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Abstract—This paper proposes a robust single-image super-
resolution method for enlarging low quality camera captured text
image. The contribution of this work is twofold. First, we point
out the non-local reconstruction problem in neighbor embedding
based super-resolution by statistical analysis on an empirical
data set. Second, we introduce a local consistency constraint
to explicitly regularize the linear reconstruction process, and
adaptively generate the most possible candidates for the high-
resolution image patch. For the non-consistent candidates, we rely
on its adjacent overlapping patches for capability verification.
Experimental results demonstrate that our solution produces
visually pleasing enlargements for various text images.

I. INTRODUCTION

With the Internet flourishing and the rapid progress in hand-
held photographic devices, the scope of document imaging
has increased. However, due to the low cost mobile cameras
and server storage limitation, most document images exist
in a poor quality degraded from the source, making the
immediate recognition practically impossible. Super-resolution
provides an algorithmic solution to the resolution enhance-
ment problem. It refers to the process by which a higher-
resolution enhanced image is synthesized from one or more
low-resolution images.

This paper focuses on the issue of increasing the resolution
of a single text image. Text images are a distinct class of
images widely different from natural images. We study the
distribution of small image patches in the text region and see
what kinds of local primitive structures (e.g., stroke edges,
blobs, or corners) are likely to occur in a document.

A. Related previous work

There has been a substantial amount of previous work in
super-resolution for text images. Simple interpolation based
methods such as cubic-spline interpolation suffer from blur-
ring edges and image details, since the smoothing kernel is
indiscriminate between text and non-text regions. The sharp-
ened interpolation will introduce ringing or jaggy artifacts,
especially along salient edges. Dalley et al. [3] employed a
training-based method in a Bayesian framework. A database is
built that indicates which high-res patch should be output given
an input low-res patch. Park et al. [1] presented a prior model
via Markov Random Field (MRF) framework for text image
super-resolution, which can be benefited from strong prior
knowledge of the image class. Banerjee et al. [12] presented an
edge-directed super-resolution algorithm for document images

without using any training set while explicitly encoding the
text gradient information in a MRF framework.

Taking local information and spatial neighborhood effects
into account, Freeman et al. [4] developed a one-pass example-
based super-resolution algorithm which obtains sharper edges
and richer textures. One disadvantage is that it introduces non-
photo-realistic artifacts and amplifies noises from the input
images. Assuming that image patches in the low- and high-
res images share the similar local geometry, Chang et al.
[5] proposed super-resolution through neighbor embedding in
which the high-res test images can be estimated with a set
of optimally weighted training patch pairs. However, some
recent work in this field [7][8] pointed out that neighborhood
preservation assumption for low- and high-res patches does
not always hold, so that ambiguous reconstruction frequently
occurs. An extension of [5] by Fan et al. [6] proposed an
image hallucination method using neighbor embedding over
visual primitive manifolds, showing that visual primitives [10]
are more reliable for linear reconstruction.

B. The proposed method

Our method benefits from the above work of learning
based super-resolution. To overcome the ambiguous linear
reconstruction problem, we explicitly introduce the manifold
consistency constraint to regularize the neighbor embedding
process. For local consistent image patches such as straight
edges, traditional linear reconstruction is used. For those non-
consistent local patches corresponding to complex high-res
text region, we rely on its adjacent patches for compatibility
verification through a Markov network. From this point of
view, the process of neighbor embedding is performed in an
adaptive way. Figure 1 shows a flowchart of our approach.
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Fig. 1. A flowchart of the proposed approach

In the learning phase, large volumes of text primitive patch-
es are extracted from both the low-res and high-res training
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images ℒ𝑠 and ℋ𝑠. The low-res patches are organized as a
local consistency graph 𝒢𝑙. During the synthesis phase, each
patch 𝑙𝑞𝑡 from a low-res image is presented to the system.
A set of adaptively selected high-res candidates are retrieved
from the training set by nearest neighbor (NN) matching. Each
element ℎ𝑞𝑡 in the target high-res image comes from the MAP
estimation of a Markov network based on the candidate list.

