

Contents

- 1 Chatbot
- 2 Knowledge Graph
- 3 KG + Chatbot
- **4** Demonstration

01

Chatbot

- 1.1 Definition
- 1.2 Classification
- 1.3 Real-world Chatbots
- 1.4 Technologies and Challenges

Chatbot Definition

- Chatbot, a computer program which conducts a conversation via auditory or textual methods.
- Chatbots are often designed to convincingly simulate how a human would behave as a conversational partner, thereby passing the Turing test.
- Chatbots are typically used in dialog systems for various practical purposes including customer service or information acquisition.

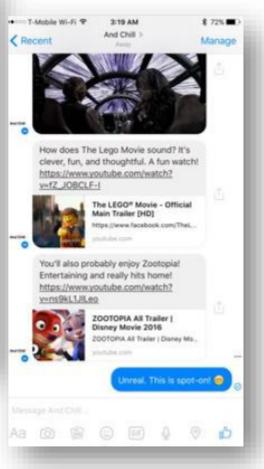
Why We Need?

- Get things done
 - set up alarm/reminder
 - take note

- find docs/photos/restaurants
- Assist your daily schedule and routine
 - commute alerts to/from work
- Be more productive in managing your work and personal life

Conversation
As
A
Platform

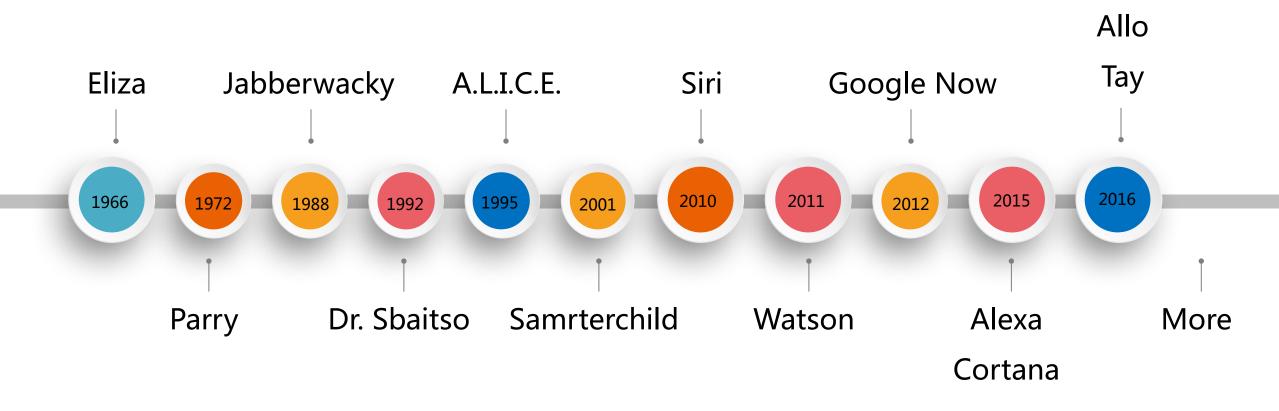
GUI vs CUI (Conversational UI)



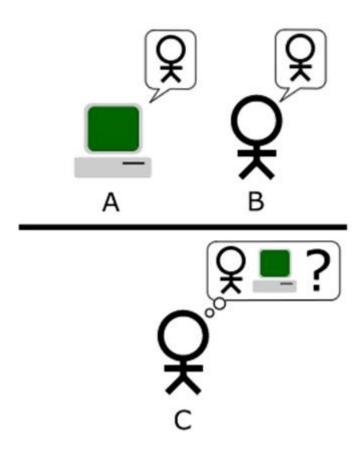
GUI vs CUI (Conversational UI)

	Website/APP's GUI	Msg's CUI
Situation	Navigation, no specific goal	Searching, with specific goal
Information Quantity	More	Less
Information Precision	Low	High
Display	Structured	Non-structured
Interface	Graphics	Language
Manipulation	Click	mainly use texts or speech as input
Learning	Need time to learn and adapt	No need to learn
Entrance	App download	Incorporated in any msg-based interface
Flexibility	Low, like machine manipulation	High, like converse with a human

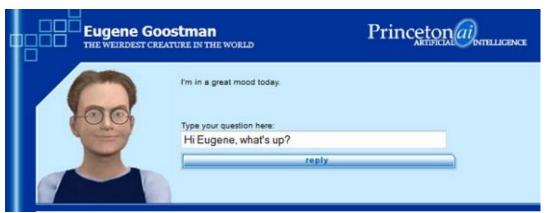
Chatbot History



Turing Test



5 min, 30 % cheat



01

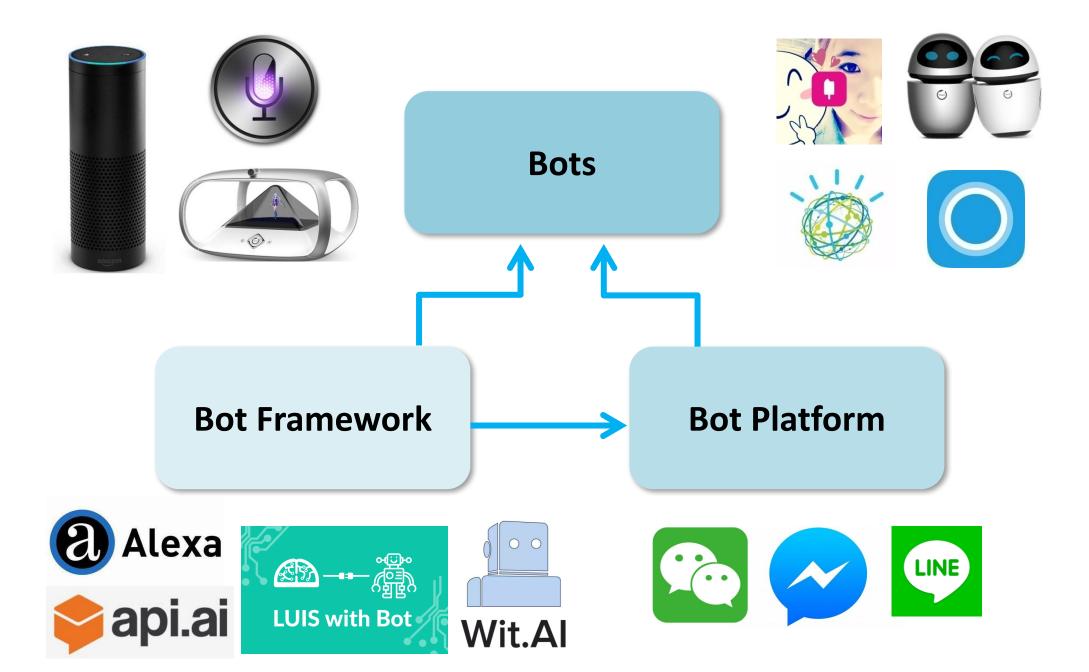
Chatbot

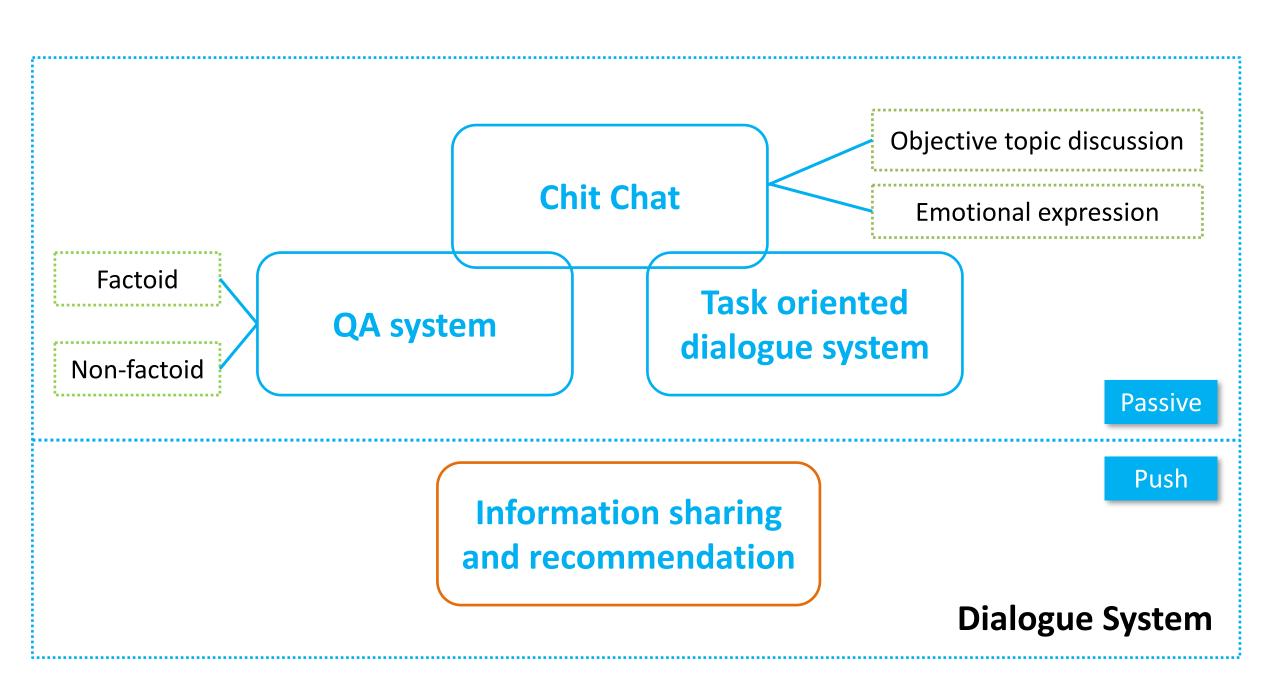
- 1.1 Definition
- 1.2 Classification
- 1.3 Real-world Chatbots
- 1.4 Technologies and Challenges

Chatbot Classification

For entertainment

For business





01

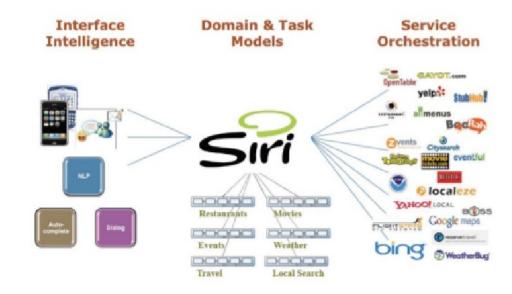
Chatbot

- 1.1 Definition
- 1.2 Classification
- 1.3 Real-world Chatbots
- 1.4 Technologies and Challenges

Siri

Personal Assistant

2010



VIV: the upgraded Siri, developed by Siri core members Dag Kittlaus and Adam Cheyer

INTELLIGENCE BECOMES A UTILITY

VIV

For life

For work

Cortana

Personal Assistant

2016

2010

Rinna

2015

Tay

2016

Zo

2016

Ruuh

2017

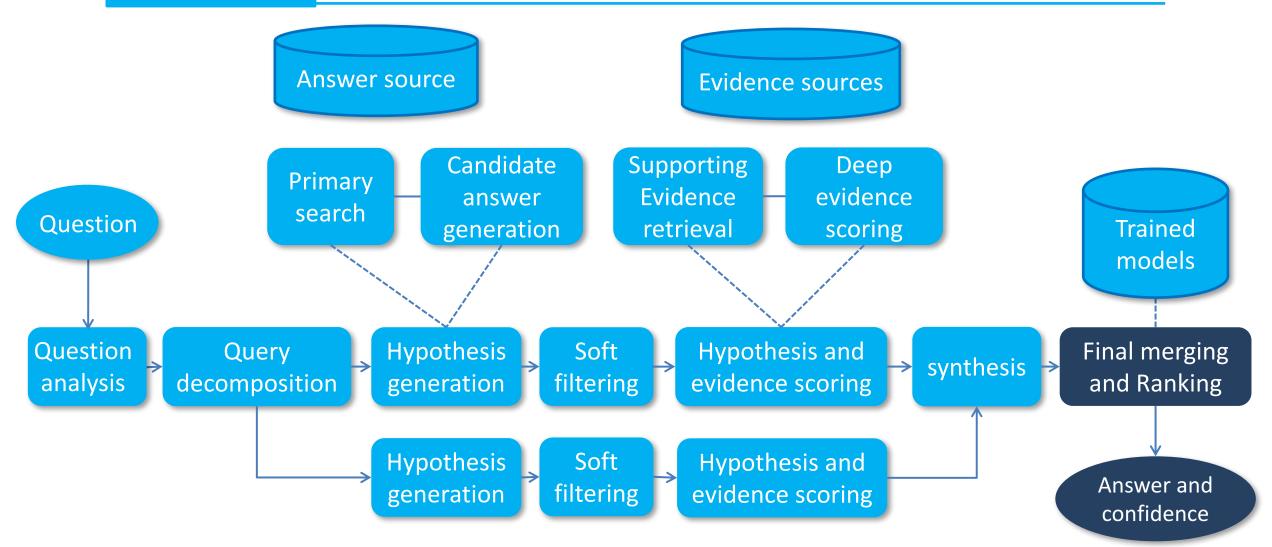
Knowledge Graph Deep QA

2011

- KG: Contains a variety of encyclopedias, dictionaries, news and other forms of knowledge
- **DeepQA**: NLU, classification, reasoning, hypothesis generation.

ROSS Intelligence

KBQA Killer Application in Chatbots - Watson

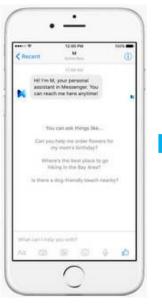


Architecture of Watson DeepQA

Deep semantic analysis

2013

- Acquisition of wit.ai in 2014
- DeepText
- Man-machine collaboration, training models using user inputs for recommendation.



recommendation

Amazon Echo Alexa

2014

Intelligent speaker build on Alexa

"beam-forming" technology

Google Allo

Personal assistant Deep learning

2016

Traditional Google speech system:

Initialize search engine after speech recognition and semantic processing, and return the result to the user

Allo:

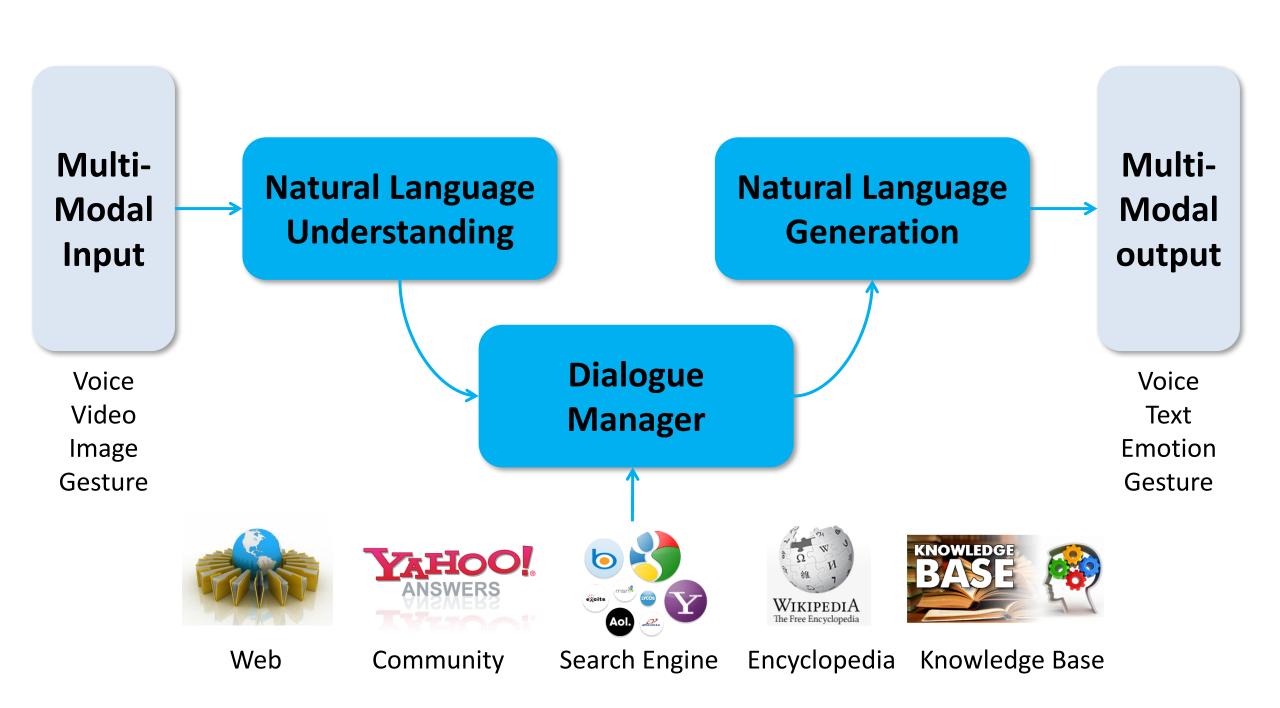
Self-learning ability, learning user's speech and behavior pattern, can automatically respond with short messages, mails, and comments

A new deep learning framework was implemented with user embedding, to learn user's behavior patterns

01

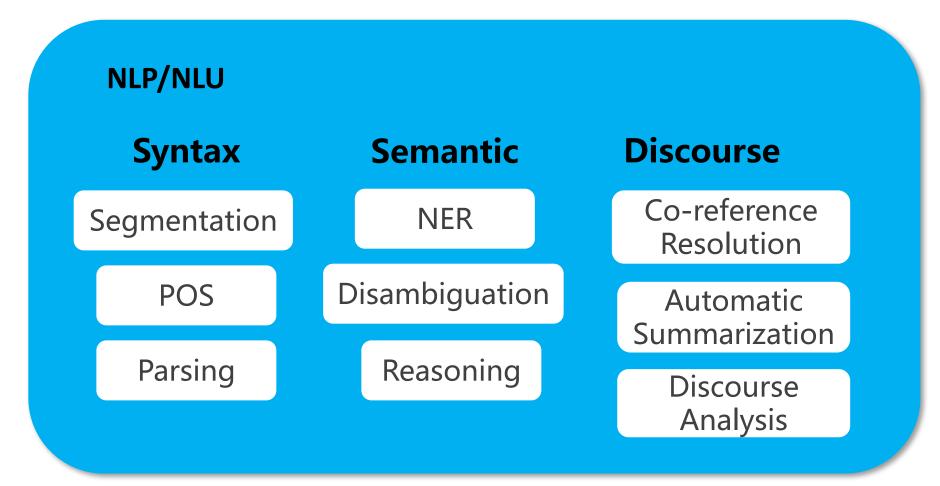
Chatbot

- 1.1 Definition
- 1.2 Classification
- 1.3 Real-world Chatbots
- 1.4 Technologies and Challenges

