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Abstract—In this paper, we propose a new method to detect
local interest points as junctions in line-drawing images. Our
approach takes advantages of different aspects. Firstly, we
extract skeleton of image and then construct a Skeleton Connec-
tive Graph with the expectation that it provides a first level of
junction detection from shapes. Secondly, instead of employing
low-level operators to detect junctions as described in many
traditional techniques, our method works at path level taking
different skeleton branches into account to gain robustness.
Thirdly, we exploit the benefits of wavelet transform (e.g. multi-
resolution analysis, discontinuity detection, fast computation,
less sensitive to noises) to efficiently detect the dominant points
from 1D representations of the paths. Finally, a post-process
of pruning and connecting the skeleton segments is performed
to discard false detected points and to refine the skeleton. We
present in experiments interesting results compared to different
methods.

Keywords-Interest point detection, junction point detection,
multi-resolution analysis, document image analysis.

I. INTRODUCTION

A local interest point or keypoint is an image point

which differs from its immediate neighbors in terms of

some specific image properties such as intensity, color,

orientation, texture, curvature, etc. Keypoint detection is

one the most important topics from computer vision field

since they are regarded as useful features to address the

problems of image matching, object recognition, etc. For that

reason, lots of work has been dedicated in literature to detect

different types of keypoints. Some examples of well-known

keypoint detectors are DOG, LOG, Harris-Corner, SURF,

SUSAN, etc [7]. Nevertheless, these techniques are not well

adapted to the field of document image analysis (DIA)

due to several important issues. At the first place, since

the popular keypoint detectors (SURF, DOG, LOG, etc.)

and the corresponding descriptors focus on describing the

local structures of images based on intensities, orientation

and location histogram, their performance is likely to be

reduced when facing to bi-level document images. On the

other place, the detectors of local features such as blobs,

corners, edges, Haars, etc., tend to create a large number of

keypoints and this is particularly unsuitable for document

images which contain various complex objects, for example,

texts, graphics, equations, seals, logos, tables, charts, etc.

In general, there are two stream lines of work addressing

the issue of keypoint detection in DIA. In the first place,

several works as in [1] try to adapt the techniques from com-

puter vision field to detect local interest points in document

images. Results represented in these works highlight weak

precision rates, not suitable for document image content. On

the other hand, the works in [10], [11], [12], [13], [14], [15]

were proposed to focus on detecting some specific types of

local interesting points in DIA such as junctions, corners,

high curvature points, etc.

In [10], the author first proposed a classical low-level tech-

nique to detect ended-points and fork-points from skeleton

of image by introducing the definition of connectivity as the

number of transitions from foreground point to background

point and vice versa in counterclockwise order. This tech-

nique was then widely applied in many other applications.

In [11], the author constructed a tensor voting framework

to detect ended-points, T - and L- junctions. Each token or

pixel is supposed to support for its neighbors within a local

radius in the means of first and second order votes computed

based on its proximity, colinearity and cocurvilinearity. The

power of tensor voting is then used to label ended-points,

T - and L- junctions. This method is scale-dependent, low-

level processing and thus is sensitive to noises. Another low-

level operator based approach for ended-points and junctions

detection was presented in [12] by using template based

matching which is sensitive to artifacts introduced during

the thinning process. A post-processing of barb removing

is performed based on morphological spurring operation in

which the optimum number of iterations is determined based

on the average line thickness.

In [13], the author presented a method to detect junctions

from contours of image by combining local operators and

matching. The local operator is applied to every edge point

to compute its 1D profile within a circular window of size R
(15 < R < 30). At junction location, the 1D profile presents

several spikes and the position of the spikes indicate the

geometry of the junction which is used to either discard or

select the junction by matching it with template ones. This

method is subjected to the limited range of scales and the

threshold of selecting the number of spikes.

In [14], [15], the authors applied wavelet transform to

detect corners from contours of image. At first, the contour

is represented in the means of 1D signal based on an

orientation function. Then, the signals are decomposed at

different scales by using wavelet transform and the corners

are identified at some levels of decomposition representation.

Their results are shown to be much better than those in the
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well-known dominant point detectors presented in [8]. Nev-

ertheless, both these methods have to cope with a problem of

how to combine the corners detected from different contours

at crossing locations and ended-segments. In addition, their

1D representations are sensitive to noises because of using

a fixed threshold.