We first briefly introduce the neighbor embedding method
[5] in section 2. We also point out the non-local reconstruction
problem by statistical analysis. Details of the local consistency
constrained solution are described in section 3. Experimental
results are analyzed in section 4.

II. NEIGHBOR EMBEDDING

A. The problem setting

The single-image super-resolution problem that we want to
solve can be formulated as follows. Given a low-res image ℒ𝑡

as input, we estimate the target high-res image ℋ𝑡 with the
help of a training set of one or more low-res images ℒ𝑠 and
the corresponding high-res images ℋ𝑠.

In the neighbor embedding based super-resolution frame-
work, each low-res or high-res image is represented as a set
of small overlapping patches. We denote the sets of patches
corresponding to ℒ𝑡, ℋ𝑡, ℒ𝑠 and ℋ𝑠 as {𝑙𝑞𝑡 }𝑁𝑡

𝑞=1, {ℎ𝑞𝑡}𝑁𝑡
𝑞=1,

{𝑙𝑝𝑠}𝑁𝑠
𝑝=1 and {ℎ𝑝𝑠}𝑁𝑠

𝑝=1, respectively. 𝑁𝑡 and 𝑁𝑠 are the number
of patches in ℒ𝑡 (or ℋ𝑡) and ℒ𝑠 (or ℋ𝑠), which depend on the
patch size and the degree of overlap between adjacent patches.

B. The neighbor embedding algorithm

Neighbor embedding based super-resolution reconstruction
can be summarized in the following steps.

1. For each patch 𝑙𝑞𝑡 in image ℒ𝑡

(a) Find the set 𝑁𝑞 of 𝐾 nearest neighbors in ℒ𝑠.
(b) Compute the reconstruction weights of the neighbors

that minimize the error of reconstructing 𝑙𝑞𝑡 ,

𝜖𝑞 = ∥𝑙𝑞𝑡 −
∑

𝑙𝑝𝑠∈𝑁𝑞

𝜔𝑞𝑝𝑙
𝑝
𝑠∥2 (1)

which is the squared distance between 𝑙𝑞𝑙 and it-
s reconstruction, subject to the constraints that∑

𝑙𝑝𝑠∈𝑁𝑞
𝜔𝑞𝑝 = 1 and 𝜔𝑞𝑝 = 0 (𝑙𝑝𝑠 /∈ 𝑁𝑞). Minimiz-

ing 𝜖𝑞 subject to the constraints is a constrained least
squares problem which has closed-form solution.

(c) Compute the initial high-res embedding ℎ𝑞𝑡 using
the appropriate high-res features of the 𝐾 nearest
neighbors and the reconstruction weights.

ℎ𝑞𝑡 =
∑

𝑙𝑝𝑠∈𝑁𝑞

𝜔𝑞𝑝ℎ
𝑝
𝑠 (2)

2. Construct the target high-res image ℋ𝑡 by enforcing the
local compatibility and smoothness constraints between
adjacent patches obtained in step 1(c).

C. The problem of non-local reconstruction

The underlying assumption of the neighbor embedding
method is that small patches in the low-res and high-res
images form manifolds with similar local geometry in the
two corresponding feature spaces. However, image super-
resolution is intrinsically an ill-posed problem since, theoreti-
cally, many high-res patches can give rise to the same low-res
patch through the same degradation procedure. As Figure 2
shows, this one-to-multiple mapping from low-res to high-res
feature space will violate the manifold assumption of neighbor
embedding and cause non-local reconstruction problem.

Fig. 2. One-to-multiple mapping from low-res (left) to high-res (right) feature
space. The three nearest neighbors of the query patch (marked as a star)
actually locate at different oriented linear regions in the high-res manifold.

We demonstrate this key observation by statistical analysis
on an empirical data set. To measure the generalization capa-
bility of example-based pair matching, we define two terms.
The first is sufficiency, which determines whether or not an
input sample can find a good match in the training set. The
second is predictability, which determines whether or not the
high-res patch corresponding to the input sample’s nearest
neighbor in the training set is a good prediction of the target
that we want to infer from the input sample.