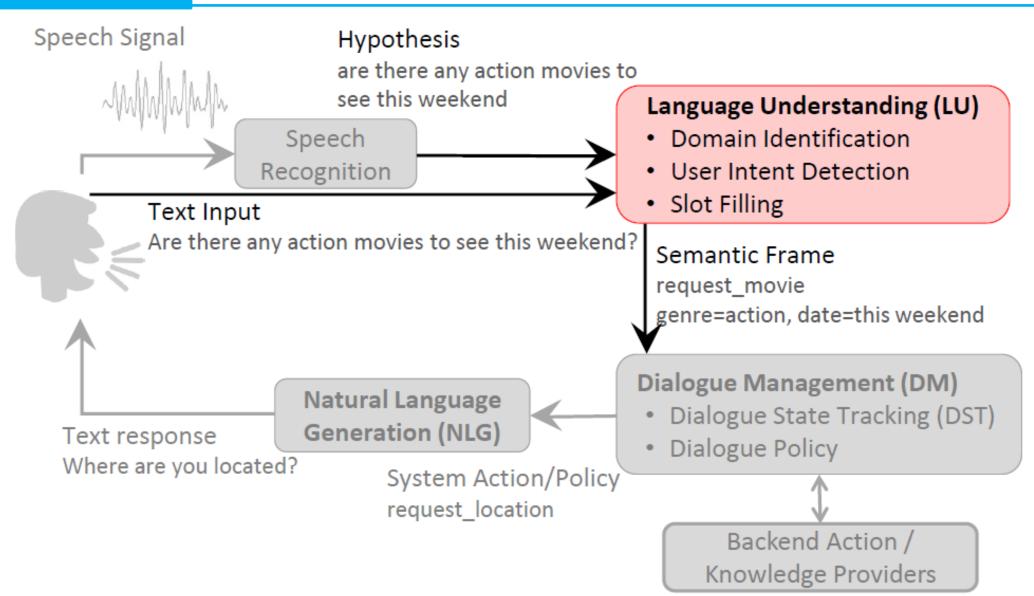


NLU Natural Language Understanding

Map recognition hypotheses to high-level semantic representations



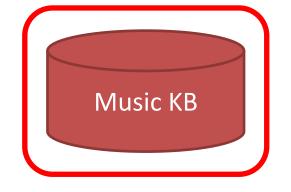
Framework



Domain Identification

User

Play a rock song by Jay Chou



Movie KB

Food KB

Domain Knowledge Base (KB)

Classification

Intent Detection

User

Play a rock song by Jay Chou

Music KB

MUSIC_PLAY

MUSIC_QA

MUSIC_PREFERENCE_MEMORY

Classification

Slot Filling

O Genre O O

O Artist

User

Play a rock song by Jay Chou

Music	Artist	Genre
Music 1	Jay Chou	jazz
Music 2	Jay Chou	rock

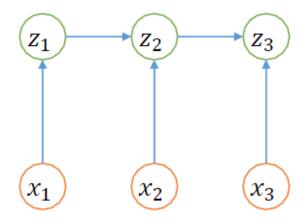
MUSIC_PLAY
Genre="rock"
Artist="Jay Chou"

Sequence Labeling

Slot Filling: CRF

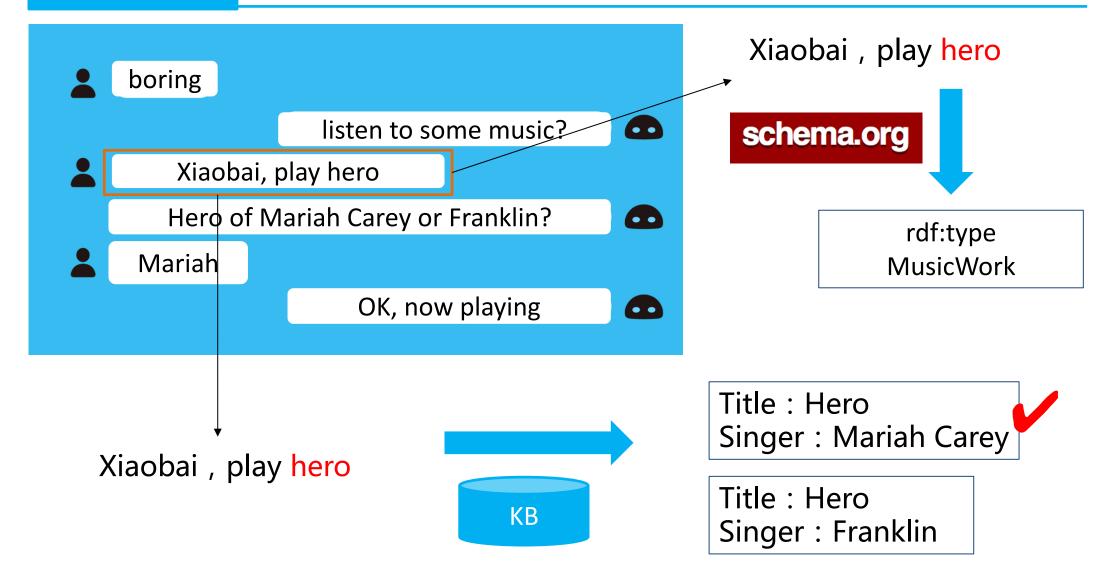
- $p(z_t|x_t, z_{t-1}) = \frac{1}{Z} \exp(\mathbf{w}_{z_t}^T f(z_{t-1}, z_t, x_t) + \mathbf{b}_{z_t})$
- $f(z_{t-1}, z_t, x_t)$ is the feature vector including state transition probability.
- CRF can model label transition probability, but it consider fixed window size.

Slot-filling	
Input: X_n	IPhone 7. 7 IPhones.
Output: \boldsymbol{Z}_n	<pre>IPhone{Brand} 7{Generation}. 7{Quantity} IPhones{Brand}</pre>



[Xu, et al. 2013]

NER+EL: NERL

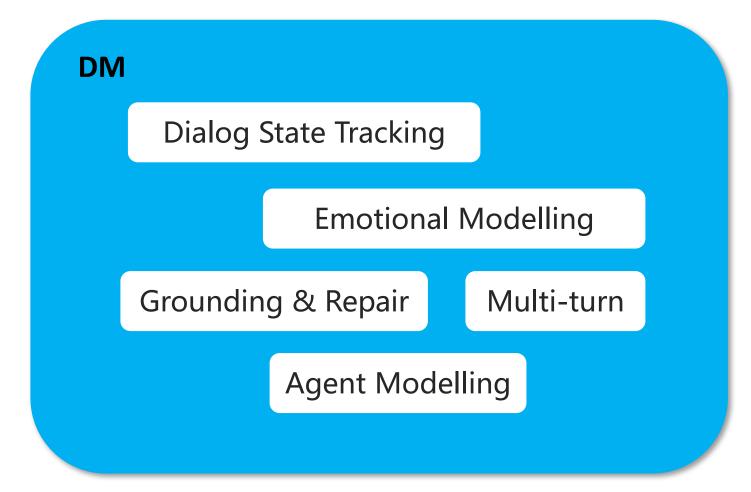


Challenges in NLU

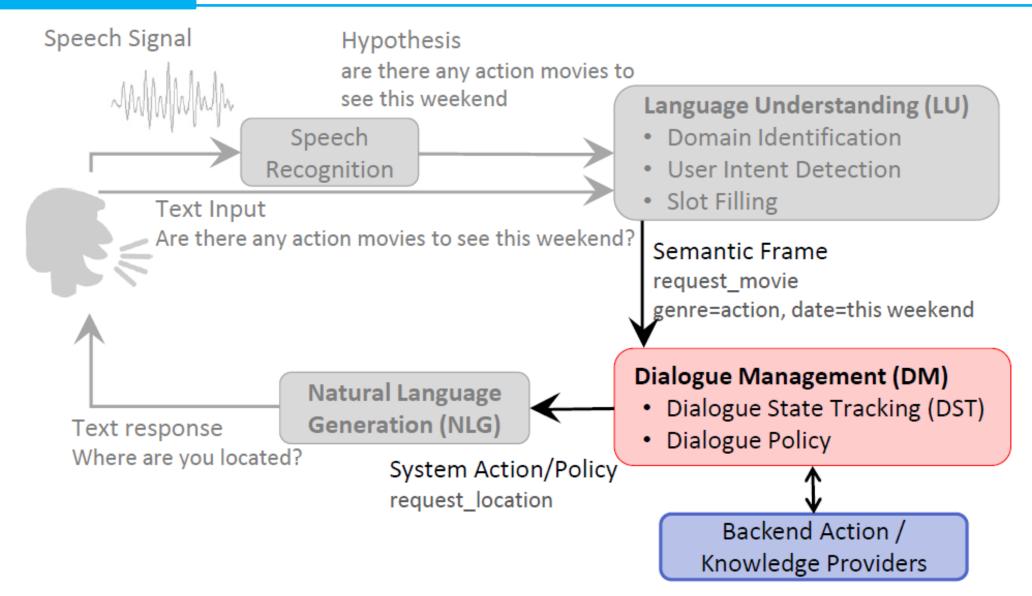
- Co-reference resolution and intention detection
- Variety of language meanings
- low quality of texts (short texts)
- ASR errors
- Difficult to find proper semantic representation

DM Dialogue Management

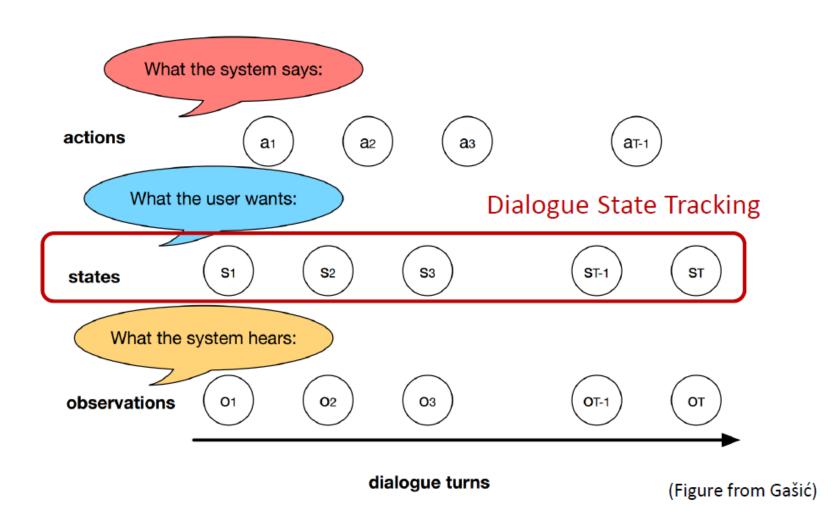
Update the dialogue state and decide what action(s) to perform



Framework



Elements of Dialogue Management

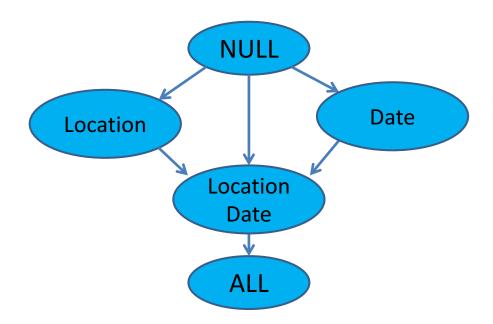


Dialogue State Tracking

Hand-Crafted States

User

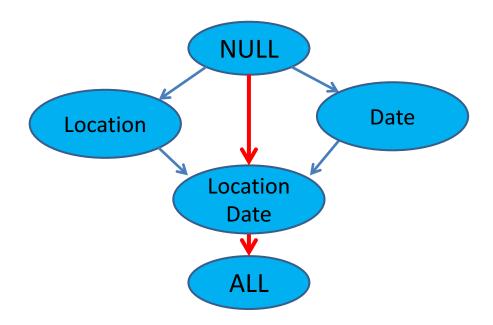
What's the weather in Gold Coast today?



Dialogue State Tracking

Hand-Crafted States

What's the weather in Gold Coast today?



Dialogue State Tracking

Handling Errors

User

What's the weather in Gold ??? today?

ASK_WEATHER

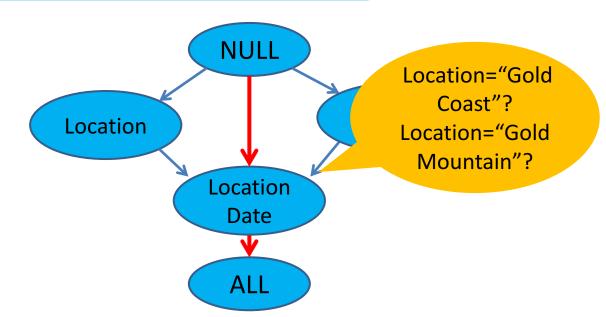
Date="today"

Location="Gold Coast"

ASK_WEATHER

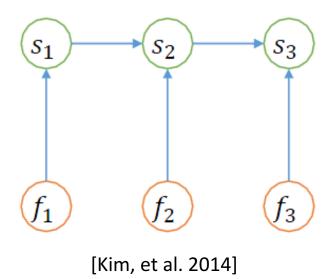
Date="today"

Location="Gold Mountain"

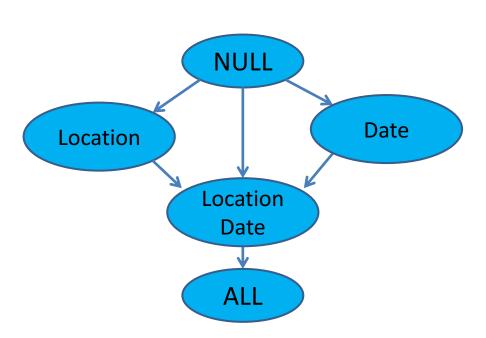


Dialogue State Tracking: CRF

- $p(s_n|s_{n-1}, a_{n-1}, u_n) = \frac{1}{z} \exp(\mathbf{w}_{s_n}^T f(s_{n-1}, s_n, a_{n-1}, u_n) + \mathbf{b}_{s_n})$
- $f(s_{n-1}, s_n, a_{n-1}, u_n)$ is the feature vector including state transition probability.



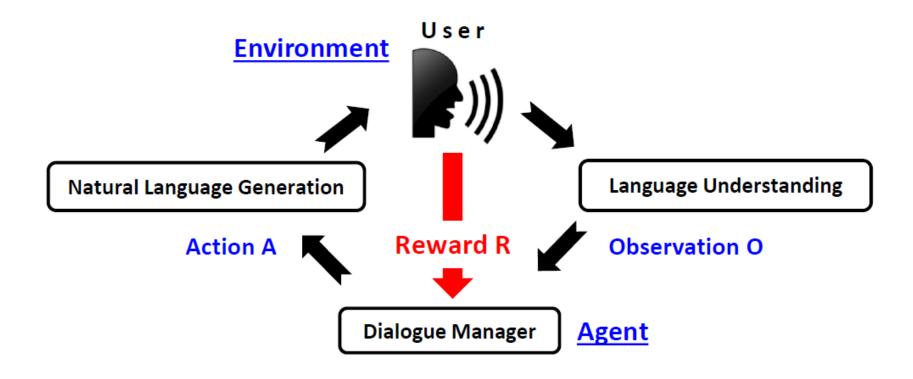
DST			
Input: s_1 , a_1 , u_2	s_1 ={Category=Phone}		
	Phone Shopping Dialogue (X=customer, Y=system)		
	$oldsymbol{X}_1$ I would like a new phone.		
	Y ₁ Which brand do you prefer?		
	$oldsymbol{X}_2$ Apple.		
Output: s_2	s_2 ={Category=Phone, Brand=Apple}		



Hand-Crafted Actions:

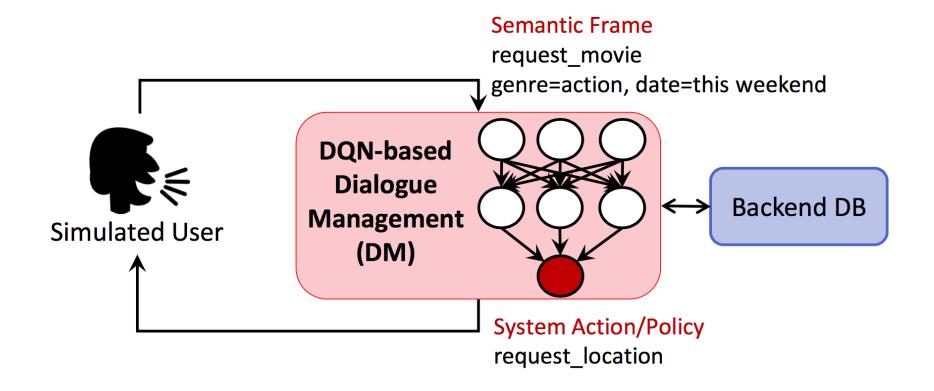
- Request(location)
- Request(date)
- Inform(location="Gold Coast", date="today")

Dialogue management in a Reinforcement Learning (RL) framework



Neural Dialogue Manager

Deep Q-network for training DM policy



Challenges in DM

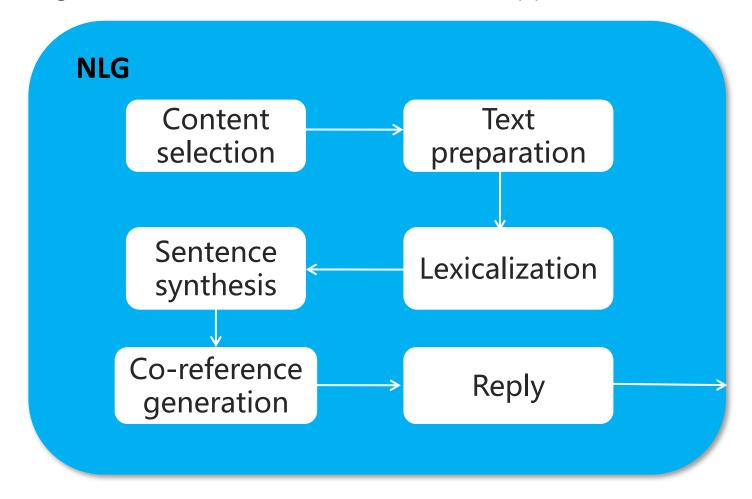
- Low coverage of heuristic dialog policy
- Massive dialog data needed for training due to state space explosion
- Domain knowledge and world knowledge are needed to guide meaningful replies

