
An Efficient Framework for Searching Text in Noisy Document Images

Ismet Zeki Yalniz, R. Manmatha

Department of Computer Science
University of Massachusetts, Amherst

Amherst, MA, USA, 01003
Email: {zeki,manmatha}@cs.umass.edu

Abstract—An efficient word spotting framework is proposed
to search text in scanned books. The proposed method allows
one to search for words when optical character recognition
(OCR) fails due to noise or for languages where there is
no OCR. Given a query word image, the aim is to retrieve
matching words in the book sorted by the similarity. In the
offline stage, SIFT descriptors are extracted over the corner
points of each word image. Those features are quantized into
visual terms (visterms) using hierarchical K-Means algorithm
and indexed using an inverted file. In the query resolution
stage, the candidate matches are efficiently identified using
the inverted index. These word images are then forwarded
to the next stage where the configuration of visterms on the
image plane are tested. Configuration matching is efficiently
performed by projecting the visterms on the horizontal axis
and searching for the Longest Common Subsequence (LCS)
between the sequences of visterms. The proposed framework
is tested on one English and two Telugu books. It is shown
that the proposed method resolves a typical user query under
10 milliseconds providing very high retrieval accuracy (Mean
Average Precision 0.93). The search accuracy for the English
book is comparable to searching text in the high accuracy
output of a commercial OCR engine.

Keywords-document image search; image retrieval; word
spotting;

I. INTRODUCTION

One way to search scanned books is to recognize the

characters and perform regular text search. However, the

optical character recognition (OCR) output may have high

rates of errors due to many factors such as high document

degradation, unusual font type etc. As a result the search

over the OCR output is less accurate. For example, old Ger-

man texts printed in “Fraktur” are not recognized accurately

by standard OCR engines and therefore the OCR output is

typically not human-readable. Besides, there are a number

of scripts such as Telugu and Ottoman for which no OCR

engine is available [10], [14]. In these cases searching books

using the OCR output is not applicable.

Another method is to use image search mechanisms

for searching document images. The problem with image

search methodologies is that they require computationally

heavy operations due to the high dimensionality of the data.

Typically they do not scale up for large image collections.

However, there are several ways to speed up image search

engines. One option is to quantize and/or index image

features and retrieve them whenever necessary [2], [9],

[4], [11]. Another common practice is to gain speed by

sacrificing retrieval accuracy. When these two mechanisms

are coupled, image search methodologies become practical

for very large collections.

Here, we propose an efficient image search framework

for searching text in noisy document images. The proposed

methodology relies on two components: Off-line processing

and a filtering stage for fast query resolution. The offline

stage is run only once for each book and it consists of

extracting and quantizing image features from the word

images. More specifically, SIFT [5] descriptors are extracted

for each corner point detected by the Fast-Corner-Detection

algorithm [8]. These features are later quantized using the

hierarchical K-Means clustering algorithm (HIKMEANS).

The final output of the off-line processing stage is a number

of word images each of which is represented by a set

of corner points and their corresponding cluster IDs (i.e.,

“visual terms” or simply “visterms”).

In the online stage (or the query resolution stage), a query

word is selected by the user and all the words in the book are

ranked according to their similarity to the query word. The

similarity search consists of two components. The first one

is called the “coverage test” and it accounts for the common

visterms between the query and test image. Coverage scores

for each word image are efficiently calculated using an

inverted file for the visterms and they are used to filter out

words which are not likely to be a match. In the second

stage the configuration of visterms on the image plane is

efficiently compared to those of the query image. Finally,

a similarity score is calculated which accounts for both the

existence and the configuration of common visterms which

agree with the query image. The output of the search is a

ranked list of word images from the book. The proposed

framework is tested on two Telugu and one English books

and it is shown to be effective in resolving queries under

0.01 second.

The paper is organized as follows. Our framework is

elaborated first in Section II. Experimental results and future

research directions are discussed in Sections III and IV.

2012 10th IAPR International Workshop on Document Analysis Systems

978-0-7695-4661-2 2012

U.S. Government Work Not Protected by U.S. Copyright

DOI 10.1109/DAS.2012.18

48



Figure 1. A height normalized word image and its visterms projected onto
the X axis. Typically there are around 100 visterms per word image.