To compare the pair matching accuracy, we use a Receiv-
er Operating Characteristic (ROC) curve to demonstrate the
tradeoff between match error and hit rate. For a given match
error 𝑒, the hit rate ℎ is the percentage of test data whose match
error is less than 𝑒. Each test sample 𝑝’s match error 𝑒(𝑝) is
defined by a metric between 𝑝 and the nearest sample 𝑝′ in the
training data. We define the match error as 𝑒(𝑝) =

∥𝑝−𝑝′∥22
∥𝑝∥22

.
At a given match error, the higher hit rate represents the better
sufficiency of the training dataset.

The prediction takes the following steps:
∙ Step 1: Find all those test samples whose nearest neighbor

match error 𝑒(𝑝) is below a threshold.
∙ Step 2: For all the test samples in step 1, find its 𝐾

nearest neighbors 𝑝𝑙
′
1 , 𝑝

𝑙′
2 , ⋅ ⋅ ⋅ , 𝑝𝑙

′
𝐾 for each test sample 𝑝

and the corresponding high-res patches 𝑝ℎ
′

1 , 𝑝
ℎ′
2 , ⋅ ⋅ ⋅ , 𝑝ℎ

′
𝐾 .

∙ Step 3: Find the nearest neighbor 𝑞ℎ
′

among {𝑝ℎ′
𝑖 , 𝑖 =

1, ⋅ ⋅ ⋅ ,𝐾} for the test sample 𝑝’s corresponding ground
truth high-res patch 𝑞.

The prediction error is define as 𝑒(𝑞) = ∥𝑞−𝑞ℎ
′∥22

∥𝑞∥22
The above process is to measure both the sufficiency and

predictability capability of using nearest neighbor matching
in the low-res patch set to estimate the corresponding high-
res patch. The following experiments also evaluate the per-
formance for the inverse mapping, i.e. using high-res patch
matching to estimate low-res patch.

91



An empirical data set, consisting of 10 document images
captured by a digital camera, are divided equally into training
images and test images. We collect two training patch sets
𝐷1 = {𝐷ℎ

1 , 𝐷
𝑙
1} and 𝐷2 = {𝐷ℎ

2 , 𝐷
𝑙
2} with different size. 𝐷1

consists of 105 low- and high-res patch pairs and 𝐷2 consists
of 106 patch pairs. These patch pairs are uniformed sampled
from the text region of the training images and their smoothed
and down-sampled counterparts. About 10,000 test patches are
randomly sampled from the testing images in a similar way.
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Fig. 3. ROC curves of nearest neighbor matching and prediction accuracy.

Two observations are found from the ROC curves in Figure
3. The nearest neighbor matching accuracy is similar for both
the low-res patch set and high-res patch set. With an increasing
number of training patches, higher matching accuracy, i.e. bet-
ter sufficiency, can be achieved for the training data. However,
the prediction accuracy is significantly lower when using low-
res patch matching to find the high-res patch estimation than
the inverse direction. In real scenario, it is infeasible to get the
high-res patch as a query. However, for refining the training
set, we can rely on the local relationship of high-res patches
to find consistent regions on the two coupled manifolds.

III. THE PROPOSED METHOD

A. Preprocessing

A high-res text image ℋ (Figure 4(c)) is first blurred
and sub-sampled to generate a corresponding low-res image
ℒ (Figure 4(a)). Applying an initial enhancement through
bilinear interpolation to ℒ, we obtain an image ℋ𝑙 (Figure
4(b)) which has the same size as ℋ but lacks the high-res
details. In the training set, we only need to store the differences
between ℋ and ℋ𝑙 (Figure 4(d)), which correspond to the
missing high-freq components caused by image degradation.

Fig. 4. Preprocessing steps for the training image

B. Training set preparation

An essential factor attributing to the success of example-
based super-resolution approaches is how to construct a good
training set, which is descriptive enough in giving useful
information about the low and high-res relationships and is
also compact enough for computational efficiency and good
generalization.

