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Abstract—The combination of multiple features or views
when representing documents or other kinds of objects usually
leads to improved results in classification (and retrieval) tasks.
Most systems assume that those views will be available both at
training and test time. However, some views may be too ‘expen-
sive’ to be available at test time. In this paper, we consider the
use of Canonical Correlation Analysis to leverage ‘expensive’
views that are available only at training time. Experimental
results show that this information may significantly improve
the results in a classification task.
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I. INTRODUCTION

The combination of multiple features to represent docu-
ments or other kinds of objects such as natural images to
improve classification results is a common technique widely
used in the literature [16, 12, 1, 14]. For example, when
dealing with documents, these features could be textual
(such as a bag-of-words computed with the output of an
OCR [6]), layout-based (such as a tree or a graph [13]),
visual (such as features based on texture analysis [5]), or
low-level features obtained, for example, after a connected
components analysis, such as average weight, height, or
density in different regions of the document [16]. In the
following, we will refer to any representation that can be
extracted from an object as a view of the object. Many
different views can typically be extracted from the same
object.

Several strategies exist to combine these views, ranging
from concatenating all the views (assuming they all can be
represented as feature vectors) and training a classifier in
the combined space, to more advanced frameworks such as
Multiple Kernel Learning [11].

What these strategies have in common is that they assume
that all the views of an object can be obtained both at
training and testing stages. However, this is not always
possible since some views may be ‘expensive’ and we cannot
afford to obtain them at test time for every object.

If we take the example of the textual features, running an
OCR on a single page may take up to a few seconds per
page when aiming at a high quality output, depending on
the quality of the input document, slowing down the whole
document distribution workflow. This OCR system could

also work with a per-page fee license, and so obtaining
a view that relies on OCR will be monetarily expensive.
In a completely different scenario, obtaining a view in
medical imaging may require an invasive procedure that is
discouraged.

We will refer to those views we cannot usually afford
at test time as costly views, and the ones we can afford at
test time as cheap views. Fortunately, in some scenarios, we
are able to collect, off-line, both the cheap and costly views
of some objects, and this can be exploited to train more
discriminative classifiers.

Some works exist about leveraging information not avail-
able at test time. In the recent [10], the authors explore the
use of weakly-paired multimodal data (i.e., the views may
have different numbers of items and not be perfectly aligned)
in a dimensionality reduction and transfer learning context.
Image and audio features are available at training time, and
the goal is to perform dimensionality reduction of the audio
features, which are the only ones available at test time. In
[8], Canonical Correlation Analysis (CCA) is used to retrieve
images based on text queries, where the image features are
no longer available at test time. In [2], a kernelized CCA is
also used to improve the clustering of images and text.

In this paper, our goal is to exploit these costly views,
that are available for some documents only at training time,
to train a more discriminative classifier that deals only with
cheap views at test time. We will use Canonical Correlation
Analysis to achieve this purpose. Although CCA has been
used in similar scenarios for retrieval [8] and clustering [2]
as we just mentioned, we are not aware of it being used in
classification tasks.

The main idea behind the method is to find a common
subspace between cheap and costly views and a set of
projection vectors to embed the views into that subspace.
After that, the cheap views can be projected into that
common subspace and be used to train a classifier. At test
time, we will project the cheap views into the subspace
and use the classifier without any need to access the costly
view. Since we used the costly views to find this subspace,
the projected cheap views are more discriminative than the
original ones.

The rest of the paper is organized as follows. Section
II overviews the CCA principles, as well as its limitations
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and extensions. Section III shows how to use CCA to
train a classifier that works in the cheap views domain but
exploits the costly views information available at training
time. Section IV deals with the experimental evaluation, and
finally Section V concludes the paper.