In this paper, we aim at constructing a robust technique for

interest point detection as junctions in line-drawing images

in the senses that it is fast computation, less sensitive to

noises and less dependent on the number of predefined

thresholds. In addition, we justify our approach by compar-

ing our results on some standard datasets with well-known

junction detectors in literature. To conduct our character-

istics, we take advantages of different aspects. Firstly, we

extract skeleton of image and then construct the Skeleton

Connective Graph (SCG) which provides a natural way to

detect junctions. Secondly, we define a path of the SCG
taking different skeleton branches into account and present

how to extract the paths from the SCG. Thirdly, we perform

a detail analysis about different methods for constructing

1D representations of 2D plane curves and then derive

a good 1D representation for each path which satisfies

three desirable properties: translation-, rotation- and shift-

invariant. Fourthly, instead of employing low-level operators

to detect the junctions, our method looks for the most

dominant points of the paths by applying multi-resolution

wavelet analysis to efficiently identify the junctions from 1D

representations. Finally, a post-process of refining the results

is performed at two levels: single-path and inter-paths.

The rest of this paper is organized as follows. The main

stages of our approach are presented in section II. Experi-

mental results are presented in section III. We give some

key conclusions, perspective works and several potential

applications of the proposed method in section IV.

II. OUR APPROACH

In Figure 1, we briefly present our approach consisting of

five main stages: pre-processing (section A), path definition

and extraction (section B), path representation (section C),

dominant point detection based on wavelet analysis (section

D) and post-processing (section E). We are now going to

detail all these stages in the following sections.

A. Pre-processing stage

This state consists of the following processes: skeletoniza-

tion, branch extraction and branch linking. Our method

is to be applied on binary images. These images could

be obtained following some enhancement processes such

as noise filtering, binarization, etc., depending on specific

applications. Then, the skeleton of input image is extracted

based on the technique of G.S. di Baja [2] because of

many its advantanges as presented in [9]. Starting from the

skeleton chaining, we present here some basic definitions.

Figure 1. The flow-work of our approach

A skeleton branch is a sequence of consecutive and

distinct skeleton points such that the first and the last points

are either an ended-point or a crossing-point which are

defined as the skeleton points that have only one or at

least three 8-connected neighbors, respectively. A skeleton

branch is defined as a long (respectively, short) one if its

length is greater than (respectively, less than) the average

line thickness from all the skeleton points in the branch.
A closed curve is a sequence of consecutive skeleton

points in which all points are distinct except the first and

last ones.

Figure 2. (a) Some common case sceneries of noises, (b) the skeleton
chaining after post-processing.

The branches could be simply extracted by using the

technique in [6] and then we perform a step of branch linking

to reconnect some disjointed branches together (e.g. due to

noises). The criterion for linking two disjointed branches

is based on the line thickness. Furthermore, a process of

skeleton smoothing by employing a mean circular filter

is carried out to obtain nice skeleton in addition to the

processes of hole filling, barb removing and beautifying

as presented in [2]. Figure 2a presents the skeleton of an

input image with some common case sceneries of noises

and Figure 2b presents the skeleton chaining obtained after

pre-processing.
The skeleton chaining is then modeled as a Skeleton

Connective Graph (SCG) which has following properties:

• Its nodes are ended-points or crossing-points. Each

node is marked as either ended-node or crossing-node,

respectively.
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• An edge connects two nodes if there is a skeleton

branch associated to these nodes.

• A closed curve is considered as an edge connecting one

node (i.e. an arbitrary skeleton point of this curve) to

itself. This node is referred as a dummy-node of SCG.

Figure 3a presents a SCG for the skeleton chaining in

Figure 2b. It is a notable point that the image could contain

objects at different locations resulting in a graph consisting

of different connected components.

B. Path extraction

As presented in the Introduction section, most of the meth-

ods for junction detection in literature employed low-level

operators. Several methods are applied to contours of image.

The contour-based methods need to cope with the issue of

how to combine junctions detected from different contours

at crossing locations as well as ended-segments. The low-

level processing based methods are sensitive to noises and

artifacts. To gain robustness, we work at neither contours nor

low-level operators. Instead, we treat our approach at context

level by defining a path of the SCG and analyze the paths at

different natural resolutions based on wavelet decomposition

representation. Particularly, a path is defined as a sequence

of consecutive edges of the SCG and the length of the path

is the number of edges traversed. We consider three types of

paths which are stroke-, circuit- or hybrid-path. These paths

are defined as follows:

• A path P is a stroke if the first and the last nodes of

P are two ended-nodes and all edges associated to any

one from the nodes of P remain the same side in the

spatial plane.

• P is a circuit if its first node is identical to its last node

and P does not contain any other smaller circuits.

• P is a hybrid-path if it exactly consists of one dummy-

node with (or without) another ended-node.