Trends in DM

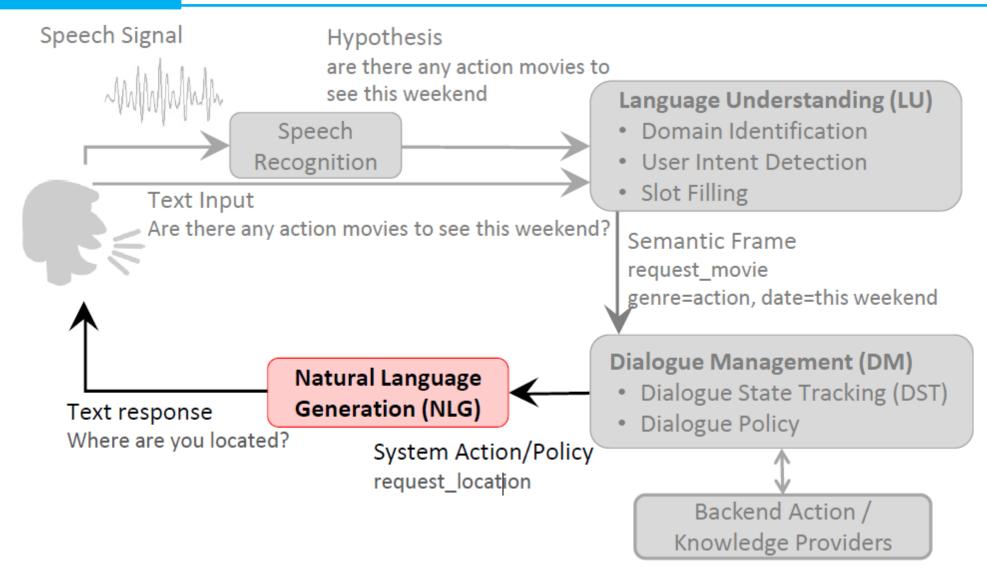
- One-shot Learning, Zero-shot Learning, for "cold-start" problem
- (Deep) Reinforcement Learning
- seqGAN

NLG Natural Language Generation

Find the best linguistic realization for the selected action(s)

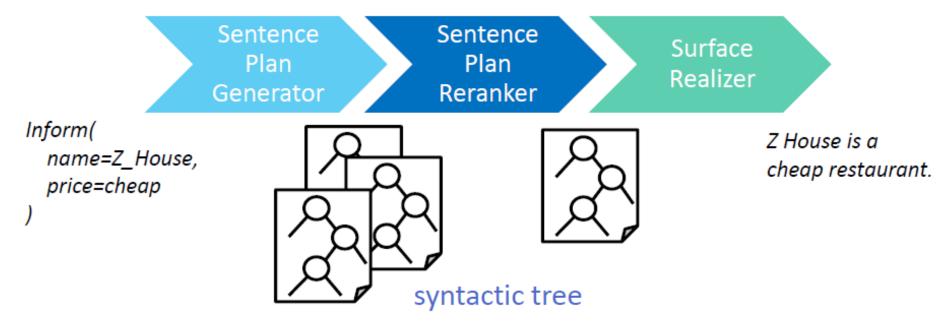


Framework



NLG: Plan Based Approach

Divide the problem into pipeline



[Walker, et al. 2002]

NLG: Template Based Approach

Define a set of rules to map frames to NL

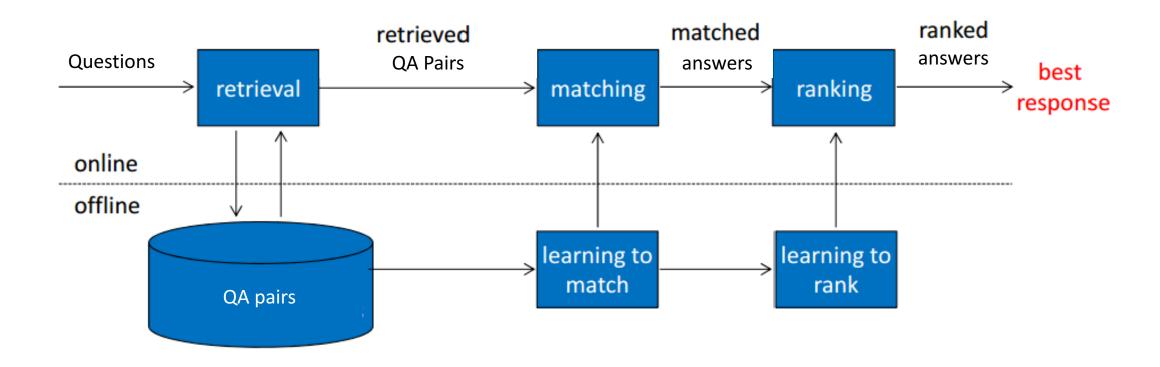
Semantic Frame	Natural Language	
confirm()	"Please tell me more about the product your are looking for."	
confirm(area=\$V)	"Do you want somewhere in the \$V?"	
confirm(food=\$V)	"Do you want a \$V restaurant?"	
confirm(food=\$V,area=\$W)	"Do you want a \$V restaurant in the \$W."	

Natural Language Generation

Hand-Crafted Actions:

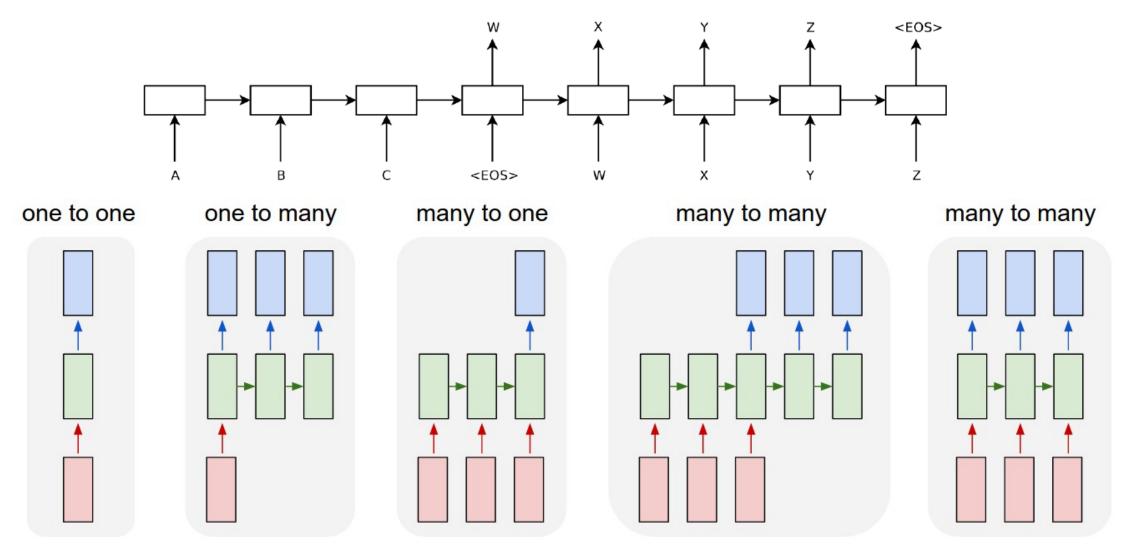
- Request(location)"Where is your location?"
- Request(date)"Which day?"
- Inform(location="Gold Coast", date="today")
 "Today's weather in Gold Coast is sunny"

NLG: Retrieval-based Approach



[Ji, et al. 2014]

NLG: Generation-based Approach



From: Andrej Karpathy

Pros and Cons

Pros:

- Good readability
- Good diversity with large datasets
- Easy to analyze and debug

Cons:

- Candidate selection
- Candidate ranking

Retrieval-based Approach Generation-based Approach

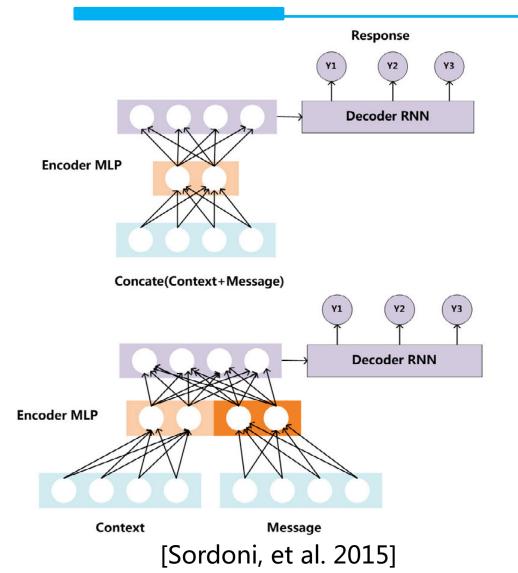
Pros:

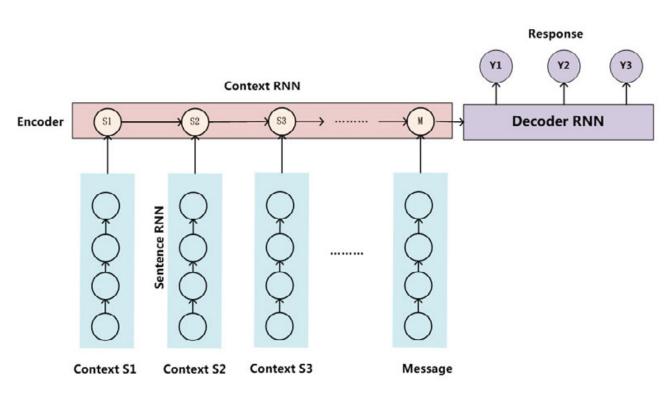
- Easy implementation
- Avoid cost to maintain a huge QA set
- E2E solution with no additional subtasks

Cons:

- Readability
- Diversity

Multi-turn





[Serban, et al. 2015]

Safe response

$$\hat{R} = \underset{R}{\operatorname{arg\,max}} \{ \log p(R \mid M) \}$$

$$\hat{R} = \underset{R}{\operatorname{arg\,max}} \{ (1 - \lambda) \log p(R \mid M) + \lambda \log p(M \mid R) \}$$

Message	S2S Response	MMI Response
How much time do you have here?	I don't know	Not long enough. Sorry, sir
I mean, we'd have to talk to him	I mean, I don't know	I mean, he's a good guy
I am ready to help	Come on, come on	I have something we need to talk about
I am losing my grip	I don't know what you are talking about	I'm the only one in the world

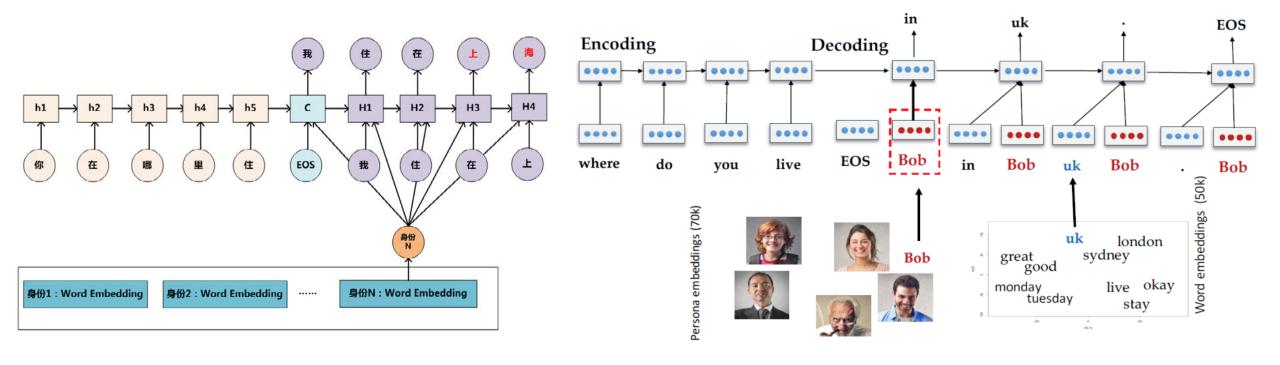
[Li, et al. 2015]

Coherent Personality


```
Where do you live now?
message
         I live in Los Angeles.
response
         In which city do you live now?
message
         I live in Madrid.
response
         In which country do you live now?
message
response England, you?
          Where were you born?
message
         I was born in Canada.
response
          Where are you from?
message
response England, you?
          Where did you grow up?
message
         I grew up in Texas.
response
         How old are you?
message
         16 and you?
response
         What's your age?
message
         18
response
          What is your major?
message
          I'm majoring in psychology
response
          What did you study in college?
message
         English lit.
response
```

Agent modelling

User modelling



[Li, et al. 2016]

Challenges in NLG

- Large search space
- Context modeling
- Hard interpretation of deep learning results

Trends in NLG

- Personality modeling & Context modeling
- Memory Network & Attention Models

Open Challenges in Chatbots

- Long vs. Short Conversations
- Open Domain and Closed Domain
- Incorporating Context
- Coherent Personality
- Intention and Diversity
- Emotion
- Evaluation and Benchmark

References

- [Xu, et al. 2013] Puyang Xu and Ruhi Sarikaya. Convolutional neural network based triangular crf for joint intent detection and slot filling. In Automatic Speech Recognition and Understanding (ASRU), 2013 IEEE Workshop on, pages 78–83. IEEE, 2013.
- [Kim, et al. 2014] Seokhwan Kim and Rafael E Banchs. Sequential labeling for tracking dynamic dialog states. In 15th Annual Meeting of the Special Interest Group on Discourse and Dialogue, page 332, 2014.
- [Walker, et al. 2002] Marilyn A Walker, Owen C Rambow, and Monica Rogati. Training a sentence planner for spoken dialogue using boosting. Computer Speech & Language, 16(3):409–433, 2002.
- [Ji, et al. 2014] Zongcheng Ji, Zhengdong Lu, and Hang Li, An Information Retrieval Approach to Short Text Conversation, arXiv preprint arXiv:14
- [Sordoni, et al. 2015] Alessandro Sordoni, Michel Galley, Michael Auli, ChrisBrockett, Yangfeng Ji, Meg Mitchell, Jian-Yun Nie, Jianfeng Gao, and Bill Dolan., Neural network approach to context-sensitive generation of conversational responses, NAACL-HLT 2015
- [Serban, et al. 2015] Iulian V Serban, Alessandro Sordoni, Yoshua Bengio, Aaron Courville, and Joelle Pineau, Building end-to-end dialogue systems using generative hierarchical neural network models, AAAI 2015
- [Li, et al. 2015] Jiwei Li, Michel Galley, Chris Brockett, Jianfeng Gao, and Bill Dolan, A diversity-promoting objective function for neural conversation models. arXiv preprint arXiv:15
- [Li, et al. 2016] Jiwei Li, Michel Galley, Chris Brockett, Jianfeng Gao, and Bill Dolan, A Persona-Based Neural Conversation Model. arXiv preprint arXiv:16

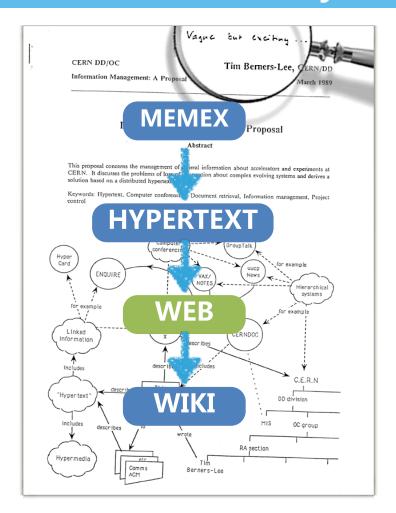
02

Knowledge Graph

- 1.1 KG Definition
- 1.2 The Scenarios of KG
- 1.3 Representative KGs

Web-Linked Information System

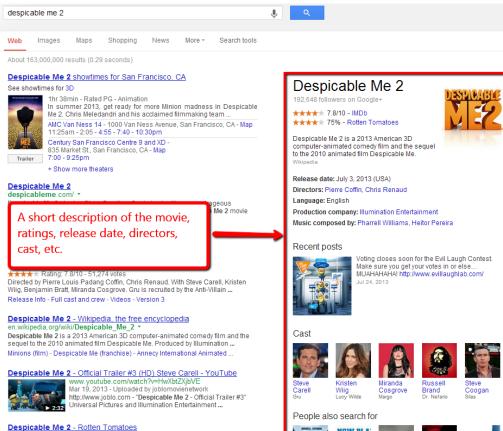
Linked Information System



...This is why a "web" of notes with links between them is far more useful than a fixed hierarchical system. Circles and arrows leave one free to describe the interrelationships between things in a way that tables, for example, do not. The system we need is like a diagram of circles and arrows, where circles and arrows can stand for anything.

Information Management: A proposal 1989.