II. CANONICAL CORRELATION ANALYSIS

Canonical Correlation Analysis (CCA) is a well-known
tool for the analysis of multi-view data, which was first
introduced by Harold Hotelling in 1936 [9]. CCA and
its variants have been used, for example, in unsupervised
tasks such as retrieval [8], clustering [2], or supervised
dimensionality reduction [7].

Let us first consider a set of N unlabeled training samples,
and let A ∈ R

d1×N and B ∈ R
d2×N be two views of the data

represented with column feature vectors. The dimensionality
of the vectors in A and B may be different. Without loss of
generality, we will assume that A is the cheap view and that
B is the expensive view of the samples. Let us also define
the covariance matrices Caa = AA′, Cbb = BB′, Cab = AB′,
and Cba =C′ab.

The goal of CCA is to find a projection of each view that
maximizes the correlation between the projected representa-
tions. This can be expressed as:

argmax
a,b

a′AB′b√
a′AA′a

√
b′BB′b

=
a′Cabb√

a′Caaa
√

b′Cbbb
, (1)

which can be rewritten as

argmax
a,b

a′Cabb, (2)

subject to the constraints a′Caaa = 1 and b′Cbbb = 1.
Here, a ∈R

d1 and b ∈R
d2 are the projections that embed

the data from A and B into a one-dimensional common
subspace where the correlation is maximal. Usually we
will be interested in a subspace of k dimensions instead
of only one. To do so, we will need to solve Equation (1)
k times to obtain the projection vectors {a1,a2, . . . ,ak} and
{b1,b2, . . . ,bk}, subject to them being uncorrelated.

To solve Equation (1), we first rewrite it modeling the
constraints with Lagrangian multipliers. Then we take partial
derivatives with respect to a and b, set them equal to 0 and
solve the system [8]. Solving for a leads to the following
symmetric eigenvalue problem:

Zak = λ
2
k ak, (3)

with Z =C−1
aa CabC−1

bb Cba.
Solving Equation (3) gives the {a1,a2, . . .ak} projection

vectors that project the cheap view A into the k-dimensional
common subspace. Similarly, we can solve for b and arrive
to an equation analogous to (3) to obtain the {b1,b2, . . .bk}
projection vectors that project the expensive view B into the
k-dimensional common subspace. Note that, since we will
only project the cheap view into the common subspace (as

the expensive view will not be available at test time), we
only need to solve for the a’s.

A. Limitations and extensions of the CCA

As presented, CCA suffers from two important limita-
tions. First, it is restricted to only two views, and, second, it
is restricted to vectorial data. Both limitations can be lifted
using common CCA extensions.

To solve CCA using multiple views, the cross-covariance
matrices can be combined to form an extended matrix.
Solving a generalized eigenvalue problem that makes use
of this matrix yields the projection vectors of each view [2].

When data is not in vectorial form (such as documents
represented with a layout graph, or descriptors based on
variable-length sequences), or is not linearly separable, a
kernelized CCA (KCCA) can be used in the kernel space
[8]. This follows a formulation very similar to the original
CCA, although a regularization factor must be added to
avoid trivial solutions [8].

III. LEARNING WITH CCA

In this section we will first review the process of training
and classifying when only two views are available, one
cheap and one costly. We will assume that we have access
to a set of objects where both views Ucheap and Ucostly are
available. Note that the labels of such documents are not
needed. We also have access to the cheap view of a set of
objects, Scheap, where the labels l are available.

The training process is explained in Algorithm 1. First,
the common subspace between the cheap and costly views
is learned using the unsupervised data. This produces a set
of projection vectors with which the supervised data Scheap

is projected into the common subspace. Then, a classifier
(for example an SVM) is learned in this space.

The classification process is explained in Algorithm 2.
A new unlabeled sample xcheap is first projected into the
common subspace using the learned projections, and then
classified using the trained classifier.