These paths could be extracted by adapting the technique

Line Follower to the nodes of SCG [6]. Particularly, starting

from each node of SCG, we always clockwise traverse

to next node until we stop at either some ended-node or

one already traversed node. Figure 3 presents some paths

detected from a skeleton graph.

Figure 3. (a) is a SCG for the skeleton chaining in Figure 2(b), (b) and
(c) are the stroke- and circuit-paths detected from (a), respectively.

C. Path representation

In order to detect dominant points using wavelet analysis,

it is necessary to represent 2D paths in the means of

1D signals. In this section, we analyze different meth-

ods of constructing 1D representations for 2D plane

curves and then derive good 1D representations for our

paths. Given a path P consisting of N skeleton points

(x1, y1), (x2, y2), . . . , (xN , yN ), the author in [5] con-

structed an 1D representation of P based on a distance

function f(t) in which f(t) is defined as Euclidian distance

from each point (xt, yt) to a reference point. This function

was shown to be well adapted to the problem of zero-

crossing representation but is not good in the domain of high

curvature point detection [5]. Instead, an 1D representation

of P should be designed as a curvature function f(t) such

that f(t) represents a curvature degree at the point (xt, yt).
In [14], the authors constructed an 1D representation of

a contour in the means of an orientation function α(t) as

follows: α(t) = tan−1((yt+q−yt−q)/(xt+q−xt−q)) where

q is fixed at 3. Using this fixed threshold is very sensitive

to noises, particularly in the cases of saw-toothed contours.

Following our experimentations with a number of different

curvature functions as presented in [8], we derived that the

following one provides with the most stable results since it

avoids the problems caused by discrete derivations and small

changes in slope.

�atq = (xt − xt+q, yt − yt+q)

�btq = (xt − xt−q, yt − yt−q)

f(t) = costq =
�atq ·�btq
|�atq||�btq|

In our implementation, q is an adaptive threshold which is

set based on the line thickness at the skeleton point (xt, yt).
The function f(t) is 2D translation- and 2D rotation-

invariant in image plane, but not shift-invariant (i.e. 1D
translation: f(t) is dependent on the selection of the start-

ing point). Even though there exists several techniques in

wavelet analysis supporting the shift invariant, they are not

really shift invariant. In practices, we could miss some true

interest points depending on the selection of the starting

point. This issue was not explicitly presented in many former

approaches ([14], [15]). We present a solution of selecting

the starting point to gain the shift-invariant as follows. If the

path P contains at least one ended-node, it is simple to show

that the starting point could be such a node. On contrary,

suppose that P contains several high curvature points and

if the starting point is selected as one of them, due to the

border distortion effect of the wavelet analysis, we could

miss one true positive. We therefore should try to avoid

this situation. It is noticed that the function f(t) tends to

be a constant (or near constant) at some partition [ta, tb]
(1 ≤ ta < tb < N ), if and only if, there is no high curvature
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point in this partition. One such partition presents a straight

line segment of P and could be found by employing some

basic method. Consequently, the starting point is selected as

a middle point in [ta, tb].

D. Dominant point detection

Our local interest point detection algorithm is applied to

the 1D representation of each path by using multi-resolution

discrete stationary wavelet transform (SWT) [3]. We employ

SWT to detect the dominant points from 1D signals because

it provides many important advantages compared to other

traditional high curvature point detection approaches [8].

Firstly, one of the most important applications of wavelet

analysis is to detect the exact instant when a signal changes.

Secondly, wavelet transform supports multi-resolution anal-

ysis in which the number of scales needed to completely

decompose the signal is rather small because we only work

at dyadic scales (i.e. 20, 21, . . . , 2n), not continues scales

as presented in traditional scale-space techniques. Further

more, the number of scales could be definitely determined

based on the wavelet mother and the length of the signal

without using any threshold at all [4]. Finally, there exists

many fast wavelet transform algorithms which could be

efficiently implemented supporting for our all processes in

a linear time complexity.

Let Wf(s, t) is the wavelet transform (using SWT) of

f(t) at the scale s = 2j (j = 0, 1, . . . , J − 1) where J
is the maximum number of analyzed scales. Since we are

interested in detecting high curvature points, Haar mother

wavelet is selected to decompose the signal. The key idea of

the dominant point detection process is that, at the dominant

point, (s0, t0), the Wf(s0, t0) reaches a local maximum over

time space and this maximum tends to propagates to another

maximum at larger scale (s = s0∗2), but this property is not

hold at finer scale (s = s0 ∗2−1). In contrast, the number of

false maxima (e.g. noises) tends to be greatly reduced when

the scale increases. Based on these characteristics, the steps

of this procedure are presents as follows:

• Compute the Wf(s, t) of f(t) using SWT at different

scales s = 2j with j = 0, . . . , J − 1.