When building our training set, we collect the patches
centered on the text boundaries (Figure 4(e)) for three main
reasons. First, text primitives are densely distributed over
the text boundaries, while uniform background regions lack
meaningful features to estimate the high-freq information.
Focusing on the text regions can lead to significant speedup as
fewer patches need to be transformed. Second, we believe the
local neighborhood relationships between low-res and high-
res text primitive patches in the two feature spaces are more
consistent than those between general image patches. Third,
the patch variation caused by translation can be reduced since
each primitive we extract is centered on the text boundary.

To sum up, each example in the training set is in the form
of a pair of text primitive patches. These pairs capture the
statistical relationships that we are interested in.

C. Training set refinement by local consistency verification

The neighbor embedding based super-resolution assumes
the reconstruction weights of a low-res patch should be similar
with the weights of reconstructing the high-res counterpart by
the corresponding high-res neighbors. However, this assump-
tion can only hold in the locally consistent linear regions on the
coupled manifolds. In the occasional case that multiple high-
res patches with apparently different texture give rise to similar
degraded low-res patches, the two respective linear regions are
no longer consistent. If the reconstruction weights are forcibly
estimated according to the low-res patches in such ambiguous
region, the predicted high-res patch will severely deviate from
the true target.

In the following subsection, we explicitly introduce a
manifold consistency constraint to regularize the neighbor
embedding process.

1) local cell construction: Different from [7], we refer
the locally linear regions on the high-res manifold as local
cells, since the mapping from high-res space to low-res space
is more reliable in terms of local isometric preservation.
Note nearby points in the low-res manifold may not lie on
the same cell especially for those patches corresponding to
complex texture. In the training set refinement step, each
training patch pair {ℎ𝑖, 𝑙𝑖} is associated with a local cell
𝑝𝑖 = {ℎ1,𝑖, ℎ2,𝑖, ⋅ ⋅ ⋅ , ℎ𝑘,𝑖} defined by the 𝑘 nearest neighbors
of ℎ𝑖 in ℋ𝑠.

2) consistent cell graph construction: We generate a graph
representation 𝒢𝑙 of the low-res patch set ℒ𝑠 by connecting
any two patches 𝑙𝑖 and 𝑙𝑗 if their associated local cells 𝑝𝑖 and
𝑝𝑗 are consistent. Notice the consistency verification is only
performed in the neighborhood of 𝑙𝑖 and 𝑙𝑗 , so the graph is
relatively sparse.
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We describe how to measure the consistency between two
local cells 𝑝𝑖 and 𝑝𝑗 as follows.

3) local cell consistency estimation: Let us denote the
data matrices for two cells 𝑝𝑖 and 𝑝𝑗 , respectively, as 𝑋 =
[ℎ1,𝑖, ℎ2,𝑖, ⋅ ⋅ ⋅ , ℎ𝑘,𝑖] and 𝑌 = [ℎ1,𝑗 , ℎ2,𝑗 , ⋅ ⋅ ⋅ , ℎ𝑘,𝑗 ], where each
column of 𝑋 or 𝑌 corresponds to one high-res patch in the
corresponding local cells. The columns of 𝑋 and 𝑌 define
two linear subspaces 𝒳 = 𝑠𝑝𝑎𝑛(𝑋) and 𝒴 = 𝑠𝑝𝑎𝑛(𝑌 ) in the
feature space. A distance measure for linear subspaces is the
projection ℒ2-norm:

𝑑𝑖𝑠𝑡ℒ2
(𝒳 ,𝒴) = ∥𝑃𝒳 − 𝑃𝒴∥2 (3)

where 𝑃𝒳 and 𝑃𝒴 are the orthogonal projection matrices
onto 𝑋 and 𝑌 , respectively, and ∥.∥2 denotes the matrix
ℒ2-norm. The projection ℒ2-norm is related to the largest
canonical angle (or principal angle) between two subspaces.
If the maximum canonical angle is small, the subspace are
close to each other which means the two local cells are
more consistent. To build the consistency graph 𝒢𝑙, we simply
compare the canonical angle of two nearby cells with an
empirical threshold. A numerical stable algorithm to compute
the canonical angles was proposed by Bjork and Golub [13]
based on QR factorization of the data matrices 𝑋 , 𝑌 and
singular value decomposition (SVD).