Google Knowledge Graph: Things not Strings

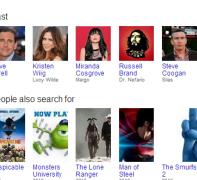


www.rottentomatoes.com/m/despicable_me_2/ -**** Rating: 75% - 162 reviews

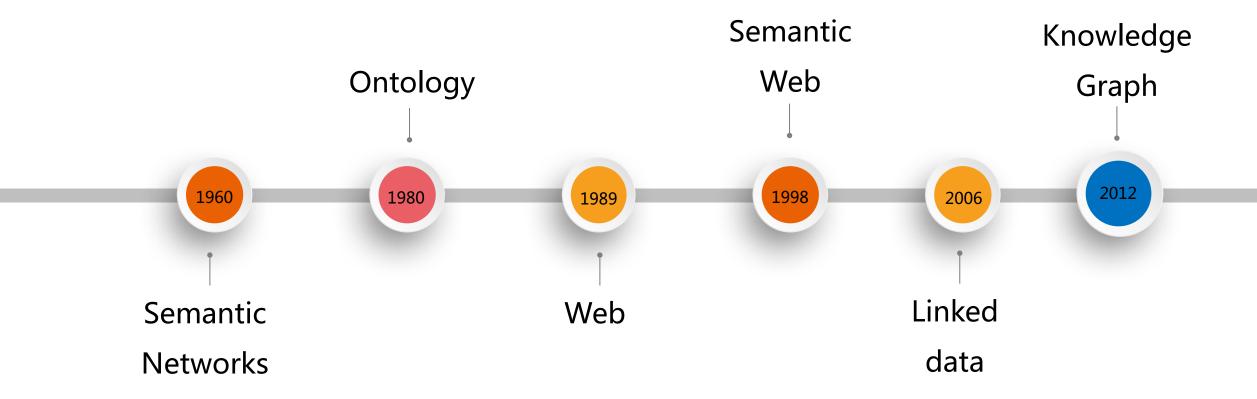
plenty of eye-popping visual inventiveness and a number of big...

NBCUniversal CEO: 'Despicable Me 2' Will Be Most Profitable Film in Universal's History

Review: It may not be as inspired as its predecessor, but Despicable Me 2 offers



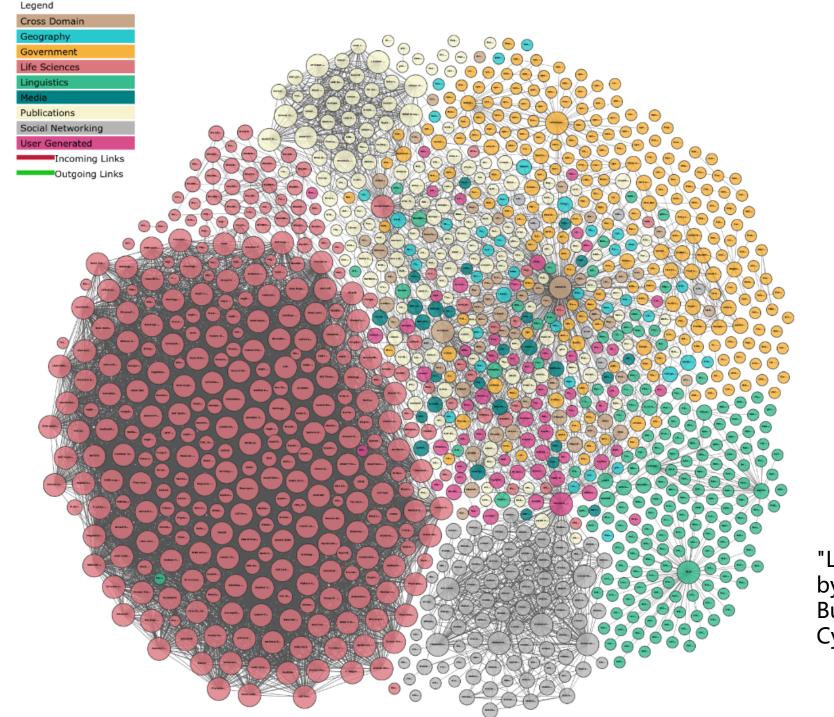
KG History



Knowledge representation and knowledge base

Multi-views of KG

- Web: create semantic links for data
- NLP: extract semantic and structured data from text
- KR: knowledge representation and processing via computers
- AI: human language understanding using KB
- DB: using graph database to store knowledge



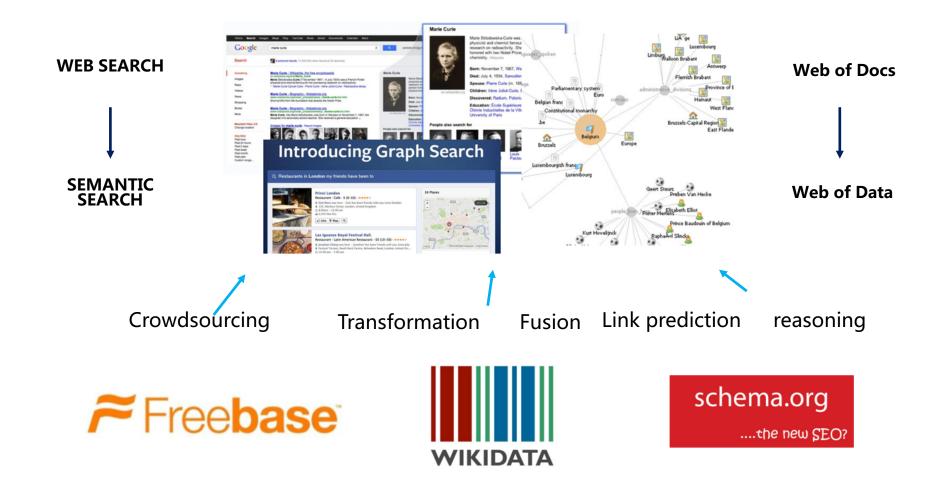
"Linking Open Data cloud diagram 2017, by Andrejs Abele, John P. McCrae, Paul Buitelaar, Anja Jentzsch and Richard Cyganiak. http://lod-cloud.net/"

02

Knowledge Graph

- 1.1 KG Definition
- 1.2 The Scenarios of KG
- 1.3 Representative KGs

KG for Searching



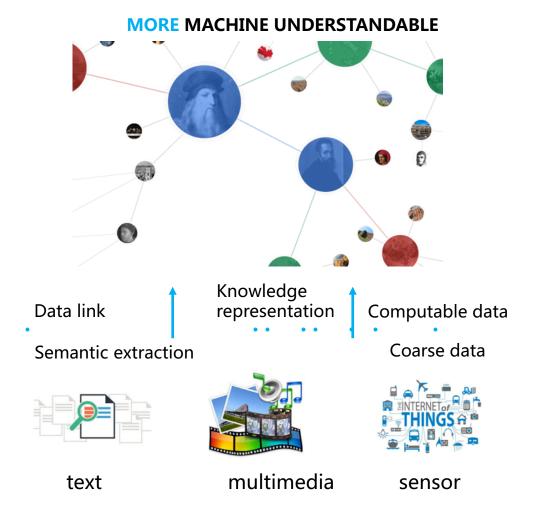
KG for QA

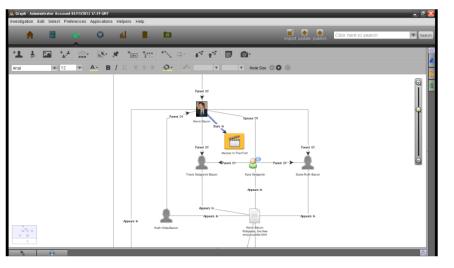
KG provides background knowledge bases for intelligent Bots and IOT devices

• • • • • •

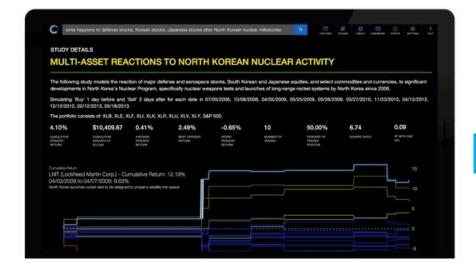
• • • • • •

KG for Decision Making





PALANTIR



KENSHO

KG for Common Sense Reasoning

Winograd Schema Challenge

I. The trophy would not fit in the brown suitcase because **it** was too **big (small)**. What was too **big (small)**?

Answer 0: the trophy Answer 1: the suitcase

II. The town councilors refused to give the demonstrators a permit

because they feared (advocated) violence. Who feared (advocated)

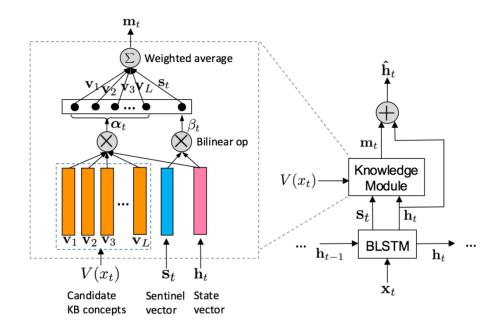
violence?

Answer 0: the town councilors Answer 1: the demonstrators

NLP: 50% → **NLP**+**KB**: >60% → **Pass line**: 90%

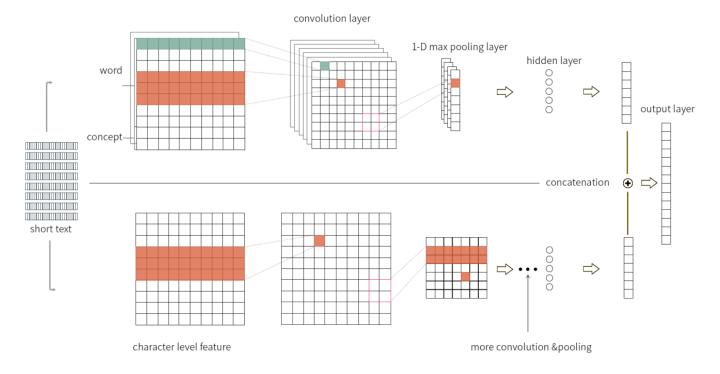
KG for Machine Reading

Improve machine reading tasks (entity extraction, event extraction) with KG and DNN.



[Yang, et al. 2017]

Improve short-text classification, by regarding concept knowledge as the inputs of neural networks



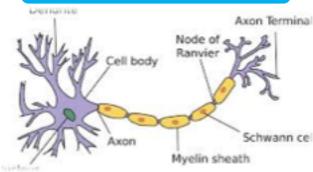
[Wang, et al. 2017]

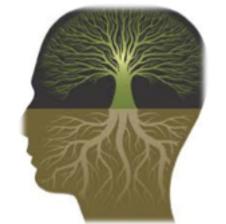
Smart AI vs. Knowledgeable AI

Smart AI perception

recognition

judgment





Human brain can conduct reasoning and understanding based on acquired knowledge

thinking

Knowledgeable

language

reasoning

Knowledge Graph

KG for AI: Unknown Difficulties

- Does symbolic memory of human continuous?
 - Is it necessary for vectorization of knowledge representation?
- Does symbolic memory of human structural?
- What is the acquisition and reasoning process of symbolic memory?

02

Knowledge Graph

- 1.1 KG Definition
- 1.2 The Scenarios of KG
- 1.3 Representative KGs

Open KGs

PKUBASE

NELL

schema.org

....the new SEO?

ConceptNet
An open, multilingual knowledge graph

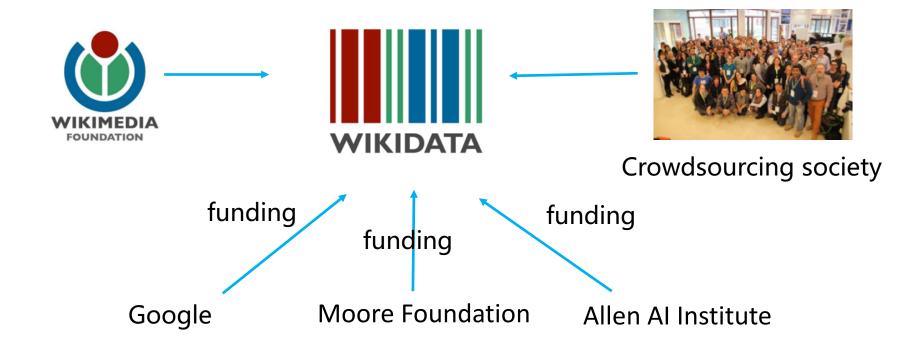
CN-DBpedia

Freebase

Free, and commercial open license agreements are allowed

Wikidata

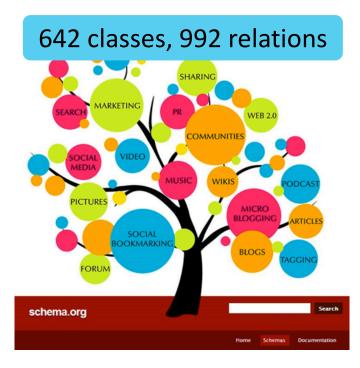
With the objective to build the largest free knowledge base



Schema.org

semantic markup: semantic data embedded in web, email and applications.

Open domain only



ConceptNet

Originated from Open Mind Common Sense project by Professor Marvin Minsky from MIT

In early versions, data is collected by experts, crowdsourcing and game.

latest version includes open domain strucutred data, including DBPedia, Wikinary, and Wordnet

References

- [Yang, et al. 2017] Yang, B., & Mitchell, T. M. (2017). Leveraging Knowledge Bases in LSTMs for Improving Machine Reading. Association for Computational Linguistics, 1436–1446.
- [Wang, et al. 2017] Wang, J., Wang, Z., Zhang, D., & Yan, J. (2017). Combining Knowledge with Deep Convolutional Neural Networks for Short Text Classification. IJCAI2017

03

KG + Chatbot

- 3.1 QA Introduction
- 3.2 Knowledge Based Question Answering (KBQA)
- 3.3 KBQA Applications in Chatbot

Why Question Answering

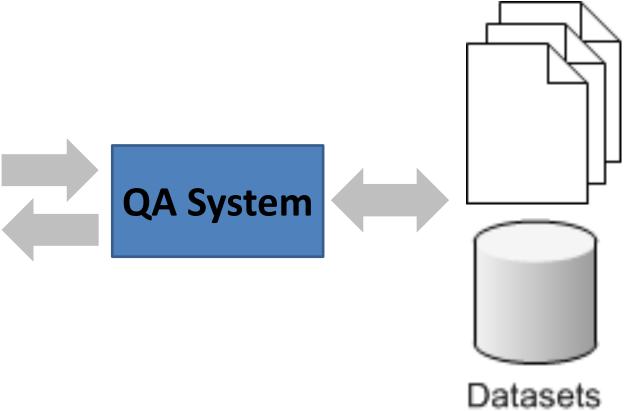
- Humans are built-in with natural language communication capabilities.
- Very natural way for humans to communicate information needs.
- The archetypal AI system.

What is Question Answering?

Knowledge Bases

Question: Who is the daughter of Bill Clinton married to?

Answer: Marc Mezvinsky



QA: Reality

Google

Watson

FB Graph Search

Siri

03

KG + Chatbot

- 3.1 QA Introduction
- 3.2 Knowledge Based Question Answering (KBQA)
- 3.3 KBQA Applications in Chatbot

QA Classification

IR-based QA

Community QA

Text REtrieval Conference (TREC)

Overview

Overview

Other

Evaluations

Information
for Active
Participants

Tracks

Past TREC
Results

Information

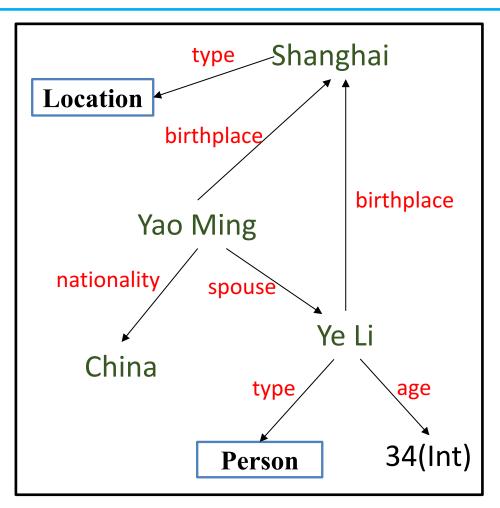
KB-based QA (KBQA)

KBQA

- Semantic parsing based KBQA
- Template based KBQA
- Deep learning based KBQA

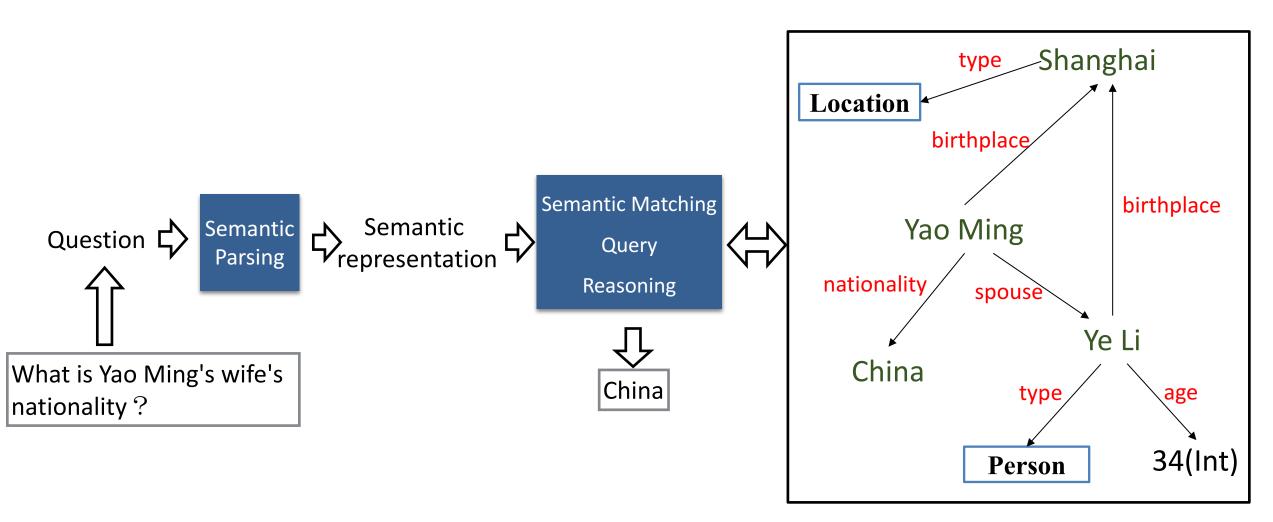
KBQA: Semantic Parsing based QA

What is Yao Ming's wife's nationality?