II. AN EFFICIENT FRAMEWORK FOR SEARCHING

DOCUMENT IMAGES

A. Offline Processing

1) Keypoint localization: The offline processing starts

with defining a number of salient points in the document

images (See Fig.1). These points are also called “keypoints”.

It is desirable to have keypoints placed on top of or near the

text. Keypoints must be repeatable for matching purposes,

i.e., matching keypoints must be identified for different

instances of the same word image.

Two different approaches were for detecting keypoints:

Fast-Corner-Detector [8] and Scale Invariant Feature Trans-

form (SIFT) [5]. Fast-Corner-Detector finds corners points

in images in a fraction of a second. These corner points can

be used to extract local image features. Fast-Corner-Points

are claimed to be more repeatable than well-known SIFT

keypoints [8]. Unlike Fast-Corner-Detector, SIFT is capable

of extracting scale and rotation invariant keypoints which

are shown to be distinctive especially in natural images.

In Figure 2, extracted keypoints are depicted for the word

image “Baker”. The total number of keypoints are almost

the same for the SIFT and Fast-Corner-Detector. It is seen

that the SIFT features are distorted heavily at the bottom

of the word image around the noisy region. Distortions

include keypoint insertion, deletion and misplacement, or

any change in the keypoint features such as the scale and

orientation. On the right column, it is seen that Fast-Corner-

Detector is much more repeatable than the SIFT and it

is more likely to locate the same corner in spite of the

noise. Therefore Fast-Corner-Detector is used for keypoint

localization. Note that OCR fails on underlined words.

2) Feature Extraction: Once keypoints are identified, an

image patch is placed over each of them in order to extract

local image features. SIFT descriptors are used in this study.

[5]. Using conventional parameters, a feature vector of size

128x1 is obtained for each keypoint. The SIFT keypoint

detector provides intrinsic scale and orientation for each

keypoint automatically. However, it is not the case with

the Fast-Corner-Detector. Therefore, when the Fast-Corner-

Detector is used, the patch size is defined to be equal to

Figure 2. The top row shows all the keypoints obtained using SIFT
and Fast-Corner-Detector respectively for the word image“Baker”. On the
bottom row, keypoints are extracted for the same image except that the
word is underlined. Red circles indicate the keypoints which are preserved
in both cases in spite of the noise.

the height of the bounding box that the keypoint belongs to,

and the patch orientation is assumed to be zero degrees for

all keypoints. Notice that these assumptions are applicable

if and only if the bounding boxes are available and the

document images do not have significant page skew.

3) Feature Quantization: Using high dimensional fea-

tures for matching word images is computationally expen-

sive. One well-known practice is to map feature vectors to

discrete values using clustering techniques [6]. Each feature

vector is given a discrete label according to the cluster it

belongs to. This label is referred as a “visterm ID”. The

size of the visterm vocabulary is equal to the number of

clusters defined in the clustering processing.

In this framework, hierarchical K-Means (HIKMEANS)

is utilized for quantizing the SIFT descriptors [12]. HIK-

MEANS requires the total number of clusters to be defined

a priori. The vocabulary size is an important parameter

because the matching performance is known to be sensitive

to the vocabulary size, depending on the application. For

matching natural images, use of larger vocabularies is shown

to perform better [7]. However, in the context of text

recognition it is desirable to find a number of matching

keypoints between relevant word images despite the noise,

variations and difference in font. If the vocabulary size is

very large, then matching keypoints are very unlikely to get

the same visterm ID even though their feature vectors are

quite similar. If the vocabulary size is small, then larger

number of visterms can be matched despite the noise and

variations. For example, the vocabulary size is set to 4K

for the word image in Figure 3. Each red dot represents a

keypoint. Notice that some of the keypoints are very close

to each other, therefore their local image features are also

similar but not identical. Indeed these keypoints provide

evidence for the existence of certain sections of the ink (for

ex. the tip of the character “k”), therefore it is desirable

to assign the same visterm ID for the keypoints belonging

to a specific section. It is observed that using smaller

vocabularies therefore yield higher matching performance.