In the case of non-vectorial representations, CCA can be
easily replaced with KCCA in Algorithm 1. This can be
trivially extended to more views. For example, assuming we
have m cheap views and n costly views, at train time, CCA
in Algorithm 1 will return m+ n projections, one for each
view. We will project only the m cheap views with their
corresponding projection and train one independent classifier
for each of the projected cheap views, m in total.

At test time, we will project each of the m cheap views
with their projection and classify each one with their classi-
fier. The final score can be computed, for example, averaging
the scores of the m classifiers.

IV. EXPERIMENTS

A. Experimental setup

Unfortunately, we are not aware of any public documents
dataset where multiple views could be easily exploited.
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Algorithm 1 Train classifier

Input: Ucheap ∈ R
d1×N , cheap view of the unsupervised

data,
Ucostly ∈ R

d2×N , costly view of the unsupervised data,
k, s.t. k ≤ min(d1,d2), dimensionality of the embedded
space
Scheap ∈ R

d1×M , cheap view of the supervised data, and
L ∈ R

M , labels of the supervised data.
Output: a∈R

k×d1 , the projection matrix that embeds S into
the common subspace of k dimensions, and
W ∈ R

k, the trained classifier in the embedded space.

1- Obtain the projections of the cheap view into the
common subspace with CCA. The projections of the
costly view, b, can be discarded:
[a,b] =CCA(Ucheap,Ucostly,k)
2- Project the supervised data into the subspace:
P = a ·Scheap

3- Train a classifier in the embedded space:
W = TrainClassi f ier(P,L)

Algorithm 2 Classify sample

Input: xcheap ∈ R
d1 , cheap view of an unlabeled sample to

classify,
a ∈ R

k×d1 , the projection matrix that embeds scheap into
the common subspace of k dimensions, and
W ∈ R

k, the trained classifier in the embedded space.
Output: l, the label of the input document x.

1- Project xcheap into the embedded subspace:
P = a · xcheap

2- Classify the sample:
l =Classi f y(P,W )

Therefore, all our experiments have been carried out in an in-
house dataset. This in-house dataset comes from real-world
data, and contains approximately 40,000 document images
split into 181 categories, mostly letters and forms. The
number of documents in each category varies significantly,
from as few as 5 documents in one category to as many as
4,000 in another.

For each document, two views are available. First, the
cheap view, a multi-scale runlength histogram of 1,512
dimensions. This histogram captures the visual appearance
of the page at several positions and scales, providing some
basic structural information. Second, the costly view, a bag-
of-words histogram of 5,000 dimensions constructed with
the text output of an OCR application. The OCR bag-of-
words histogram is the costly view both because of the
economic costs associated with the licensing of a third party
software, and because it takes up to a few seconds per page
to obtain the descriptor. The runlength histograms, however,

can be computed in a few tens of milliseconds.
Both histograms are L1 normalized and then square

rooted. It has been shown that square rooting the histograms
when using a linear kernel corresponds to an explicit em-
bedding of the Bhattacharyya similarity [15], significantly
improving the results at virtually no cost.

As we will see in the experiments, the textual bag-of-
words has a significantly better accuracy than the visual
features. However, the computational cost and a per-page
fee makes its use for all documents inviable at test time.

We divide the documents in 3 different sets:
Test set: The test set contains approximately 100 docu-

ments of each class. For some categories this is not possible
since they contain less documents, but we ensure that it
contains at least one document of each category. Only the
cheap view (runlengths) is available.

Supervised training set: We vary the size of the super-
vised training set, from 5 to 20 documents per class. Only
the cheap view is available, but we have access to the true
labels of the documents.

Unsupervised training set: The rest of the documents,
combined with the supervised training set, compose the
unsupervised training set. Both cheap and costly views are
available, but the labels of the documents are not available.

We repeat the experiments with 5 different test/supervised
training/unsupervised training partitions and average the
results. For computing the CCA projections, we used the
code available at [3]. For the supervised classification, we
used a linear SVM trained with Stochastic Gradient Descent
[4]. Since we square rooted the vectors, this is equivalent to
using a SVM with a Bhattacharyya kernel.