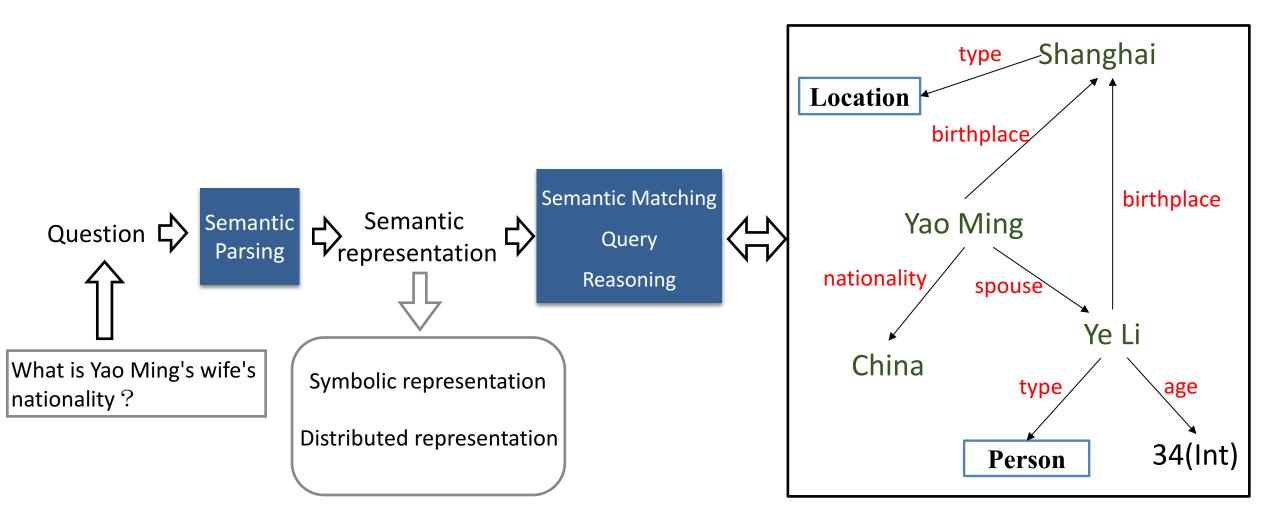
Knowledge Base

Traditional Semantic Parsing Method



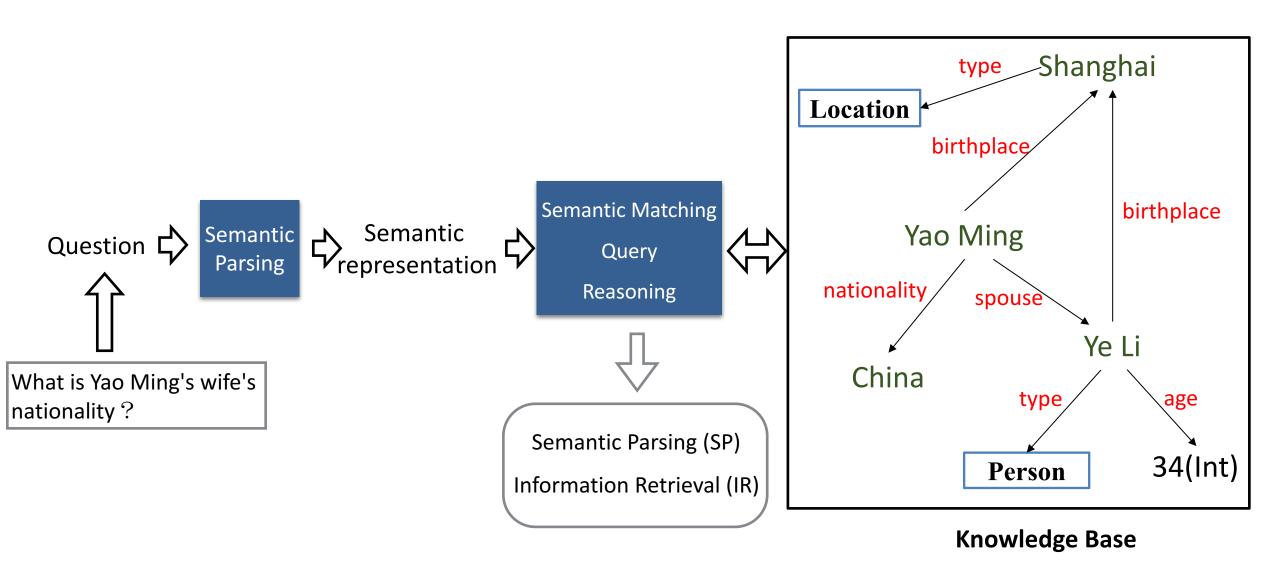
Knowledge Base

Traditional Semantic Parsing Method



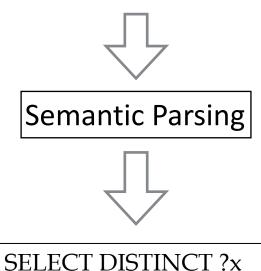
Knowledge Base

Traditional Semantic Parsing Method

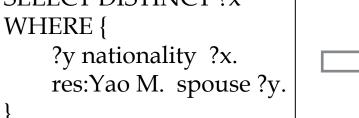


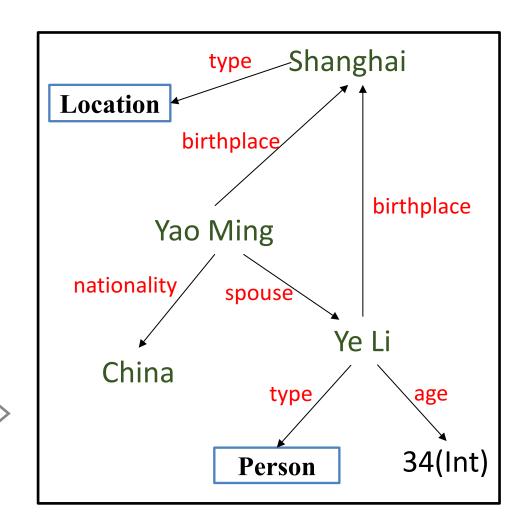
Semantic Parsing - Symbolic representation

What is Yao Ming's wife's nationality?



Query





Formal representation of Questions

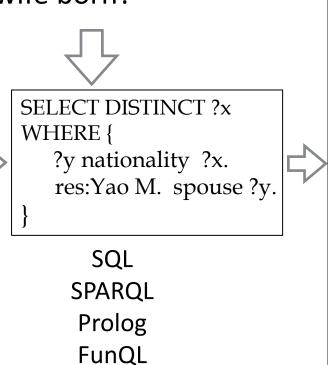
Where was Yao Ming's wife born?



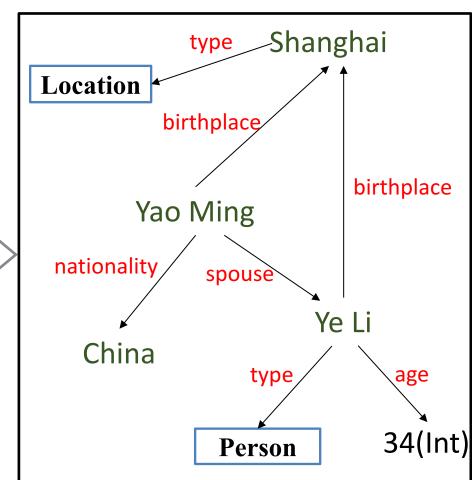
 λx . spouse(Yao M., y) Λ birthplace(y, x)

Logic Form

- Lambda Calculus
- DCS-Tree
- Fun-QL
- •

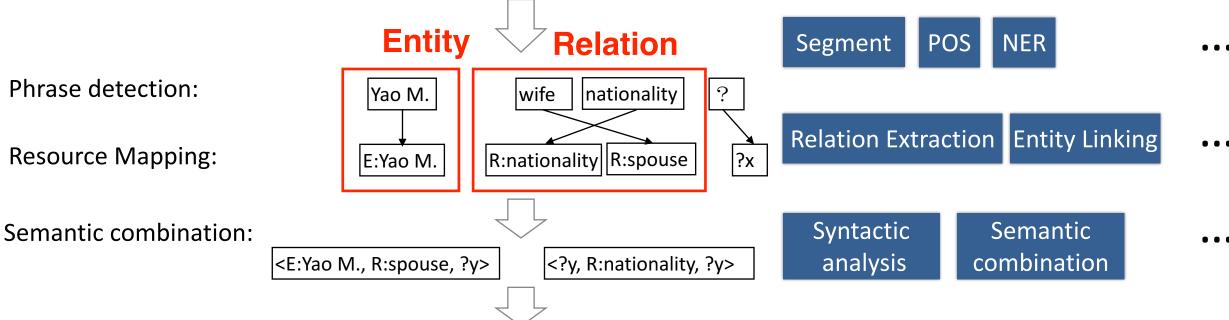


• • •



Main Steps

What is Yao Ming's wife's nationality?

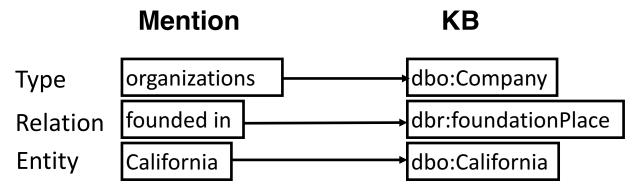


Query & Generation:

```
SELECT DISTINCT ?x
WHERE {
    ?y nationality ?x.
    res:Yao M. spouse ?y.
}
```

Two core problems

Mapping phrases to KB



• Dealing with Ambiguity

Which software has been developed by organizations founded in California, USA?

representation 2

representation 3

Some Other Semantic Parsing Methods

- Combinatory Categorical Grammars [Zettlemoyer, 2005]
- Shift-reduce Derivations [Zelle, 1995]
- Synchronous Grammars [Wong, 2007]
- Hybrid Tree [Lu, 2008]
- CFG-like Grammars [Clarke, 2010]
- CYK-like Grammars [Liang, 2011]

Hand-crafted Templates for KBQA

• [Unger et al. (WWW'12), Yahya et al. (EMNLP'12), Fader et al. (KDD'14), Yao and Durme, (ACL'14), Bast and Haussmann, (CIKM'15)]

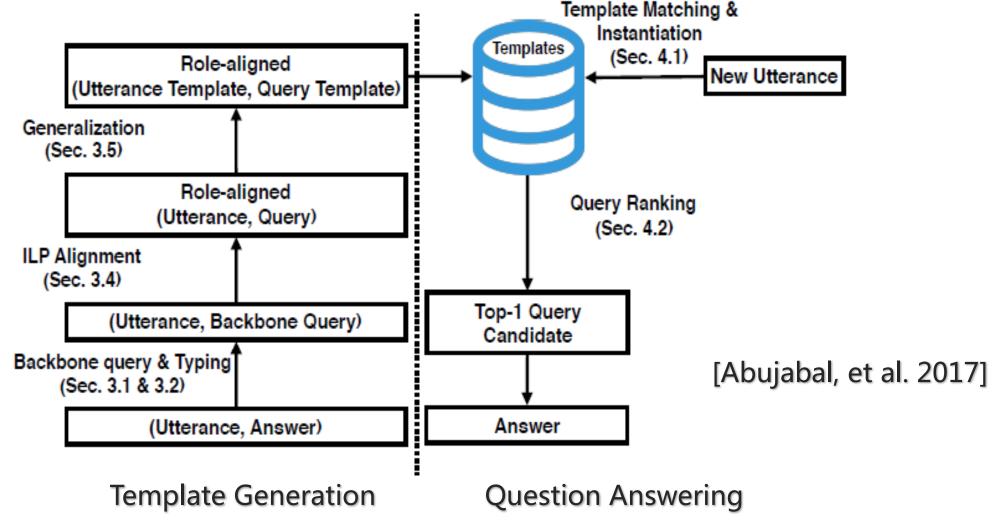
Question Template	Query Template	Example
Who VP _{PRED} NP _{ENT}	(?x, PRED, ENT)	"Who founded Google?"

Problems:

- 1. Human Expertise
- 2.Coverage

KBQA: Template Based KBQA

QUINT Framework



Template Generation – Dependency Parsing

• Input:

(Q) utterance: u = "Which actress played character Amy Squirrel on Bad

Teacher?"

- (A) Au = {LucyPunch}

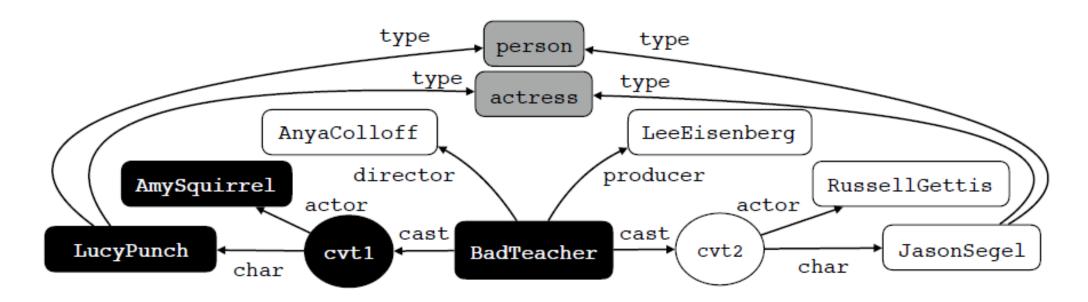
Dependency tree:

- (1) Can capture long range dependencies between the tokens of an utterance
- (2) Gives great flexibility allowing QUINT to skip irrelevant tokens.

$$A_u = \{LucyPunch\}$$

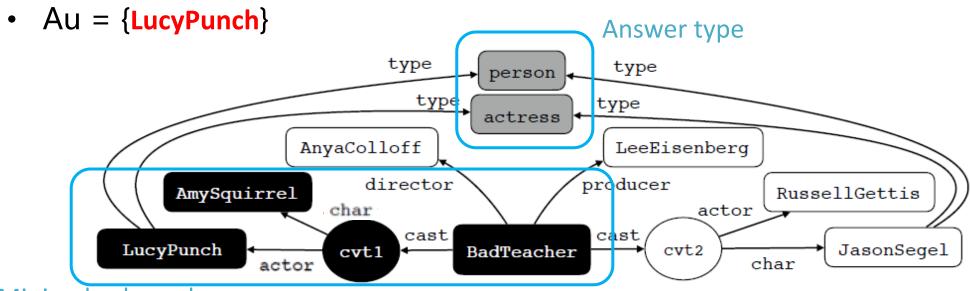
Template Generation – KG fragment

- Using S-MART to NER Linking with Freebase.
- utterance: u = LucyPunch's role in BadTeacher as AmySquirrel
- Au = {LucyPunch}

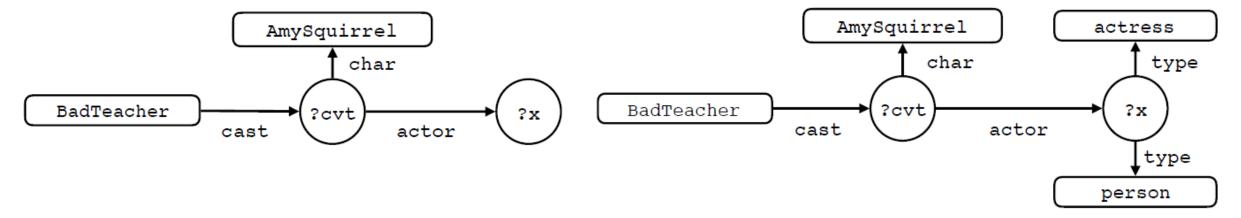


Get Minimal Subgraph from KG

utterance: u = LucyPunch's role in BadTeacher as AmySquirrel

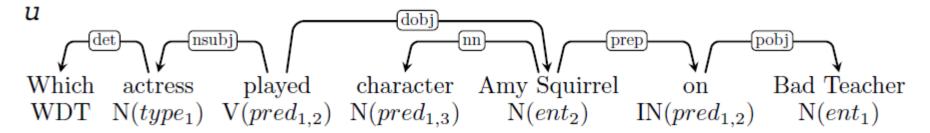


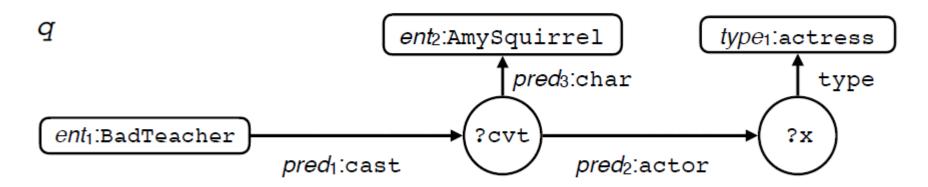
Minimal subgraph



Utterance-Query Alignment

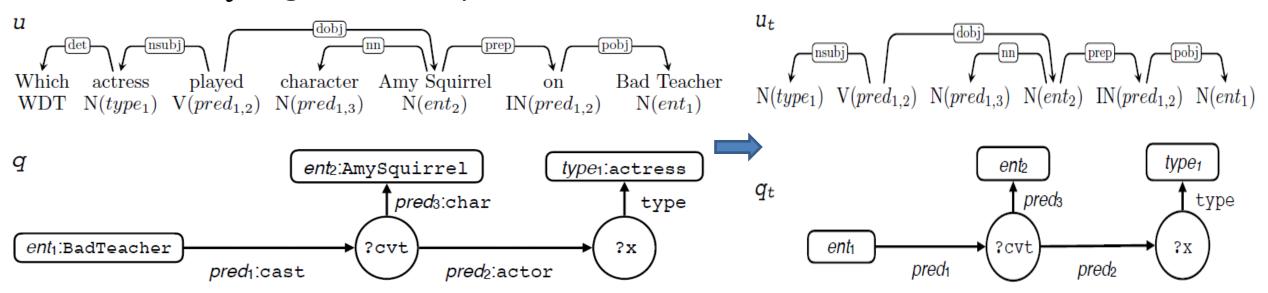
- utterance: u = LucyPunch's role in BadTeacher as AmySquirrel
- Au = {LucyPunch}
- Aligned utterance query pair : (u,q,m) :
 - e.g. "played on" and "cast.actor"