49



4) Indexing Visterms: A word image is represented by its

visterms which are sorted according to their X coordinates in

the image plane as shown in Figure 1. An optimized version

of an inverted index is also created offline for keeping all

<word ID, visterm ID> pairs. The inverted index is

later used to efficiently find the common visterms between

the query word and the test image.

B. Query Resolution

Given a query word image, the aim is to identify similar

word images in the context of the book. The existence of

common visterms is necessary but not sufficient to qualify

a word image for being a match. Their spatial configuration

has also to be consistent with the ones in the query word.

Here we devise a two stage similarity search framework

for matching word images. First, the common visterms are

identified and weighted to eliminate false matches. This

stage is referred as the coverage test. Next, a configuration

score is calculated which accounts for the spatial arrange-

ment of common visterms between the query word and each

test image. Finally all word images are ranked based on a

final similarity score which is a linear combination of the

coverage and configuration scores:

Sim(I,Q) = λCover(I,Q) + (1− λ)Config(I,Q) (1)

where λ is a weighting parameter, I and Q are the sequence

of visterms (sorted based on their X coordinates) of the test

word and the query image respectively.

One problem is that there are multiple visual terms posi-

tioned next to each other in the word image and they have

exactly the same visterm ID as shown in Figure 3. Indeed,

these visterms are artifacts of keypoint detectors and they

do not provide any further evidence for resolving queries.

It is not desirable to account for such visterms more than

once for scoring. A remedy for this problem is to account

for the existence but not the frequency of the visterms in

word images. Therefore the coverage test does not account

for the visterm frequencies.

1) Coverage Test: The coverage score simply accounts

for the ratio of common visterms to the ones in the test

image. There are certain visterms which are rare in the

sense that they occur less frequently in the whole book but

give strong evidence for the existence of certain letters. In

order to incorporate this information, each visterm is given a

weight which is inversely related to its collection frequency.

More specifically,

Cover(I,Q) =

∑
i∈I∩Q wi

∑
j∈I wj

(2)

The weight wi for the visterm i is defined as

wi =
1

log (fi + 1)
(3)

Figure 3. Corner points and corresponding visterm IDs for a letter bigram
image. Visterms having the same ID are shown in circles. Notice that some
visterms are spatially very close and therefore image features extracted
from these regions are almost identical.

where fi is the frequency of the visterm i in the whole book.

After ranking word images based on the coverage score, we

filter out the word images which are not in the top 10% of

the list. The rationale behind this approach is that the total

number of true matches is not expected to be larger than

the frequency of the most frequent word in the language

of the book. For example, “the” is the most frequent word

in English and constitutes approximately 6% of an English

text. The result set for the query “the” should not therefore

include more than 10% of the book despite the existence of

a large number of false matches. Given that typical user

queries consists of infrequent words, such as names and

places, it is quite unlikely to miss any true match in the

filtering stage.

2) Configuration Matching: One way to verify the con-

figuration of visterms on the image plane is to search for

a transformation matrix for the visterms in the query to

the test image. A well-known approach is the RANSAC

algorithm [3]. In a nut-shell, RANSAC randomly selects

a number of visterms in the query image and calculates a

transformation matrix that maps them to the other image

plane. This process is applied iteratively N times and the

best transformation matrix is returned as the result. On

every iteration, RANSAC fits a transformation matrix and

calculates the quality of the fit by iterating over all visterms

which makes it computationally expensive.

Here we devise an efficient method for testing the config-

uration of visterms between two word images. The reasoning

is that the respective order of letters is not supposed to

change along the X axis. This is true even for text written

in different fonts, faces and sizes. See Figure 4. Therefore

it is sufficient to project the visterms on the X axis and

compare the resulting sequence of visterms. Namely, there

have to be a large number of visterms having the same order

in both sequences. The problem turns out to be a search

for the longest common subsequence (LCS) which can be

50



Figure 4. Matching visterms between two instances of a Telugu word from
Telugu-1718 are shown. There are a large number of matching visterms
following the same order even though the top image is underlined.

solved quite efficiently for short sequences using dynamic

programming [1]. Here we use the length of LCS to calculate

the configuration similarity as follows:

Config(I,Q) =

∑
i∈LCS(I,Q) wi
∑

j∈Q wj
(4)

The numerator is the weighted sum of the visterms in the

LCS(I,Q) and the denominator is the weighted sum of all

visterms in the query image Q. The configuration score has

a range [0, 1] and it is 1 if the two sequences are identical

and 0 if they do not have any common visterm.

