps in layer C4 to get different sets of features from

layer C2. However, this asymmetrical connecting way will

lead to two subsequent problems. First, parameters of CNN

may be updated in different levels. Secondly, from layer C2

to layer C4, some feature maps will get less information

than others. This means that, more feature information will

be lost by some feature maps. Although the loss of features

also depends on the parameters between layer C2 and layer

C4, this asymmetrical connecting map caused the loss.

Therefore, a new symmetrical connecting way is developed,

as shown in Table II. In the new symmetrical map, each

feature map in layer C4 connects to more feature maps in

layer C2, considering the redundance of features and the

time cost.

It is crucial to normalize the input images. In our ex-

periments, we extend the pixels of an input image with

three sizes: 20 × 20, 28 × 28 and 32 × 32, when the

left parts of the input are padded with the background

value. In features’ feed-forward propagation, the CNN with

32×32-normalization and 28×28-normalization lose infor-

mation more easily and quickly than the one with 20× 20-

normalization [15]. After the same training iterations, errors

for 20 × 20-normalized dataset is the lowest, as shown in

Figure 2.

III. ERROR-SAMPLES-REINFORCEMENT-LEARNING

During CNN’s training, we usually face two problems.

First, comparing with traditional back-propagation network

(BPN), training of the CNN is time-consuming, for a CNN

has tens of thousands of parameters to update. Meanwhile,

feature extraction by convolution produces a large quantity

of mathematical calculations. The second problem is, after

certain epoches, error descends very slowly, or does not

descend any more, while it is still unacceptable. Solution

for the first problem depends mostly on the design of the

CNN. But for the second one, dynamic adjustments of
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Figure 2. Comparison of Errors among Different Input Normalizations

training parameters may help much. After certain epoches,

the number of the misclassified samples (error-samples)

will reduce very slowly. One reason may be that, the ratio

of the error-samples in the train set may be too low to

cause observable impacts on the CNN. The CNN may learn

faster, if we reconstruct the train set dynamically, in which

the ratio of the error-samples is increased. Therefore, an

Error-Samples-Reinforcement-Learning algorithm (ESRL) is

developed, as shown in Table I.

Table I
ERROR-SAMPLES-REINFORCEMENT-LEARNING ALGORITHM

Step 1 Get the CNN’s initial error rate ε on the validation set;
Step 2 For each batch i of epoches, do step 3 to step 8 :

Step 3

(1) Get current error rate δi on the validation set;

(2) if
δi + δi−1 + δi−2

3
> ε ∗ θ

break;
(3) ε = δi−2;

Step 4 For each epoch j in batch i :
Train the CNN on current train set;

Step 5
(1) Update the learning rate η;
(2) if η < min(η)

η = η ∗ ξ (or η = η + ξ);
Step 6 (1) Test current CNN on the original train set;

(2) Select out error-samples and well-recognized-samples;
Step 7 Regenerate new samples based on error-samples;

Step 8
Combine new samples and well-recognized-samples, and
adjust their ratios in the new train set.

A important rule to stop the training can be seen in step

3. Except when overfit occurs or η is dynamically increased

(in Figure 3, η is increased at the epoch of 8, 18, 28, 38
and 48.), if error rate ascends abnormally, training process

should be terminated. θ in is set with 1.1.

Dynamic update of the learning rate η is crucial, as in step

5. If η is too great, the error rate may ascend rather than

descend, while a too small η may lead to the local optimum

for the CNN. In our experiments, η ranges from 10−3 to

10−5 and is multiplied by 0.95 every two epoches during

training. If η is smaller than the lower limit allowed, η will

be increased to a greater level. This increase takes place in

two ways: multiply or add to it with ξ. Impacts of dynamic

regulation of η can be seen in Figure 3. When η increases

to a higher level, error rate ascends at the same time, cause
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Table II
NEW SYMMETRICAL CONNECTING WAY BETWEEN LAYER C2 AND LAYER C4

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

feature maps
in

layer C2 (S3)

1 0 1 1 1 0 1 1 1 1 1 1 0 1 1 1 0
2 1 0 1 0 1 0 1 1 1 1 0 1 0 1 0 1
3 1 1 0 1 1 1 0 1 1 0 1 1 1 0 1 1
4 1 1 0 1 1 1 0 1 1 0 1 1 1 0 1 1
5 1 0 1 0 1 0 1 1 1 1 0 1 0 1 0 1
6 0 1 1 1 0 1 1 1 1 1 1 0 1 1 1 0

severe update of parameters for the CNN is unavoidable.