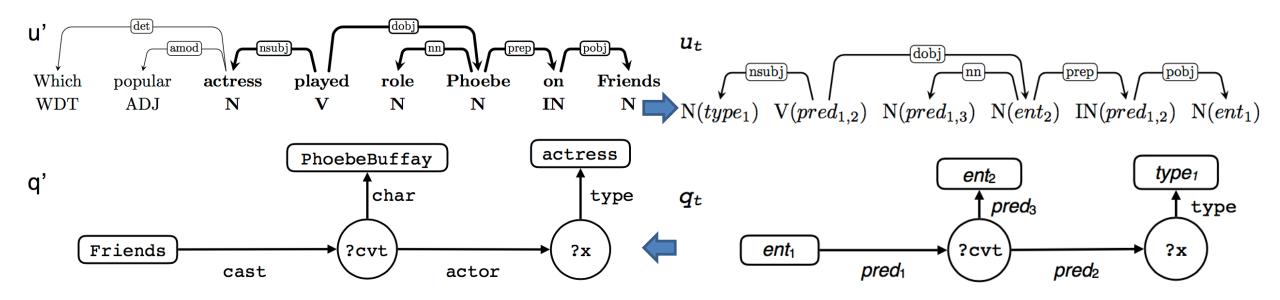


Template Generation

- Template (u_t, q_t, m_t) :
 - $-u_t$: utterance template
 - $-q_t$: querytemplate
 - $-m_t$:alignmenttemplate



Template Matching and Instantiation

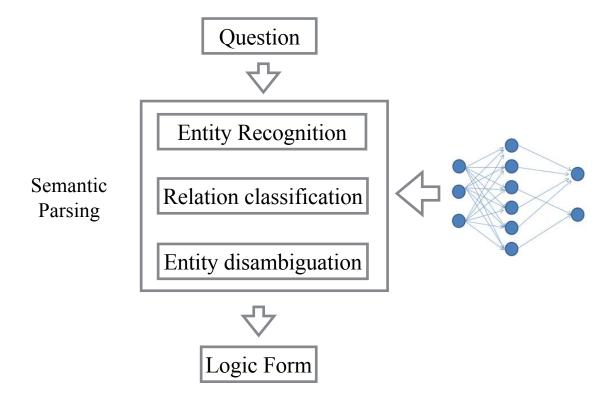


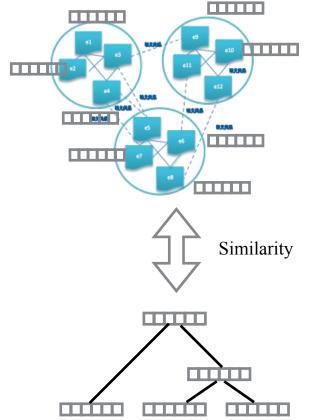
- Dependency parsing new utterance, use SMART to NERL (Freebase)
- Matching template in templates base
- Using NERL results to instantiate m_t

KBQA: Deep Learning Based KBQA

• Improve traditional methods with DL

ith DL • End2End model in DL





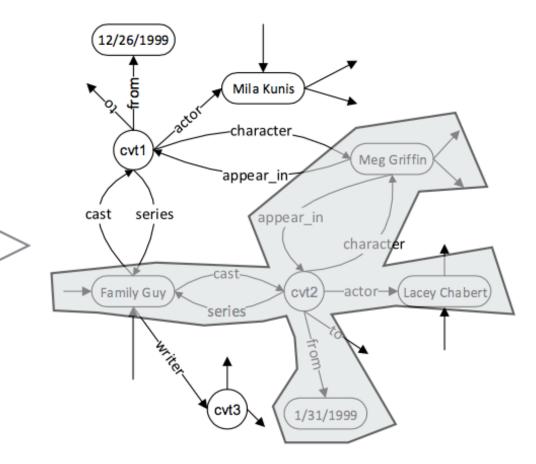
What is Yao Ming's wife's nationality?

Improve Traditional Methods with DL

 Semantic Parsing via Staged Query Graph Generation: Question Answering with Knowledge Base (ACL 2015, Outstanding Paper)

Who first voiced Meg on Family Guy?

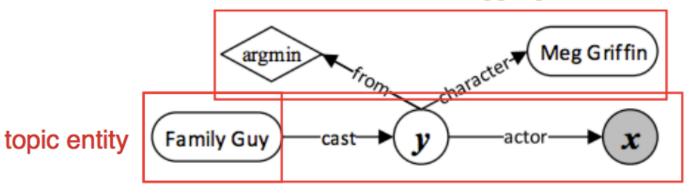
 $argmin(\lambda x.Actor(x,Family_Guy))$ $\land Voice(x,Meg_Griffin),\lambda x.casttime(x))$



Improve Traditional Methods with DL

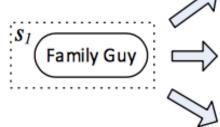
Who first voiced Meg on Family Guy?

Constraints & Aggregations

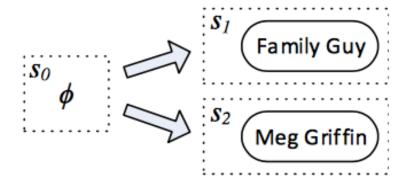


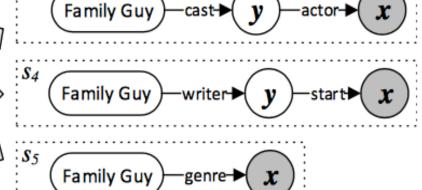
core inferential chain

Step 2: Candidate core inferential chains start from the entity Family Guy.



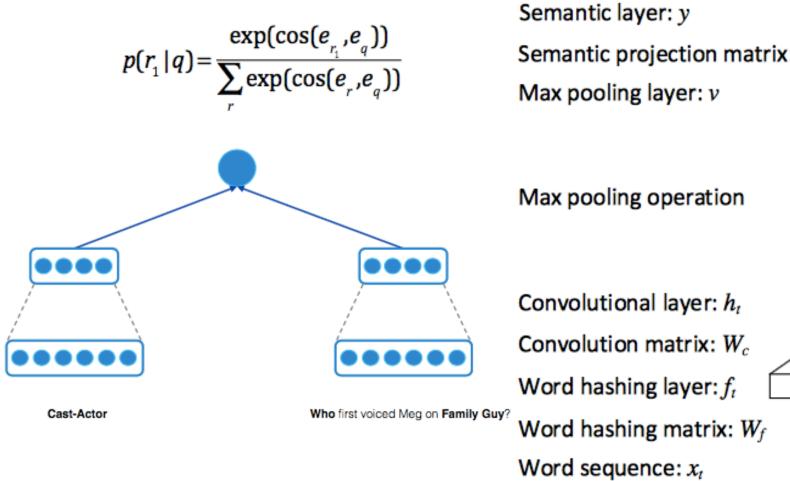
Step 1: Two possible topic entity linking: S1 and S2

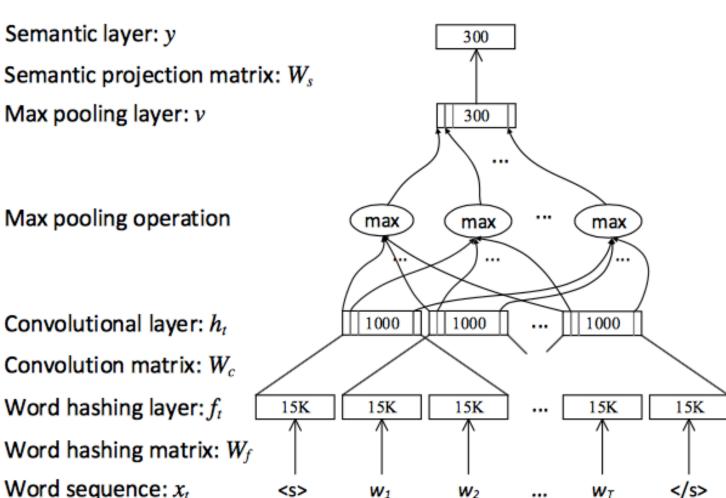




Improve Traditional Methods with DL

Ranking candidate core inferential chains using CNN





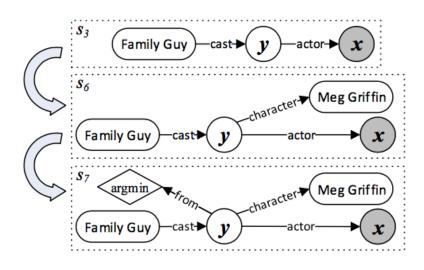
Improve Traditional Methods with DL

Step 3: Add argument constraints

Who first voiced Meg on Family Guy?

• Step 4: Logic form ranking

Who first voiced Meg on Family Guy?



Using rules to add constraints on the core inferential chain

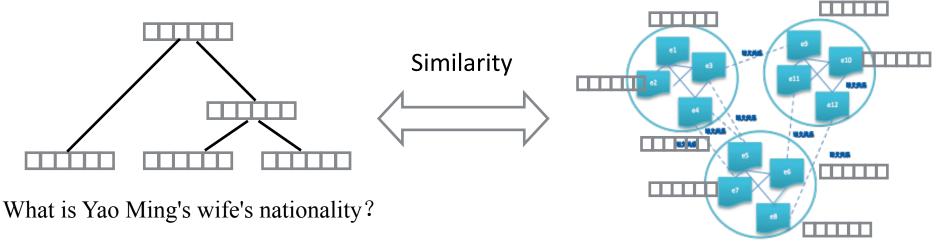
If x is a entity, it can be added as entity node

If x is such keywords, like "first", "latest", it could be added as aggregation constraints.

- Log Linear Model
- Main Features:
 - Topic Entity: Entity Linking Score
 - Core Inferential Chain: Relation Matching Score (NN-based model)
 - Constraints: Keyword and entity matching

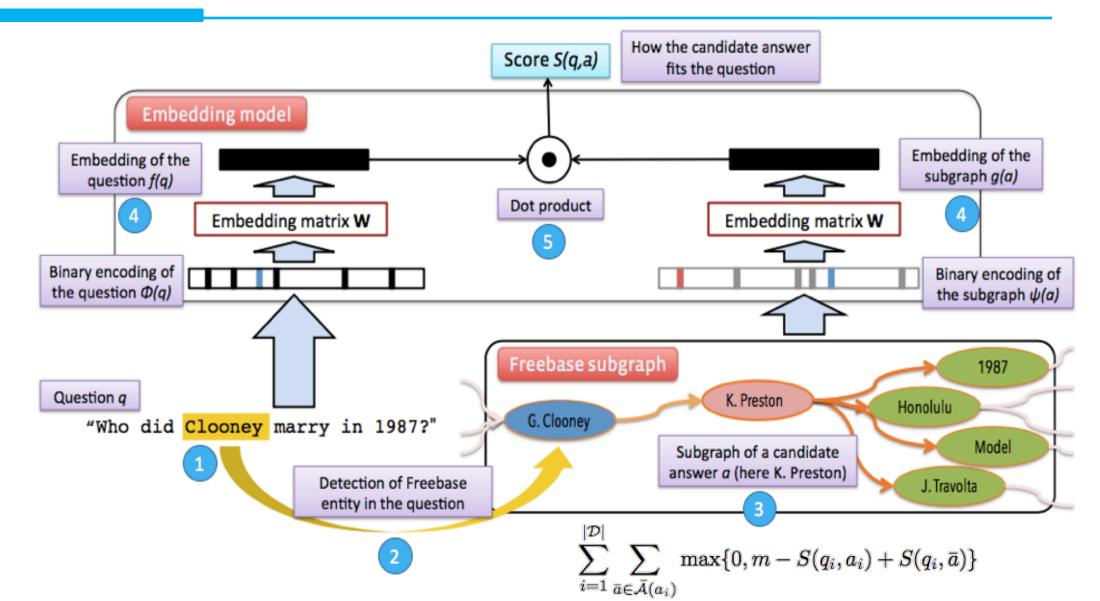
End2End KBQA

- Single Relation, Simple Question
- Steps:
 - 1: Candidates generation
 - Utilizing Entity Linking to find main Entity
 - The entities around main entity in KB are Candidate Entities
 - 2: Candidates Ranking



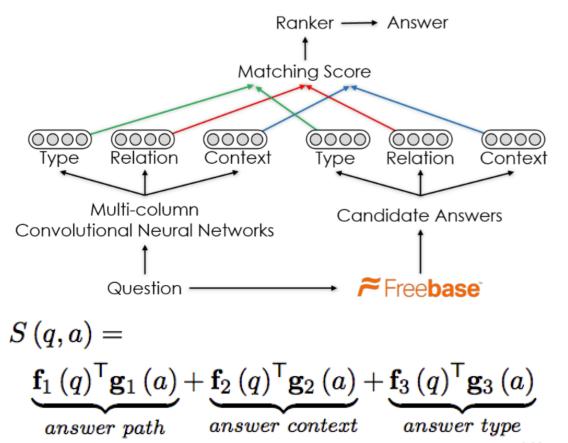
[Bordes, et al. 2014]

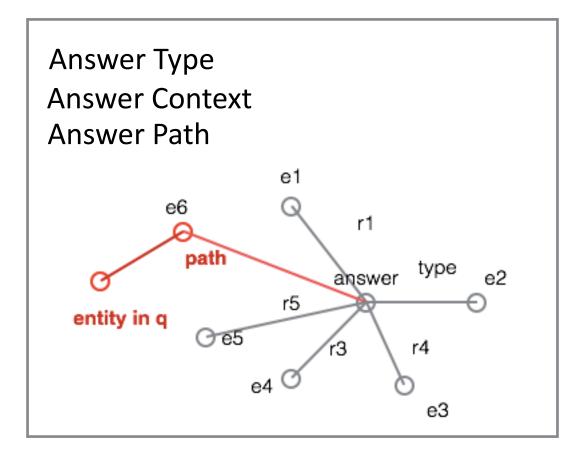
Framework



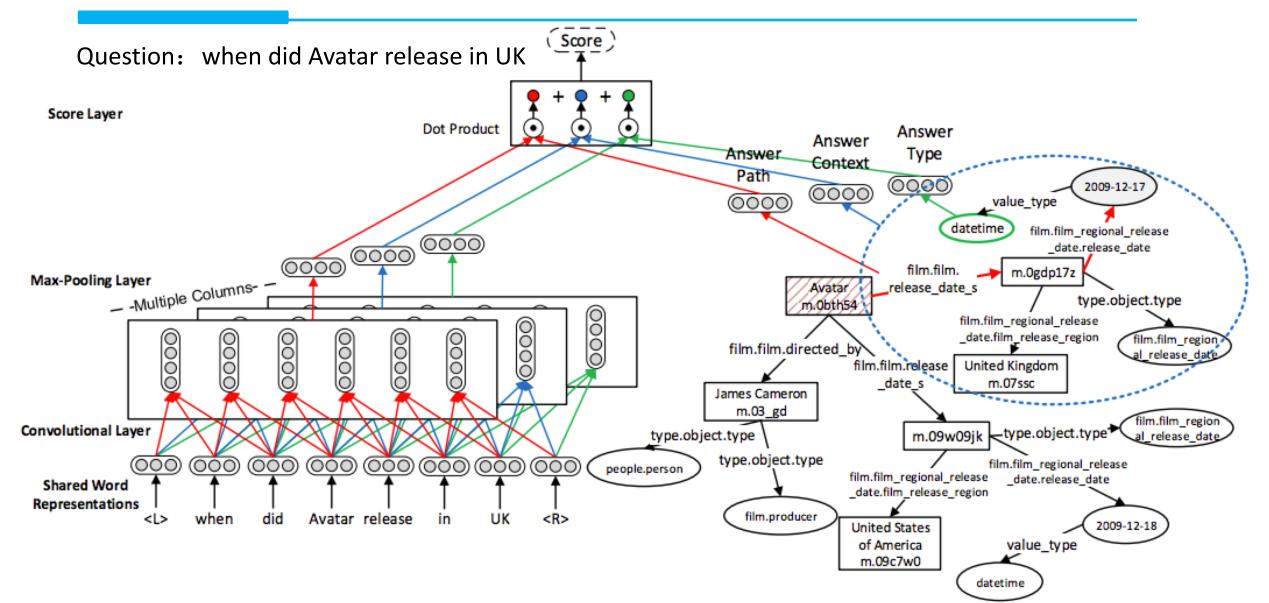
End2End KBQA using Multi-Column CNN

 According to the QA characteristics, consider the information in different dimensions of the answer

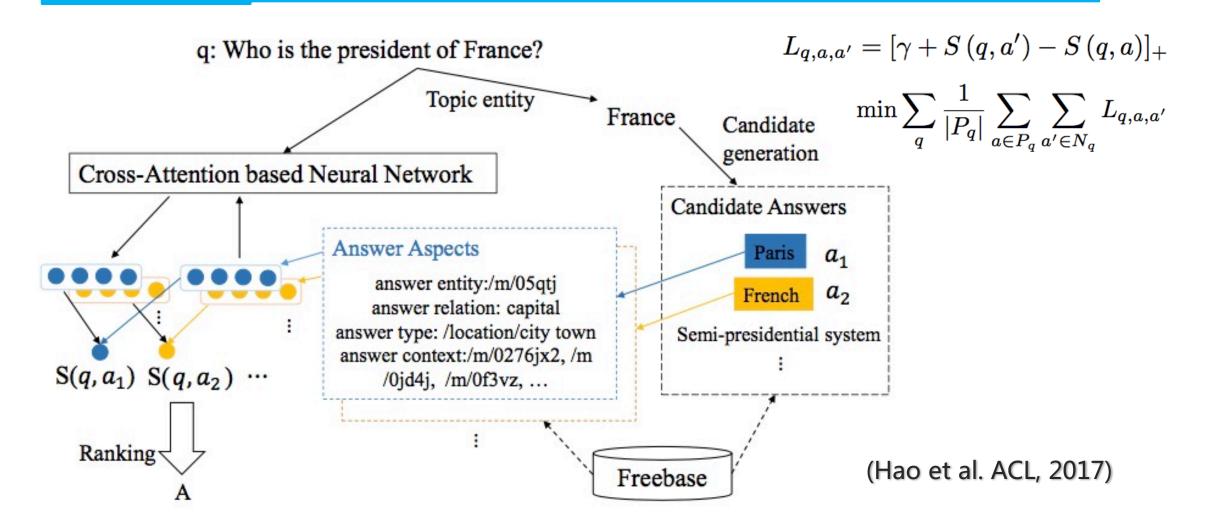


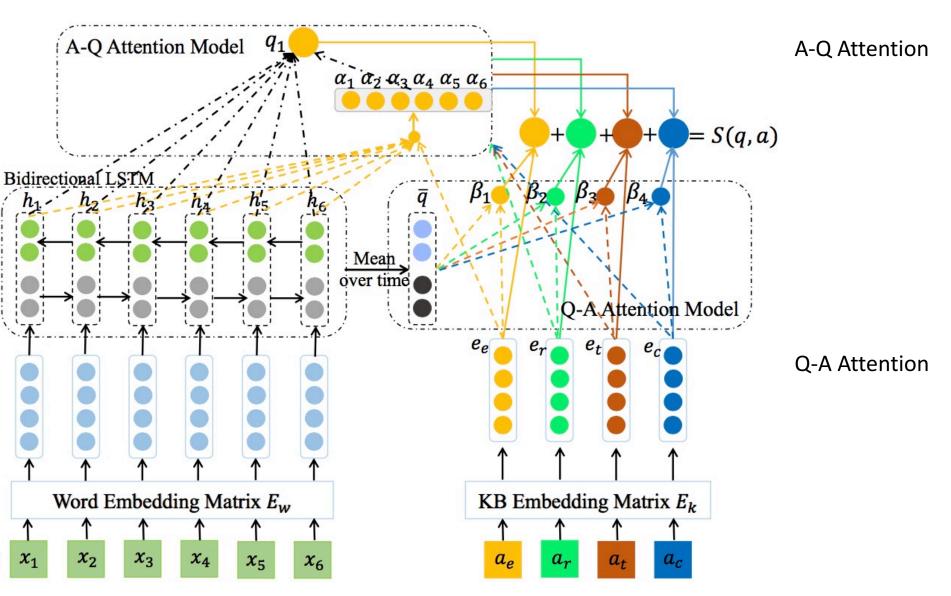


Framework



End2End KBQA using Attention-based BLSTM





$$lpha_{ij} = rac{\exp(\omega_{ij})}{\sum\limits_{k=1}^{n} \exp(\omega_{ik})}$$

$$\omega_{ij} = f(W^T[h_j; e_i] + b)$$

$$q_i = \sum_{j=1}^n \alpha_{ij} h_j$$

$$S(q, e_i) = h(q_i, e_i)$$

$$S\left(q,a\right) = \sum_{e_{i} \in \left\{e_{e},e_{r},e_{t},e_{c}\right\}} \beta_{e_{i}} S\left(q,e_{i}\right)$$