We perform two different experiments. The first one is
standard classification without rejection, where we report the
mean class accuracy, i.e., computing the accuracy of each
category independently and then averaging the results. When
dealing with very unbalanced categories like in this dataset,
the mean class accuracy gives a more meaningful result than
the mean document accuracy.

In the second experiment we introduce rejection: we only
assign a label to a document if the classification score
is higher than a threshold, and otherwise we reject the
document. This can ensure a very high classification rate,
although it may lead to the rejection of many documents.
To represent these results we use accuracy-coverage plots,
reminiscent of the precision-recall plots used in retrieval.
These plots show what is the expected coverage (i.e., per-
centage of documents that we label, correctly or not) when
aiming at a given average classification rate.

B. Classification without rejection

Results using 5, 10, and 20 supervised training samples
per class can be seen in Figures 1-3. We plot the clas-
sification results using only the cheap, visual features, as
well as the results after embedding the samples into the
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Figure 1. Classification results using 5 training samples per class. The
text baseline (which cannot be computed in practice) is 73.07%
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Figure 2. Classification results using 10 training samples per class. The
text baseline (which cannot be computed in practice) is 79.21%
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Figure 3. Classification results using 20 training samples per class. The
text baseline (which cannot be computed in practice) is 82.51%

common subspace with CCA, as a function of the number
of dimensions of the subspace. The maximum number of di-

mensions is limited by the minimum number of independent
dimensions in the original views, in this case 1,370. This is
due to the fact that the runlength histograms contain a signif-
icant amount of zeros, limiting the number of independent
dimensions. Since we are also performing dimensionality
reduction, we also plot the classification results obtained
using PCA instead of CCA. In this case, the expensive view
is not used. Finally, we also report the results using the
text features. Note that these are the expensive features, and
would not be available at test time. This corresponds to a
hypothetical upper bound of the system. We can draw the
following conclusions:

Cheap vs. costly baselines: As expected, the costly
features perform significantly better than the cheap features.
This is essentially by design: a costly feature that performs
worse than a cheap one would probably not be considered
in the first place.

Visual vs. visual after CCA embedding: We can observe
how, in all three settings, using CCA can noticeably improve
the baseline results when using the maximum number of
dimensions available in the subspace. When performing
dimensionality reduction, we can significantly reduce the
dimensionality while still obtaining better results than the
baseline. This is particularly true in the case when few
supervised samples are available: with 5 samples per class,
we can reduce the descriptors down to 128 dimensions and
still obtain the same results as the baseline. However, when
using 20 documents per class for training, we can only
reduce down to 512 dimensions. This suggests that this
CCA embedding is particularly suited in the case where little
supervised data is available.

CCA vs. PCA embeddings: In all three settings, using
CCA for dimensionality reduction generally produces better
results than using PCA. The differences are very small when
reducing to a very low number of dimensions (and, in fact,
PCA performs slightly better than CCA at 64 dimensions
with 20 training samples per class), but increasing the
number of dimensions also increases the differences between
PCA and CCA. This is not unexpected, since one of the
main uses of CCA is precisely to perform a dimensionality
reduction. Note how, as in the previous case, the differences
also become smaller when using a larger number of super-
vised documents for the learning stage, supporting the idea
that CCA is particularly suited when few supervised samples
are available.

C. Classification with rejection

In practice, the classification results that we have observed
are not useful in a real system. Usually, rejection is inte-
grated in the system: if the score of a sample does not reach
a given threshold, the sample will not be classified in this
stage, and will be sent to a different pipeline, which will
probably use more expensive features or human intervention.
Typically, to guarantee a high accuracy, we set a high
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Figure 4. Accuracy-coverage plot – Top: 5 labeled training samples per
class. Bottom: 20 labeled training samples per class.

threshold, but then most of the documents will be rejected,
leading to a low coverage. On the other hand, setting a low
score will yield a high coverage, but the classification rate
will drop.