D. MAP prediction of high-res image

For a given low resolution image ℒ, we seek to obtain
the maximum a posteriori (MAP) estimation of the posterior
probability 𝑃 (ℋ∣ℒ) = 𝑐𝑃 (ℒ∣ℋ)𝑃 (ℋ) (the normalization,
𝑐 = 1

𝑃 (ℒ) , is a constant over ℋ).
To make the MAP estimation tractable, we divide both the

low- and high-res images into overlapping patches and model
the spatial relationships between them using Markov network.
In Figure 5, the circles represent network nodes, and the lines
indicate statistical dependencies between nodes. We let the
low-res image patches be observation nodes, 𝑙. For each input
low-res patch, we select the 𝐾 candidate high-res patches in a
training dataset as the different states of the hidden nodes, ℎ,
that we seek to estimate. For this network, the probability of
any given high-res patch choice for each node is proportional
to the product of all sets of compatibility matrices 𝜓 relating
the possible states of each pair of neighboring hidden nodes,
and vectors 𝜙 relating each observation to the underlying
hidden states:

𝑃 (ℋ∣ℒ) = 𝑐
∏

(𝑖𝑗)

𝜓(ℎ𝑖, ℎ𝑗)
∏

(𝑖)

𝜙(ℎ𝑖, 𝑙𝑖) (4)

the first product is over all neighboring pairs of nodes, 𝑖 and
𝑗. 𝑙𝑖 and ℎ𝑖 are the observed low-res and estimated high-res
patches at node 𝑖, respectively.

In the above MAP formulation, the prior probability 𝑃 (ℋ)
is encoded by the 𝐾 candidate high-res patches retrieved
from the training set. Traditional methods [4][10] typically
set the candidate number 𝐾 for each node as a constant.
However, for text image super-resolution, a large proportional
of patches to be estimated are located around text strokes

Fig. 5. Markov network model for super-resolution. The low-res patches at
each node 𝑙𝑖 are the observed input. The high-res patch at each node ℎ𝑖 is
the quantity we want to estimate.

which correspond to consistent local cells of the manifold. In
such case, the neighbor embedding based reconstruction result
can be reliably regarded as an optimal candidate. Otherwise,
in ambiguous regions covering non-consistent local cells, all
possible candidates should be kept and we rely on the Markov
network to learn the most appropriate one which is compatible
with its adjacent patches.

The procedure of adaptively selecting 𝐾 candidates is
illustrated as below.

For each query low-res patch 𝑙𝑞𝑡 in image ℒ𝑡

∙ Find the set 𝑁𝑞 of 𝐾 = 15 nearest neighbors in ℒ𝑠.
∙ Referring to the consistent cell graph 𝒢𝑙, we divide 𝑁𝑞

into 𝑀 subsets {𝑁1
𝑞 , 𝑁

2
𝑞 , ⋅ ⋅ ⋅ , 𝑁𝑀

𝑞 } (𝑀 ≤ 𝐾) so that: a)
The patches in any 𝑁 𝑖

𝑞 are connected by certain edges as
a subgraph; b) There is no edge connecting any subgraph
𝑁 𝑖

𝑞 and 𝑁 𝑗
𝑞 (𝑖 ∕= 𝑗).

∙ For each subset 𝑁 𝑖
𝑞 , if it contains multiple patches, we

use neighbor embedding based method to reconstruct
an optimal candidate. If the subset contains an isolate
patch, its corresponding high-res patch in ℋ𝑠 is set as
the candidate.

∙ After processing all 𝑀 subsets, we get 𝑀 candidates and
update 𝐾 :=𝑀 .