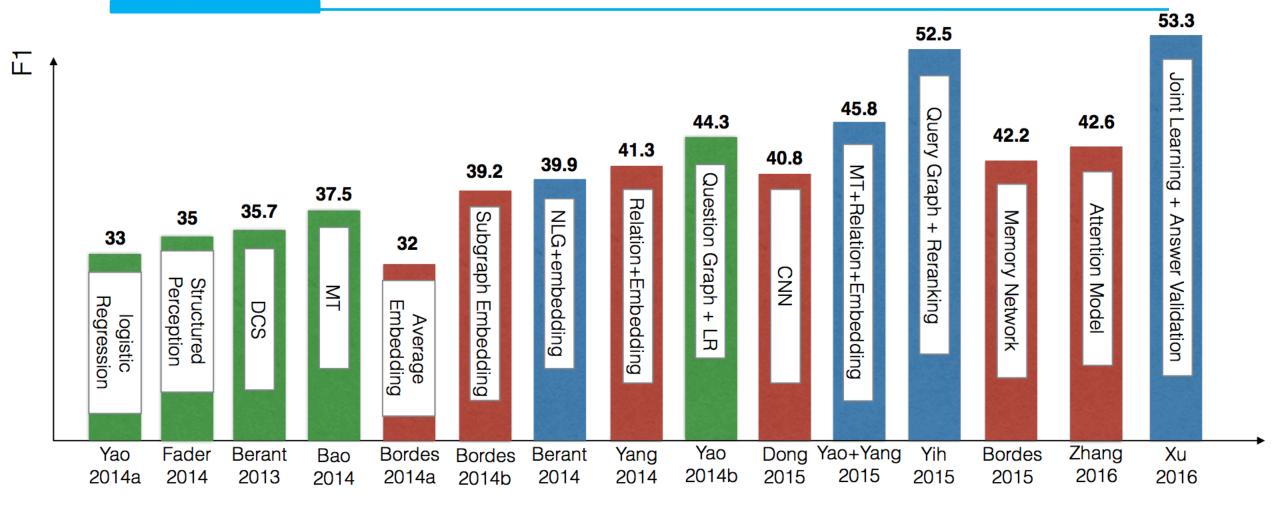
$$\beta_{e_i} = \frac{\exp\left(\omega_{e_i}\right)}{\sum\limits_{e_k \in \{e_e, e_r, e_t, e_c\}} \exp\left(\omega_{e_k}\right)}$$

$$\omega_{e_i} = f\left(W^T[\overline{q}; e_i] + b\right)$$

$$\overline{q} = rac{1}{n} \sum
olimits_j^n h_j$$

Comparison of various KBQA system results

Traditional Methods Promoted by DL



End-End DL-based Systems

Traditional Methods

References

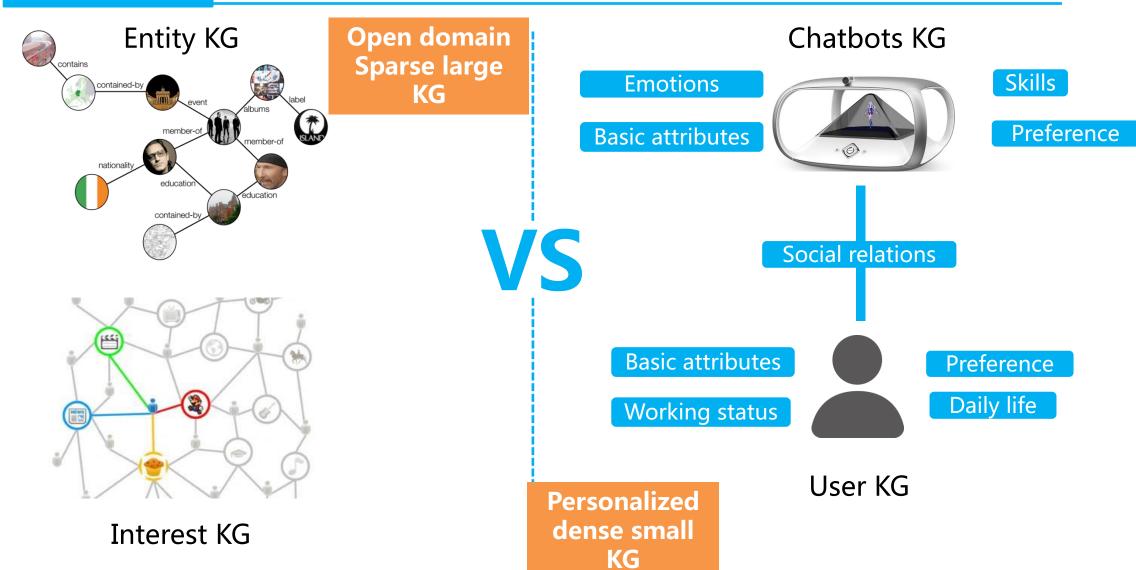
- [Abujabal, et al. 2017] Abujabal, et al., Automated Template Generation for Question Answering over Knowledge Graphs, www2017
- [Yao, et al. 2014] Yao, et al. A Graph Traversal Based Approach to Answer Non-Aggregation Questions Over DBpedia, ACL2014
- [Bordes, et al., 2014] Antoine Bordes, Sumit Chopra, and Jason Weston, Question Answering with Subgraph Embedding, EMNLP 2014
- [Dong, et al. 2015] Dong et al. Question Answering over Freebase with Multi-Column Convolutional Neural Networks. ACL 2015
- [Hao, et al. 2017] Hao et al., An End-to-End Model for Question Answering over Knowledge Base with Cross-Attention Combining Global Knowledge Information, ACL 2017.
- [Zettlemoyer, 2005] Zettlemoyer L S, Collins M. Learning to Map Sentences to Logical Form: Structured Classification with Probabilistic Categorial Grammars[J]. 2012:658-666.
- [Zelle, 1995] Zelle J M. Using inductive logic programming to automate the construction of natural language parsers[M]. University of Texas at Austin, 1995.
- [Wong, 2007] Wong Y W, Mooney R J. Learning Synchronous Grammars for Semantic Parsing with Lambda Calculus, ACL 2007
- [Lu, 2008] Lu W, Ng H T, Lee W S, et al. A Generative Model For Parsing Natural Language To Meaning Representations, EMNLP 2008
- [Clarke, 2010] Clarke J, Dan G, Chang M W, et al. Driving semantic parsing from the world's response, ACL 2010
- [Liang, 2011] Liang P, Jordan M I, Dan K. Learning dependency-based compositional semantics, ACL 2011
- [Berant, 2013] Berant J, Chou A, Frostig R, et al. Semantic parsing on freebase from question-answer pairs.
 Proceedings of Emnlp, 2014.
- [Yih,2015] Yih W T, Chang M W, He X, et al. Semantic Parsing via Staged Query Graph Generation: Question Answering with Knowledge Base, ACL 2015.

03

KG + Chatbot

- 3.1 QA Introduction
- 3.2 Knowledge Based Question Answering (KBQA)
- 3.3 KBQA Applications in Chatbot

Various KGs



Personalized KBQA

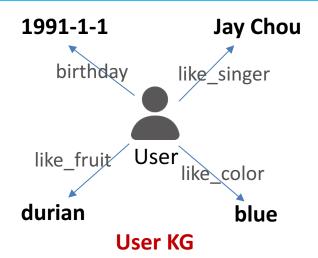
KBQA based on User KG

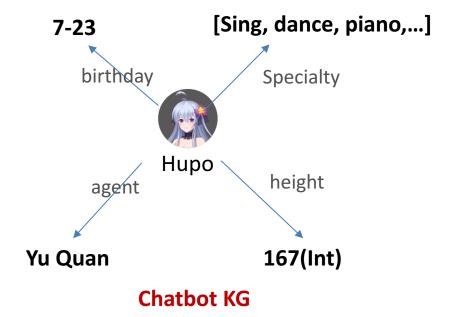
Who's my favorite singer?

You love Jay Chou most

KBQA based on chatbot KG

My birthday is July 23rd



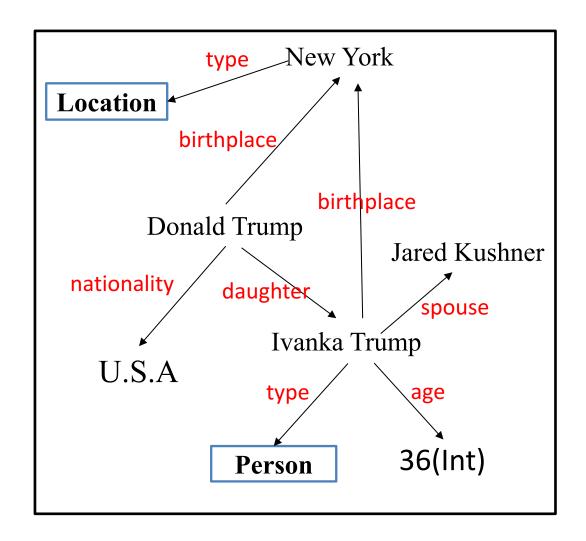


Open Domain KBQA

KBQA based on open domain

Who is Donald Trump's daughter?

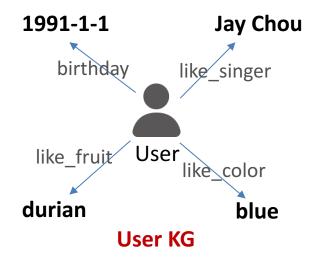
Ivanka Trump



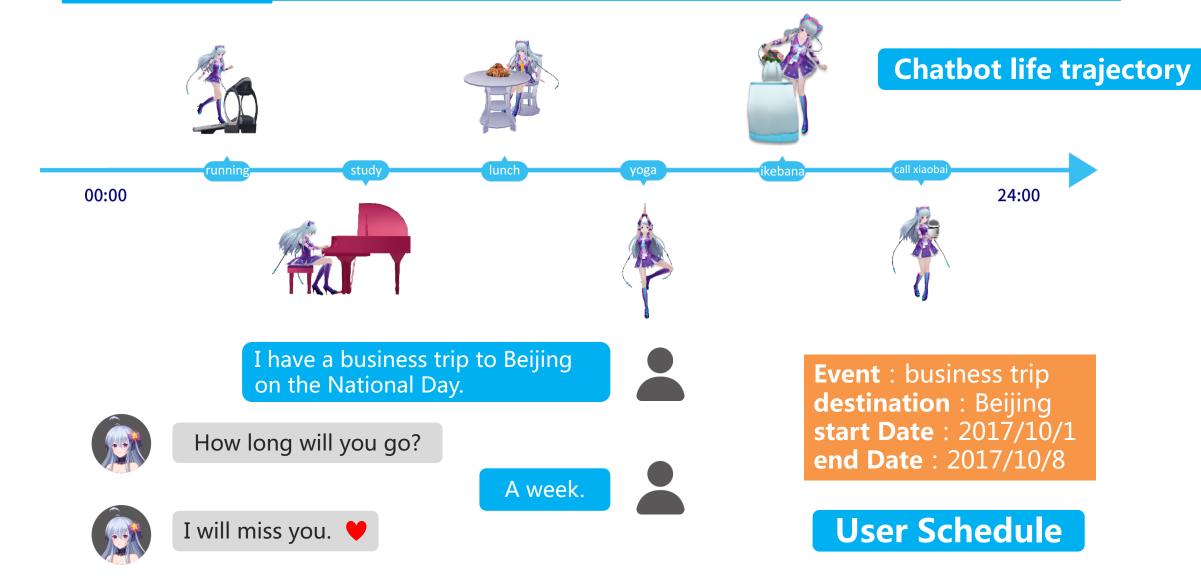
KBQA based on Multi-KBs

User (chatbot) KG + Open KBs

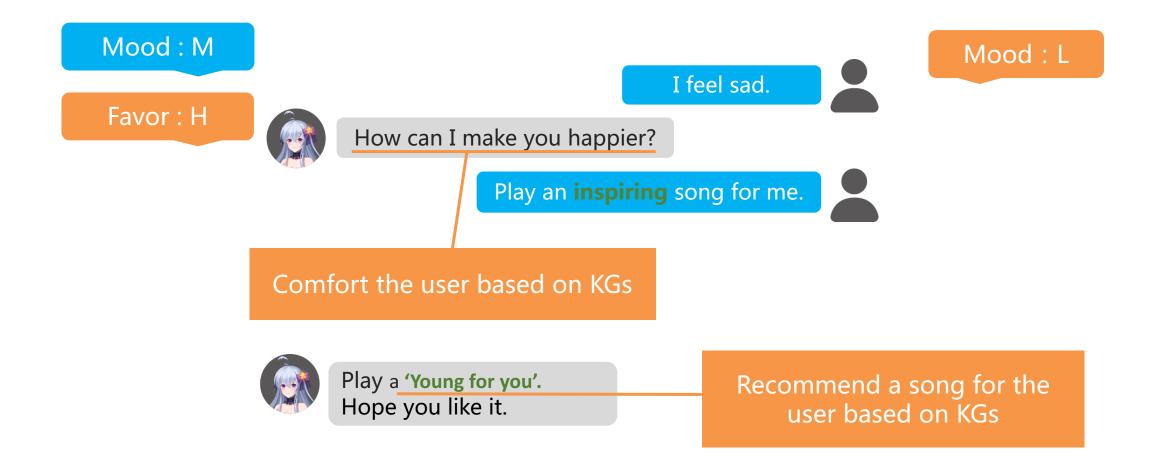
What new songs has my favorite singer released recently?



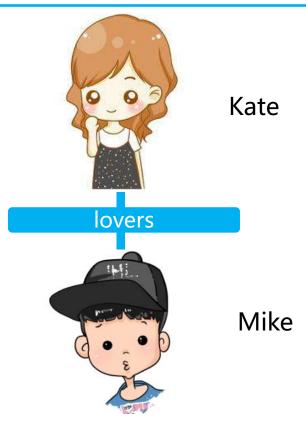
Static KG vs. Dynamic KG



Objective KG vs. Subjective KG



Multi-Modal KG



Combine long and short memory

Business trip: April 20-April 23

Dinner with Kate: April 24

Dialog in QA

 From partial to fully understanding

From incomplete to complete information

Who's the most popular XiaoXianRou lately?

What is XiaoXianRou?

XiaoXianRou means handsome young male star, like Lu han.

I get it. Yang yang and Zhang Yixing also belong to this type.

Do you mean the weather in Shanghai?

It's sunny, temperature ranges from 25 degrees to 32 degrees.

Dialog in QA

Service-oriented KBQA

Book a seat of Gala Western Restaurant for me tomorrow 8:00 evening

With kate?

No problem, complete the booking.

Do you need a bunch of flowers?

Yes.

 Topic transition during multi-turn dialogue

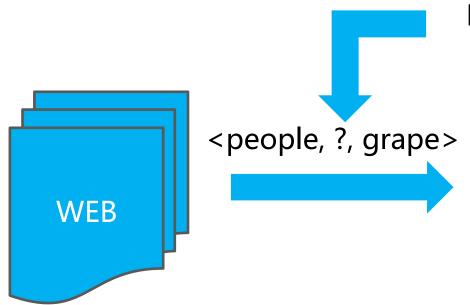
between services

Do I need to reserve a car for Kate?