III. EXPERIMENTS

A. Datasets

Three books are used for the experiments. Two of them

are printed in Telugu script and they are referred as “Telugu-

1716” and “Telugu-1718”. These books contain word bound-

ing box information along with the ground truth text. The

other book is “Adventures of Sherlock Holmes” written

by Arthur Conan Doyle in English. Document images and

the OCR output (ABBYY FineReader 8.0) are downloaded

from the Internet Archive’s website 1. In total there are

363 document images including 113,008 English words. The

OCR output also contains bounding box information for

each recognized word. For evaluation purposes, a noise-free

version of the same text is downloaded from the Project

Gutenberg’s website 2. For labeling word bounding boxes,

the OCR output and the ground truth text are aligned using

a text alignment tool [15]. The estimated character accuracy

for the whole book is 98.4%. Punctuations are ignored at all

stages. A query test set is generated for each book. Each of

these sets contains 50 word images respectively. These word

images are randomly selected from the book itself among

the ones which appear at least three times in the ground truth

text. For the English book, the estimated OCR accuracy is

92.3% for the words in the query test set.

1The Internet Archives: Digital Library, www.archive.org, 2011
2Project Gutenberg: Free ebooks, www.gutenberg.org, 2011

B. Learning the Vocabulary Tree

The visual vocabulary is learned from the image features

extracted from the book itself. For this purpose 10% of the

pages in the book are randomly selected and the image

features extracted from these pages are used for building

the vocabulary tree. Once the vocabulary tree is built, image

features in the rest of the documents are discretized by

searching for the nearest neighbor in the vocabulary.

The size of the image vocabulary is an important parame-

ter for matching word images. In our experiments it is seen

that the use of a smaller vocabulary (of size 4K) yields better

results for matching points in word images.

C. Performance Evaluation

The aim is to investigate the effectiveness of the proposed

image search framework given a particular query. For this

purpose two types of experiments are performed. The first

one is to compare the regular text search over the OCR

output to the image search. Notice that image search is

case-sensitive whereas text search is not, because the image

features extracted from upper and lower case letter are

different because of the appearance. In order to make the

evaluation fair, we only focus on single word search where

text search is also case-sensitive. We do not employ any

advanced query evaluation techniques for both text and

image search, such as query expansion, stemming etc.

Table I
MAP SCORES COMPARING THE DOCUMENT IMAGE SEARCH AND OCR

TEXT SEARCH FOR THE ENGLISH BOOK

Book Search Method MAP
English Book OCR text search 0.923
English Book image search 0.93

Table I compares OCR text search to our image search

framework. The Mean Average Precision (MAP) measure is

used for evaluating ranked lists. OCR text search was not

successful in retrieving 8% of the true positives. Therefore

its MAP is estimated to be 92%. MAP score for the image

search is better than the regular text search for this particular

book even though the OCR accuracy is very high.

Table II
MAP SCORES OF THE PROPOSED IMAGE SEARCH FRAMEWORK FOR THE

TELUGU BOOKS

Book #words MAP
Telugu-1716 21142 0.93
Telugu-1718 4284 0.94

Table II shows the MAP scores for the Telugu books.

Since there is no OCR engine for Telugu, we can not

compare the image search with OCR text search for these

books. However, it is clear from the MAP scores that image

search is quite effective in searching Telugu books.

51



Figure 5. Example Telugu word images which are correctly retrieved using
our methodology.

Figure 5 shows the returned word images for the query

word at the top. Notice that connected component analysis

or contour based approaches would fail when word images

are underlined or connected by ink. We make use of the

sections of letters which are not corrupted by the noise. This

information provides strong evidence for being a match.