In our implementation, The compatibility function 𝜓(ℎ𝑖, ℎ𝑗)
in (4) is defined by the compatibility of adjacent patches,
𝜓(ℎ𝑖, ℎ𝑗) = exp(−𝑑(ℎ𝑖, ℎ𝑗)/𝜎2

𝑑), where 𝑑(ℎ𝑖, ℎ𝑗) is the Sum
Squared Difference (SSD) of the overlapping region between
ℎ𝑖 and ℎ𝑗 and 𝜎𝑑 is a tuning variance. We use a similar
quadratic penalty on differences between ℎ𝑖(𝑘) and 𝑙𝑖 to
specify 𝜙(ℎ𝑖, 𝑙𝑖). The optimal MAP solution of (4) is obtained
by running the Belief Propagation (BP) algorithm [14] with
some biases.

IV. EXPERIMENTS

We demonstrate the performance of our method on the
document images captured by cell-phone cameras and web-
cameras with relatively low imaging quality. Note that we only
focus on the image intensity channel because the humans are
more sensitive to the brightness information in a document
image. The chrominance channels are simply interpolated by
a bicubic function in the final stage.

To build a promising training set, we collect 20 high-res
images by setting the capture device to its highest resolution.
Some examples selected from the training set are illustrated
in Figure 6. The corresponding low-res images are produced
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by blurring and downsampling the high-res images. The PSF
of the blurring kernel is a Gaussian function with a standard
variance of 1.4 corresponding to a magnification factor of 3.
About 5,400,000 text primitive patches have been extracted
from these training images.

Fig. 6. Example images selected from the training set.

We represent each low-res text primitive by a 7×7 patch 𝑃 𝑙

sampled fromℋ𝑙 (Figure 4(b)) and each high-res text primitive
by a 5×5 patch 𝑃ℎ sampled from ℋ−ℋ𝑙 (Figure 4(d)). The
corresponding low-res and high-res image patches are properly
aligned by their geometrical centers in the image plane. We
normalize 𝑃 𝑙 to get 𝑃 𝑙 according to the formula 𝑃 𝑙 = 1

𝑐𝑙
(𝑃 𝑙−

𝑑𝑙), where DC bias 𝑑𝑙 is estimated by the mean 𝐸[𝑃 𝑙]. The
contrast 𝑐𝑙 is estimated by 𝐸[∣𝑃 𝑙 − 𝐸[𝑃 𝑙]∣].

To show the effectiveness of our method, we compare it
with several common methods, including bilinear, cubic-spline
interpolation and Chang’s method [5]. 10 test images are
collected in a similar way as the training set. Figure 7 shows
two cropped regions of the 3𝑋 enlargement results.

Fig. 7. Super-resolution results of four methods on two examples with
3𝑋 manification: (a) bilinear interpolation; (b) cubic-spline interpolation; (c)
Chang’s method; (d) our method; (e) ground-truth.

Figure 8 show another two examples of 3𝑋 enlargement
results comparing Bicubic interpolation and our method.

Fig. 8. Super-resolution results of two methods on two examples with 3𝑋
manification: (Top row) bicubic interpolation; (Bottom row) our method.

TABLE I
RMSE AND RMSEB OF FOUR SUPER-RESOLUTION METHODS

bilinear cubic-spline Chang’s [5] our method
RMSE 21.7 20.3 15.8 12.4

RMSES 35.4 32.2 24.7 23.1

We quantitatively demonstrate the superiority of the pro-
posed model using two measures, RMSE (Root Mean Squared
Error) between the true test image and the super-resolved
result, and RMSEB (Root Mean Squared Error of Binarized
images). Table 1 shows the average RMSE errors over 10 test
images for different methods.

From both the quantitative measurements and qualitative
comparison, our proposed method improves the performance
of neighbor embedding based super-resolution methods.

V. CONCLUSION

This paper proposes a robust single-image super-resolution
method for enlarging low quality camera captured text image.
A local consistency constraint is introduced to explicitly
regularize the linear reconstruction, and adaptively generate
the most possible candidates for the high-res image patch.
Experimental results demonstrate that our solution produces
visually pleasing enlargements for various text images.
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