Figure 4 show accuracy-coverage plots for the visual
baseline as well as text baseline and the visual features
embedded in a 1,370 dimensional subspace with CCA, using
5 and 20 training samples per class. We can observe that:

i) Given an accuracy threshold, the coverage with CCA
is significantly larger than the visual baseline. Aiming at a
90% classification accuracy and using 5 training samples per
class, we can cover approximately 10% more of the dataset
when using CCA (4% to 14%). When using 20 training
samples per class, we can cover approximately 20% more
of the dataset (from 15% to 35%). Since all the rejected
documents will be sent to the more expensive pipeline with
textual features, these quantities can be directly translated
into savings.

ii) The visual CCA and the textual baseline perform very
similarly when the goal is to obtain a very high precision

accuracy. This is particularly relevant because it shows that,
depending on the objectives, the expensive view can be
replaced with the embedded cheap view without significant
loss.

V. CONCLUSIONS

In this paper we have shown how Canonical Correlation
Analysis (CCA) can be used to improve the accuracy in
a document classification task where some views of the
data are only available at the training stage, since they
are too ‘expensive’ to be obtained at test time. Finally,
we have shown how, in a system with rejection, CCA can
significantly increase the coverage over the baseline when
aiming at the same classification accuracy.

ACKNOWLEDGMENT

Albert Gordo and Ernest Valveny are partially sup-
ported by the Spanish projects TIN2009-14633-C03-03, and
CONSOLIDER-INGENIO 2010 (CSD2007-00018).

REFERENCES

[1] A. Behera, D. Lalanne, and R. Ingold. Combining color
and layout features for the identification of low-resolution
documents. IJSP, 2005.

[2] M. B. Blaschko and C. H. Lampert. Correlational spectral
clustering. In CVPR, 2008.

[3] M. Borga. Canonical correlation: a tutorial, 2001. http://www.
imt.liu.se/∼magnus/cca/.

[4] L. Bottou. SGD. http://leon.bottou.org/projects/sgd.
[5] J. F. Cullen, J. J. Hull, and P. E. Hart. Document image

database retrieval and browsing using texture analysis. In
ICDAR, 1997.

[6] D. Doermann. The indexing and retrieval of document
images: A survey. CVIU, 1998.

[7] Y. Gong and S. Lazebnik. Iterative quantization: A pro-
crustean approach to learning binary codes. In CVPR, 2011.

[8] D. R. Hardoon, S. Szedmak, and J. Shawe-Taylor. Canonical
correlation analysis; an overview with application to learning
methods. Technical report, Department of Computer Science,
Royal Holloway, University of London, 2003.

[9] H. Hotelling. Relations between two sets of variates.
Biometrika, 1936.

[10] C. Lampert and O. Kromer. Weakly-paired maximum covari-
ance analysis for multimodal dimensionality reduction and
transfer learning. In ECCV, 2010.

[11] G. Lanckriet, N. Cristianini, L. E. Ghaoui, P. Bartlett, and
M. Jordan. Learning the kernel matrix with semi-definite
programming. JMLR, 2004.

[12] L. Likforman-Sulem, P. Vaillant, and F. Yvon. Proper names
extraction from fax images combining textual and image
features. In ICDAR, 2003.

[13] S. Marinai, E. Marino, and G. Soda. Layout based document
image retrieval by means of xy tree reduction. In ICDAR,
2005.

[14] M.-E. Nilsback and A. Zisserman. A visual vocabulary for
flower classification. In CVPR, 2006.

[15] F. Perronnin, J. Sánchez, and Y. Liu. Large-scale image
categorization with explicit data embedding. In CVPR, 2010.

[16] C. Shin, D. Doermann, and A. Rosenfeld. Classification of
document pages using structure-based features. IJDAR, 2001.

37