• Detect the local maxima of Wf(s, t) at each scale s =
2j with j = 0, . . . , J − 1.

• Discard every local maximum Wf(sρ, tρ) at the scale

sρ in which there is no local maximum Wf(sρ′ , tρ) at

the scale sρ′ = 2 ∗ sρ.

The remaining maxima are regarded as the candidate

keypoints. Figure 4a presents the junction points (i.e. small

red dots) detected from the input image in Figure 2.

E. Correcting and refining

Let O = {o0, o1, . . . , oK} are the set of junction points

detected from some path P in the previous stage. Due to

the disturbance of noises, it is inevitable to detect some false

Figure 4. (a) The junction points (small circles) detected from an image in
Figure 2, (b) a path P of (a) with the detected keypoints, (c) after correcting
and refining, (d) the final skeleton graph with the final keypoints.

junctions. In order to improve the results, we propose a post-

process of refining the detected points at two levels: single-
path and inter-paths.

At the single-path level, we consider that the path P
is partitioned into M segments by the detected points

o0, o1, . . . , oK . Each segment is assigned a property of either

long or short one in the same way as the definitions of long

and short branches. Then, we make a reasonable assumption

as presented in [9] that the short segments are likely to

be the candidates of false skeletons due to noises. Thus,

we try to delete all consecutive short segments which are

bounded between two long ones. Let Sk0 , Sk1 , . . . , SkL
are

the consecutive segments obtained from the path P in which

all these segments are the short ones except Sk0
and SkL

(kL < M ), the segments Sk1
, . . . , SkL−1

are removed and

two the long ones (Sk0
, SkL

) are reconnected by extending

these line segments as far as they meet at one common

point, if and only if, all points of the extented segments

are foreground pixels. The keypoints linked to the deleted

segments are discarded and the common point is treated as

a new keypoint. Each new keypoint is then removed if these

exists only two long segments associated with this keypoint

such that they nearly construct a straight line. Figure 4

illustrates this process for one path of a SCG.

At the inter-paths level, we exploit information of the

keypoints detected from different paths to discard false

alarms and identify new keypoints as crossing-points based

on a voting scheme. The crossing-points could be easily

detected from the skeleton but it is not reliable to identify

them as keypoints because of noises. Let P1, P2, . . . , Pm

are the different paths passing one common crossing-point

p, if there exists several keypoints, q1, q2, . . . , qh, detected

from these paths such that they are identical to p, we could

believe that the crossing-point p is a desirable keypoint.

Nevertheless, the keypoints {q1, q2, . . . , qh} in practice are

located in a neighborhood of p. To address this issue,

each keypoint qi ∈ Pj (1 ≤ i ≤ h, 1 ≤ j ≤ m) is

supposed to support for all crossing-points of Pj located in

a neighborhood of qi with the size wqi (e.g. wqi is set as the

line thickness at qi in our implementation). If one crossing-

point gains much support from the keypoints nearby, it is

regarded as new keypoint and all the keypoints supporting
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for this crossing-point are removed.

III. EXPERIMENTS

In this section, we evaluate our junction detection method

based on repeatability criteria as this criteria is a standard

one for performance characterization of keypoint detection

methods in literature [7]. This criteria works as follows.

Given a reference image Iref and a test image Itest taken

under different transformations (e.g. noising, rotation, scal-

ing) from Iref , the repeatability signifies that local features

detected in Iref should be repeated in Itest with some small

error ε in location. Particularly, we denote D(Iref , Itest, ε)
as the set of points in Iref which are successfully detected in

Itest in the senses that for each point p ∈ D(Iref , Itest, ε),
there exists at least one corresponding point q ∈ Itest such

that distance(p, q) ≤ ε. Let nr and nt are the number

of keypoints detected by one detector from Iref and Itest,
respectively. The repeatability score of this detector applied

for the pair (Iref , Itest) is computed as follows:

r(Iref , Itest, ε) =
|D(Iref ,Itest,ε)|
Mean(nr,nt)

In order to obtain a comparative evaluation, we carry out

two experiments with a standard Harris-Corner detector [7]

and a classical junction detection technique of Rutovitz [10].

We have selected here these two detectors since the Rutovitz

technqiue is commonly used in the problem of fork-point
detection in DIA and the Harris technique detects corner
points which have a large overlapping with junction points.

In the first experiment, our method and Harris-Corner

method are able to detect both types of junctions: con-
nective-junction (e.g. Z-junction, L-junction, N-junction,

etc.) and crossing-junction (e.g. T-junction, K-junction, X-

junction, etc.) which are defined as junctions that have only

two or at least three 8-connected neighbors, respectively.