However, this also leads the CNN to step out from the local

optimum point and learn better. In our experiments, η is

multiplied by ξ to increase, and ξ is set with 10.
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Figure 3. Error rates with η dynamically regulated

In step 7, new samples are regenerated from the error-
samples. They are regenerated mainly through geometric

transformation and noise addition. First, an original image

is rotated and distorted. Then a gaussian noise is added and

smoothness for it is followed. A key point is the ratio of the

new regenerated samples in the new train set, which is kept

between 33% ∼ 40% by dynamic adjustment. When actual

ratio of error-samples is lower than 33%, more samples

are generated and added into the new train set, or some

of well-recognized-samples are randomly removed. The size

of new train set is the same with that of the original train

set. Performance of the CNN on the validation set can be

seen in Figure 4. New train set is reconstructed at the epoch

of 6 and 16.
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Figure 4. Error rates with dataset dynamically reconstructed

IV. EXPERIMENTS AND DISCUSSIONS

Experiments are based on 1b (uppercase) and 1c (low-

ercase) section of UNIPEN Train-R01/V07 database. These

two sections contain 28069 samples for uppercase and 61351
samples for lowercase, respectively. In order to obtain offline

character images, we employ some preprocessing steps, such

as connecting the adjacent points with DDA method [16],

extending to the width of strokes to 3 pixels, and anti-

aliasing, etc. Although the UNIPEN dataset consists of

very difficult data due to the variety of writers and noisy

or mislabeled data, we used it without any cleaning. A

subset with 30000 samples that are randomly selected from

UNIPEN lowercase are made, for experiments of different

modified CNN models and the error-correcting codes.

A. Performance of Modified CNN Models

Models with different number of neurons in some layers

from LeNet-5 and the comparisons among them are shown

in Table III. For the connecting way between layer C2 and

layer C4, M1 ∼M7 use the connecting map which is used in

the original LeNet-5, when M8 utilizes the new symmetrical

connecting map in Table II. There are 17 neurons in layer

F8 for all models, as the length of error-correcting code as

the output of the CNN is 17.

Table III
SETTING OF THE NUMBER OF NEURONS AND CORRESPONDING

PERFORMANCES(%)

Model M1 M2 M3 M4 M5 M6 M7 M8
C2 6 6 6 6 6 2 10 6
C4 16 16 16 16 16 16 16 16
C6 120 120 120 160 80 80 80 80
F7 200 150 100 100 100 100 100 100
F8 17 17 17 17 17 17 17 17

TOP1 89.7 89.6 89.6 86.4 87.6 85.5 86.8 87.9
TOP2 95.0 94.9 94.9 93.0 92.8 91.2 92.5 93.9
TOP3 96.5 96.5 96.4 95.5 95.0 93.8 94.7 95.7

Through these comparisons above, we try to find the

impact of the numbers of neurons in layer C2, C6 and F7,

and the performance of the new symmetrical connecting way

between layer C2 and C4. All models have 16 feature maps

in layer C4, the same with LeNet-5. From M1 to M3, when

the number of neurons in F7 layer descends from 200 to 100,

recognition rates vary little. A possible reason may be that,

unlike in prior layers with convolution and subsampling,

feature in layer F7 experiences less variance. From M3
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to M4, although there are more neurons in layer C6, the

performance gets worse. A possible explanation is, a model

with more complicated architecture, needs more training

iterations to adjust the randomly-initialized parameters. In

fact, M4 performances better when M3 and M4 are both

after a longer training process.

M5 and M8 have the same parameters for each layer,

except the connecting way between layer C2 and C4. The

increase of recognition rate from M5 to M8, shows the

good robustness of the new symmetrical connecting way.

Our experiments for latter HECR are based on M8.

B. Error-Correcting Code and Rejection

In the original LeNet-5 for traditional Competitive-
Learning (CL), outputs are set with place code. LeNet-5
with place code is incapable of rejection for the recognition

results. Deng set the outputs of LeNet-5 with error-correcting

codes (EC codes), thus LeNet-5 had the ability to reject

illegal samples in his research for printed character recogni-

tion [13]. However, rejection should be more meaningful for

handwritten character recognition, in which many samples

are in unconstrained style, even illegal. These samples

should be rejected in latter recognition. Some of the illegal

lowercase samples can be seen in Figure 5.