D. Computational Complexity

In our implementation, offline processing for a document

image (12 megapixel) takes about 30 seconds. 96% of the

processing is the extraction of SIFT descriptors [12]. The

remaining time is spent on locating corner points and dis-

cretization. Using a GPU implementation of SIFT [13], the

offline processing would take less than 5 minutes for a book

with 200 pages and 100MB of main memory is sufficient

for online queries. Efficient indexing of visterms ensures that

resolving a single query takes about 0.01 second.

IV. DISCUSSION AND FUTURE WORK

An image search framework is proposed for searching

noisy document images. It is shown that the retrieval ac-

curacy of the proposed framework is comparable to the

regular text search on books for which the OCR accuracy

is very high. Image search is also shown to be effective for

searching two Telugu books for which there is no OCR en-

gine available. Future work includes improving the retrieval

performance using other image features and repeating the

experiments for other languages and scripts.

ACKNOWLEDGMENT

We would like to thank Pramod Sankar and C. V. Jawahar

for providing us the Telugu datasets with ground truth.

This work was supported in part by the Center for In-

telligent Information Retrieval and in part by NSF grant

#IIS-0910884. Any opinions, findings and conclusions or

recommendations expressed in this material are the authors’

and do not necessarily reflect those of the sponsor.

REFERENCES

[1] S. Deorowicz. Solving longest common subsequence and
related problems on graphical processing units. Softw. Pract.
Exper., 40:673–700, July 2010.

[2] S. Feng and R. Manmatha. A discrete direct retrieval model
for image and video retrieval. In CIVR, pages 427–436, 2008.

[3] M. A. Fischler and R. C. Bolles. Random sample consensus: a
paradigm for model fitting with applications to image analysis
and automated cartography. Commun. ACM, 24:381–395,
June 1981.

[4] A. Kumar, C. V. Jawahar, and R. Manmatha. Efficient
search in document image collections. In Proceedings of the
8th Asian conference on Computer vision - Volume Part I,
ACCV’07, pages 586–595, Berlin, Heidelberg, 2007.

[5] D. G. Lowe. Distinctive image features from scale-invariant
keypoints. Int. J. Comput. Vision, 60:91–110, November
2004.

[6] D. Nister and H. Stewenius. Scalable recognition with a
vocabulary tree. In Proceedings of CVPR, pages 2161–2168,
2006.

[7] J. Philbin, O. Chum, M. Isard, J. Sivic, and A. Zisserman. Ob-
ject retrieval with large vocabularies and fast spatial matching.
In Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition, 2007.

[8] E. Rosten and T. Drummond. Machine learning for high-
speed corner detection. In European Conference on Computer
Vision, volume 1, pages 430–443, May 2006.

[9] K. P. Sankar and C. V. Jawahar. Probabilistic reverse anno-
tation for large scale image retrieval. In CVPR, 2007.

[10] P. Sankar K., C. V. Jawahar, and R. Manmatha. Nearest
neighbor based collection ocr. In Proceedings of the 9th IAPR
International Workshop on Document Analysis Systems, DAS
’10, pages 207–214, New York, NY, USA, 2010. ACM.

[11] T.Rath, R. Manmatha, and V. Lavrenko. A search engine for
historical manuscript images. In Proceedings of SIGIR’04,
pp. 297 -304, 2004.

[12] A. Vedaldi and B. Fulkerson. Vlfeat – an open and portable
library of computer vision algorithms. In Proc. of the 18th
annual ACM international conference on Multimedia, 2010.

[13] C. Wu. SiftGPU: A GPU implementation of scale invariant
feature transform. http://cs.unc.edu/∼ccwu/siftgpu, 2007.

[14] I. Z. Yalniz, I. S. Altingovde, U. Güdükbay, and Ö. Ulusoy.
Ottoman Archives Explorer: A retrieval system for digital
Ottoman archives. ACM Journal on Computing and Cultural
Heritage, 2(3):1–12, 2009.

[15] I. Z. Yalniz and R. Manmatha. A fast alignment scheme
for automatic OCR evaluation of books. In Proceedings
of the International Conference on Document Analysis and
Recognition (ICDAR), pages 754–758, 2011.

52