We refer this evaluation as full-junction experiment. In the

second experiment, we compare our method with classical

junction detector of Rutovitz which is able to detect only

crossing-junctions. To make a fair evaluation, a pre-process

of noise and artifact removing is carried out before applying

the Rutovitz method. In addition, to adapt our method for

this comparison, we discard all connective-junctions de-

tected from our method remaining only crossing-junctions.

We refer this evaluation as crossing-junction experiment.

In both experiments, all detectors are applied on the

training datasets #3 and #5 from GREC2011 1. These

datasets used the same model dataset of 150 clean symbols

to generate test images. In the dataset #3, each model

symbol is used to generate more 10 test symbols undergone

different rotation and scaling resulting in 1500 test symbols.

In the dataset #5, each model symbol is used to generate

more 25 symbols with various levels of noises resulting in

3750 test symbols. The parameters of rotation, scaling and

1http://iapr-tc10.univ-lr.fr/index.php/symbol-contest-2011

noise applied for each model symbol in both the datasets

are known in groundtruth.

Our strategy to perform evaluation in two experiments

is described in Figure 5. This strategy follows the general

characterization protocol for keypoint detection as detailed

in [7]. We first apply each detector to the model symbols

and the test symbols in each dataset to obtain ideal junctions

(Sm) and detected junctions (St), respectively. Then, we use

parameters in groundtruth to compute repeatability scores of

this detector from two sets of junctions: Sm and St. The

overall repeatability score of each detector in each experi-

ment is computed as an average score from the repeatability

scores of the detector applied for all model symbols and test

symbols in each dataset. We vary the value of parameter ε
to obtain a ROC-like curve of the repeatability score.

Figure 5. The evaluation strategy applied for each detector.

We present in Figure 6 and Figure 7 the results of each

method applied for the datasets #3 and #5 in the full-

junction and crossing-junction experiments. As we can see,

our method provides interesting results compared to Harris-

Corner detector and Rutovitz’s crossing-junction detector in

both experiments. The mean time of our method, Harris-

Corner and Rutovitz’s method applied for each symbol are

19.3 ms, 21.5 ms and 16.2 ms, respectively.

Figure 6. Repeatability score of our method and Harris-Corner detector
on datasets #3 and #5 in the full-junction experiment.

IV. CONCLUSIONS AND PERSPECTIVES

In this paper, an approach for junction detection in

line-drawing image is proposed. Several major aspects are

addressed in our approach resulting in a robust method.

At first, we extract skeleton of image and then construct
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Figure 7. Repeatability score of our method and Rutovitz’s junction
detector on datasets #3 and #5 in the crossing-junction experiment.

the Skeleton Connective Graph with the expectation that

it provides a good way to detect junctions from images.

Next, we define a path of the graph taking different branches

into account and present how to extract the paths from the

graph. The paths are then represented in the forms of 1D

signals following a process of dominant point detection by

employing the multi-resolution wavelet analysis. A last post-

process of pruning and connecting the skeleton segments

is performed to discard false detected points and to refine

the skeleton. We present in experiments interesting results

compared to the Harris-Corner detector and the classical

Rutovitz’s junction detector.

Following this work, several perspective works are

planned. Firstly, more experiments taking recent and ad-

vanced techniques of junction detection into account are

performed to exactly evaluate the performance of different

methods. Secondly, a study on adaptive multi-representation

(e.g. a combination of contour and skeleton) rather than

single representation (i.e. either skeleton or contour) could

significantly improve our results. Finally, some specific ap-

plications of the proposed method, vectorization and symbol

localization for examples, are likely to be done.

Naturally, vectorization is the very first application of our

method with an assumption that input images are supposed

to include two kinds of shapes: straight lines and circular

arcs. By reconstructing the SCG graph from the detected

local interest points (i.e. junctions and ended-points), it is

noticed that each edge of the SCG is already a smooth

segment (otherwise, the proposed method is likely to detect

one or more high curvature points on this edge). Therefore,

each edge of SCG is vectorized by using some technique

such as linear least squares regression for fitting the model

of line or arc to the edge [9].

In the context of symbol localization, a local primitive

is first extracted at each detected junction point. Each

local primitive are then described by a very compact and

distinctive descriptor at two levels. The level-one descriptor

includes basic information such as the number of arms

at each junction, the type of each arm, the difference in

degree between two consecutive arms, etc. The level-two

descriptor could be contructed as a 1D profile of each

junction as presented in [13]. The former descriptors are

used to do preliminary matching to discard many false

candidate matches. The later descriptors are then used to

refine the matching results. One such application could be

found in [12].
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