Figure 5. Some illegal lowercase samples

For rejection, a rejecting distance (rej-dist) is predefined.

The Hamming distances between the EC vector of the

CNN’s outputs and all EC codes for 26 characters are calcu-

lated respectively. If the minimum of these 26 distances are

greater than the rej-dist, recognition results will be rejected.

The recognition results after rejection are then sorted by

Hamming distances in ascending order. TOPX results are

then attained, which are needed in actual applications of

OCR.

Since EC code is consisting of 1 and −1, outputs of

the CNN are converted to a EC code by comparing with

a threshold, as Equation 1.

output =

{
1, if output > threshold

−1, if output ≤ threshold
(1)

It seems the median of 1 and −1 for this threshold has the

priority. However, experiments tell us that, the very threshold

with which the error in TOP1 result descends to the lowest,

is 0.65, not 0, as shown in Figure 6. When the threshold is

between −0.55 and 0.65, the closer it gets to 0, the greater

the error becomes. Although the error with threshold of 0.65
is the lowest, the confidence level of recognition results is

lower, too, for the average minimum of Hamming distances

and the actual average number of X candidates are both

higher. In our experiments, 0 is used as the threshold, with

which the average minimum of Hamming distances and the

actual average number of X candidates for all samples are

both the lowest.
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Figure 6. Errors in TOP1 with different thresholds for EC codes

Definition of the rej-dist needs more explorations. The

minimum of Hamming distances among EC codes of 26
characters is 6. Recognition rates with different rej-dists are

shown in Table IV. We can notice that, TOP1 recognition

rate increases rapidly as the rej-dist increases from 0 to 3,

and slowly as the rej-dist goes beyond than 4. So, it seems

4 is a good choice for the rej-dist.

Table IV
RECOGNITION RATES (%) IN TOPX WITH DIFFERENT REJ-DISTS

rej-dist 0 1 2 3 4 5 6
TOP1 46.95 59.15 67.41 74.03 78.11 79.16 79.21
TOP2 * 59.15 67.41 74.03 79.71 84.68 87.67
TOP3 * * 67.41 74.03 79.71 84.86 89.17

With Hamming distances, X candidate result may be a

set of characters rather than a single character, for the

outputs of network may have the same Hamming distance

to several EC codes of 26 characters. In the end, the

actual character number for TOPX results maybe more than

X. A new problem emerges: too many candidate results

will lead TOPX results meaningless. The actual average

numbers of candidate results are 1.29 (the first candidate),

5.54 (the second candidate) and 0.66 (the third candidate),

respectively. Experiments also demonstrates that, almost all

of the samples have no more than 3 candidates. Ratios for

samples which have one, two and three candidates are 2.0%,

86.3% and 11.7%, respectively. Therefore, TOP1 ∼ TOP3

results are attained in Table IV.
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C. Results

Train and test sets for final HECR experiments are created

with jackknife method. All of samples of uppercase or

lowercase are randomly divided into N subsets. Training

is on the first N − 1 subsets; 33% and 67% of the N th

subset are validation set and test set respectively. Training

is repeated N times. In our experiments, N is 3. Final recog-

nition results are shown in Table V. For better comparison,

results of other state-of-the-art researches for offline HECR

on UNIPEN dataset are also listed.

Table V
RECOGNITION ERROR RATES (%)

Methods TOPX(%)
Multi-
writer

Omni-
writer

Ref.

Upper
case

CNN
TOP 1 6.3
TOP 2 2.3
TOP 3 1.8

KNN 8.3 [4]
KNN/SVC 5.2 [4]

Lower
case

CNN
TOP 1 9.8
TOP 2 4.5
TOP 3 2.9

KP-NN 18.8 [1]
MLP 14.4 [2]

V. CONCLUSION

This paper shows the solution for HECR with CNNs. The

output of the CNN are set with EC codes, thus the CNN

has the ability for rejection in recognition. Comparing with

other state-of-the-art methods, the CNN has provided an

encouraging solution for offline HECR. Nevertheless, further

explorations for CNN are still needed. We will continue to

find more effective CNN models, in combination with other

methods of online HECR for handwritten recognition.
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