KG for Data Argumentation

Training data

- Manual labelling are labor-intensive and time-consuming
- KG can be used to automatically generate the training data



Hupo loves grape

I like to eat grape
James loves to eat grape

Wade cut down the grape tree

Alan is interested in grape

Grape is his favorite fruit

Thomas owned a grapery

References

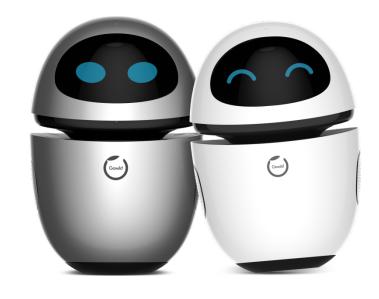
- [Abujabal, et al. 2017] Abujabal, et al., Automated Template Generation for Question Answering over Knowledge Graphs, www2017
- [Yao, et al. 2014] Yao, et al. A Graph Traversal Based Approach to Answer Non-Aggregation Questions Over DBpedia, ACL2014
- [Bordes, et al., 2014] Antoine Bordes, Sumit Chopra, and Jason Weston, Question Answering with Subgraph Embedding, EMNLP 2014
- [Dong, et al. 2015] Dong et al. Question Answering over Freebase with Multi-Column Convolutional Neural Networks. ACL 2015
- [Hao, et al. 2017] Hao et al., An End-to-End Model for Question Answering over Knowledge Base with Cross-Attention Combining Global Knowledge Information, ACL 2017.
- [Zettlemoyer, 2005] Zettlemoyer L S, Collins M. Learning to Map Sentences to Logical Form: Structured Classification with Probabilistic Categorial Grammars[J]. 2012:658-666.
- [Zelle, 1995] Zelle J M. Using inductive logic programming to automate the construction of natural language parsers[M]. University of Texas at Austin, 1995.
- [Wong, 2007] Wong Y W, Mooney R J. Learning Synchronous Grammars for Semantic Parsing with Lambda Calculus, ACL 2007
- [Lu, 2008] Lu W, Ng H T, Lee W S, et al. A Generative Model For Parsing Natural Language To Meaning Representations, EMNLP 2008
- [Clarke, 2010] Clarke J, Dan G, Chang M W, et al. Driving semantic parsing from the world's response, ACL 2010
- [Liang, 2011] Liang P, Jordan M I, Dan K. Learning dependency-based compositional semantics, ACL 2011
- [Berant, 2013] Berant J, Chou A, Frostig R, et al. Semantic parsing on freebase from question-answer pairs.
 Proceedings of Emnlp, 2014.
- [Yih,2015] Yih W T, Chang M W, He X, et al. Semantic Parsing via Staged Query Graph Generation: Question Answering with Knowledge Base, ACL 2015.

04

Demonstration

- 4.1 Brief introduction of Gowild Products
- 4.2 The function of Xiaobai
- 4.3 The technologies behind Xiaobai

Emotional Social Bot: Xiaobai



Xiaobai

Xiaobai | For youth

Holoera

Holoera • Hupo

Holoera is the world's first AI Holographic 3D Mainframe Developed by Gowild Robotics Co. Ltd With a virtual character Hupo living in the Holoera

Awesome Presentation
Holographic 3D Projection

Holoera

Develop Hupo's skills

According to your preference Help Hupo developing skills Including music, dance, magic ...

Train Hupo to be a star

Act as the manager of Hupo Make star raising plans Guide Hupo to finish tasks

04

Demonstration

- 4.1 Brief introduction of Gowild Products
- 4.2 The function of Xiaobai
- 4.3 The technologies behind Xiaobai

Technology Highlights of Xiaobai

Dimension

Class

9 Layer	Semantic Understanding Architecture	90% Percentage	Semantic Recognition Accuracy	3 New Way	Human Computer Interaction
1.6 Billion	Knowledge Graph	1 Million	Parallel Corpus	12+ Increasing	Robot Skill Pack
100+		10+ Kind	Fine grained Sentiment Computing	200+ Class	Entity Recognition &Linking

Kind

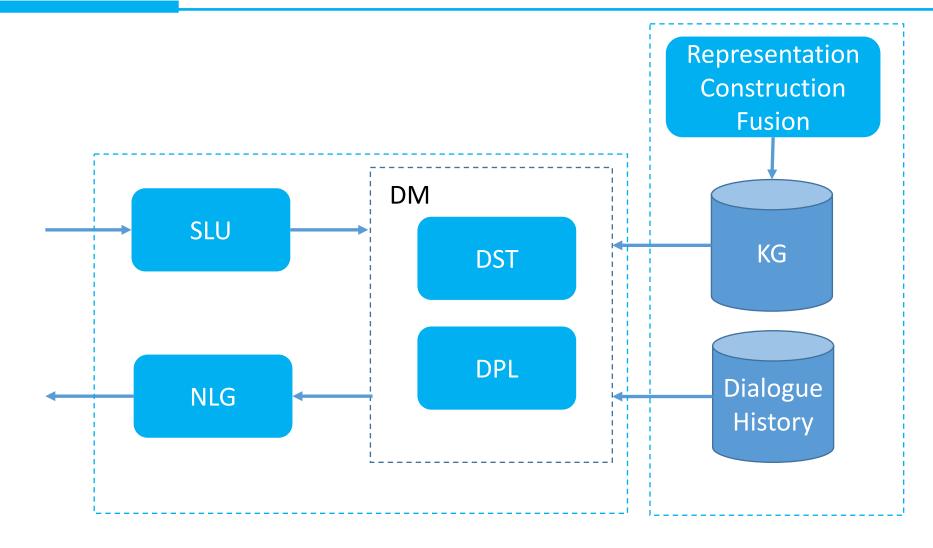
Functions of Xiaobai: both for life and work

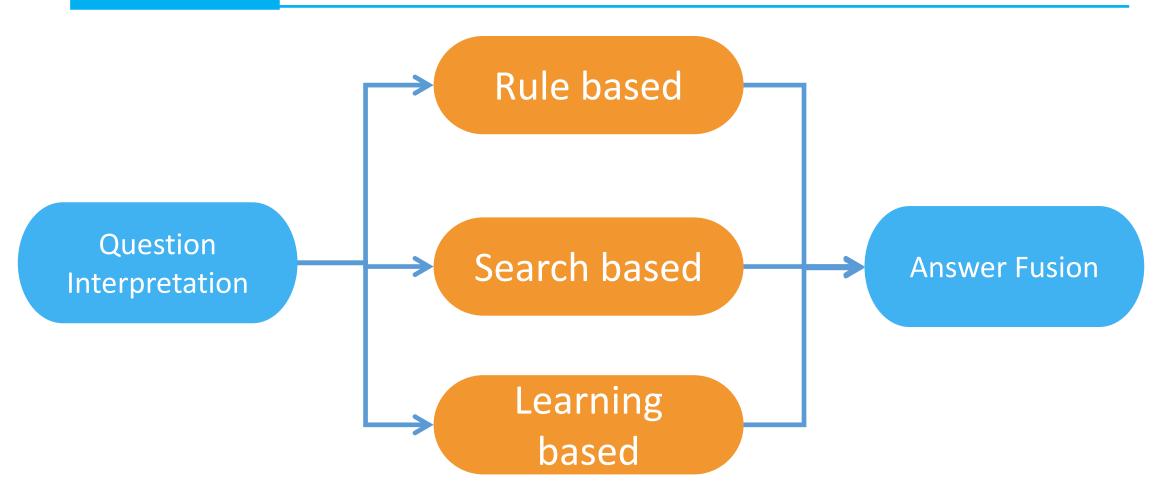
04

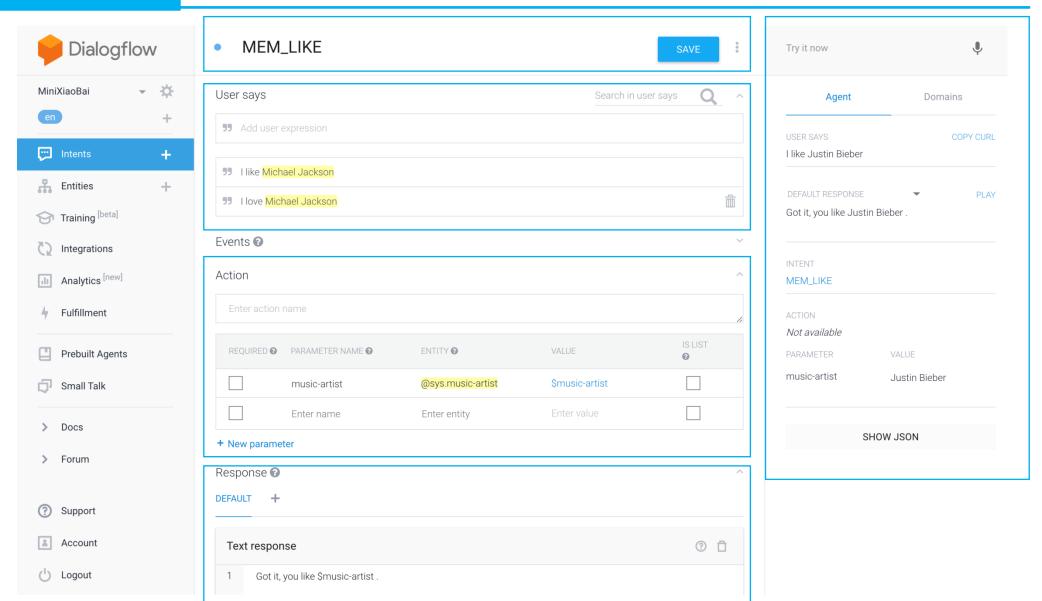
Demonstration

- 4.1 Brief introduction of Gowild Products
- 4.2 The function of Xiaobai
- 4.3 The technologies behind Xiaobai

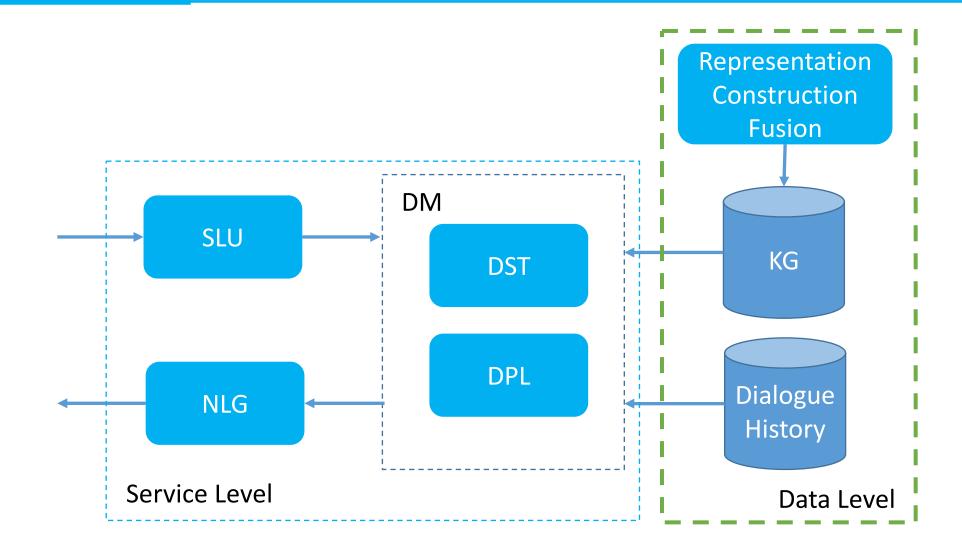
Xiaobai Framework







Data Level

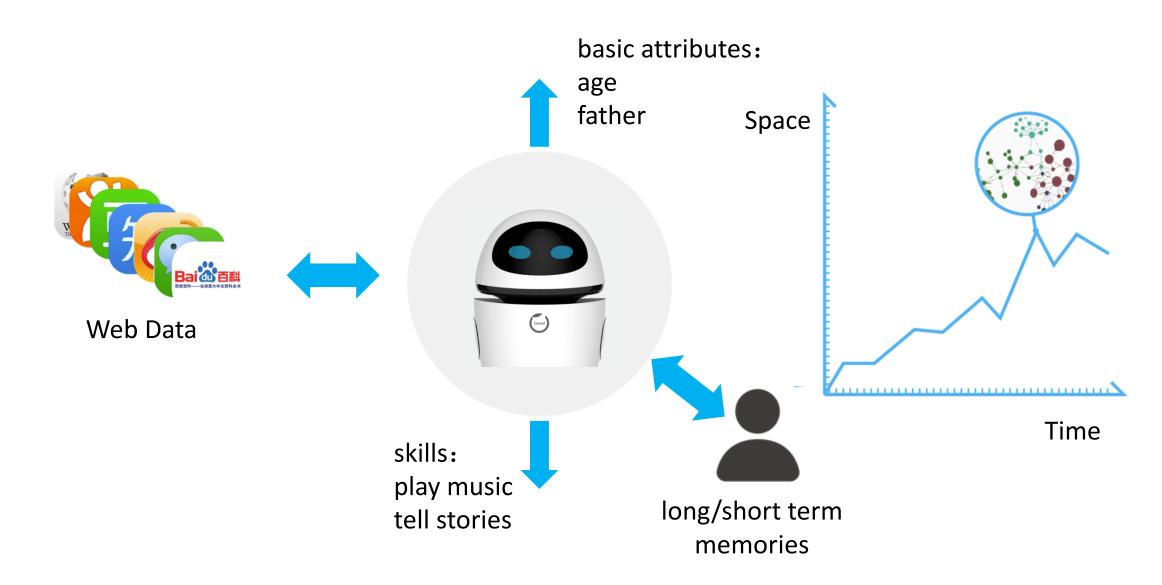


Representation computing reasoning Link prediction learning Heterogonous Multimedia Service objects fusion data fusion linking KG construction World knowledge Common sense and computing construction Heterogonous data sources including structured, semistructured and unstructured data Canonical knowledge representation with texts, representation multimedia, structured data, services and APIs.

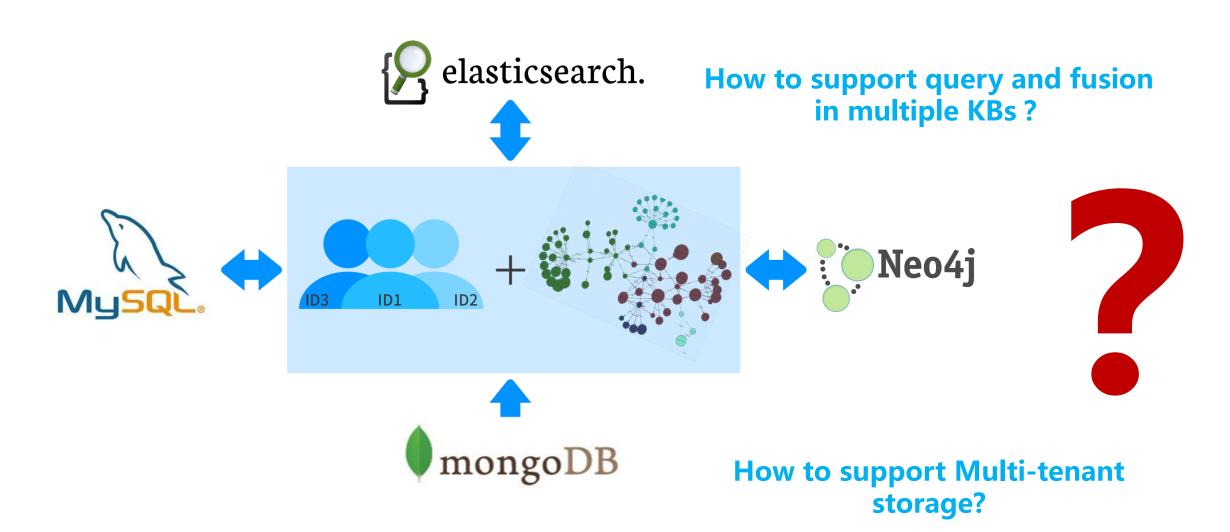
binding

User profile

KG for Xiaobai



Storage and Query of Large Scale KGs



Updating User KG

I love Michael Jackson

Intent: MEM_LIKE

Slots:

• Object: Michael Jackson

Got it!

User Id: 001 Like:

User KG

User Id: 001 Like: Michael Jackson

User KG

KG

Updating User KG: Another Example

Dynamic KG

I'm going on a business trip to Beijing next Monday

For how long

For a week

I'll miss you

Intent: EVENT_TRIP Slots:

Destination: Beijing

Start Date: 2017/5/1

End Date:

Intent: EVENT_TRIP Slots:

Destination: Beijing

Start Date: 2017/5/1

• End Date: 2017/5/8

Online Fusing KGs for Xiaobai Comments

My height is 240 cm

Intent: MEM_HEIGHT Slots:

Subject: User

• Height: 240cm

Wow! You're even higher than Yao Ming

User Id: 001 Height: 240cm

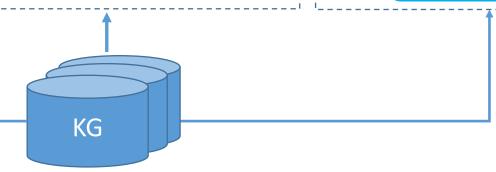
User KG

Human: Yao Ming Height: 226cm

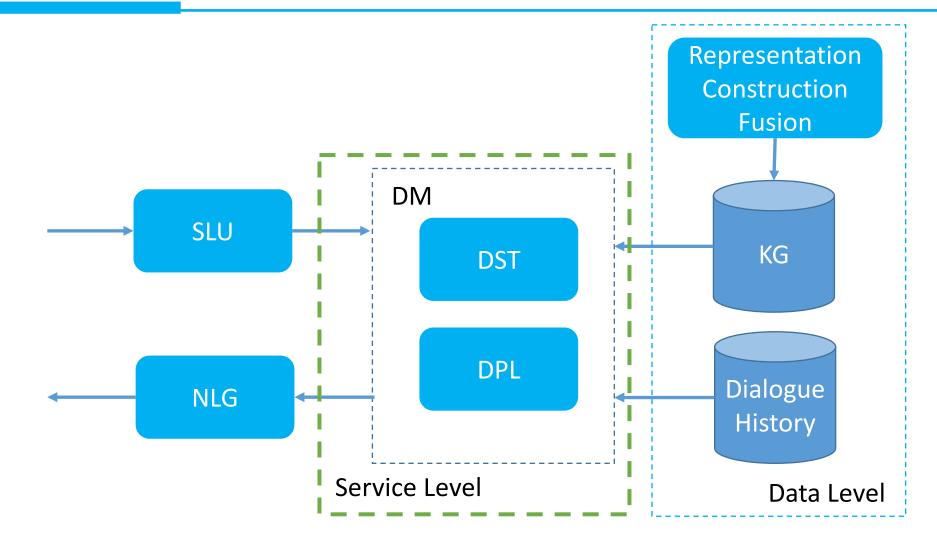
Factoid KG

Animal: human Height>220cm: few

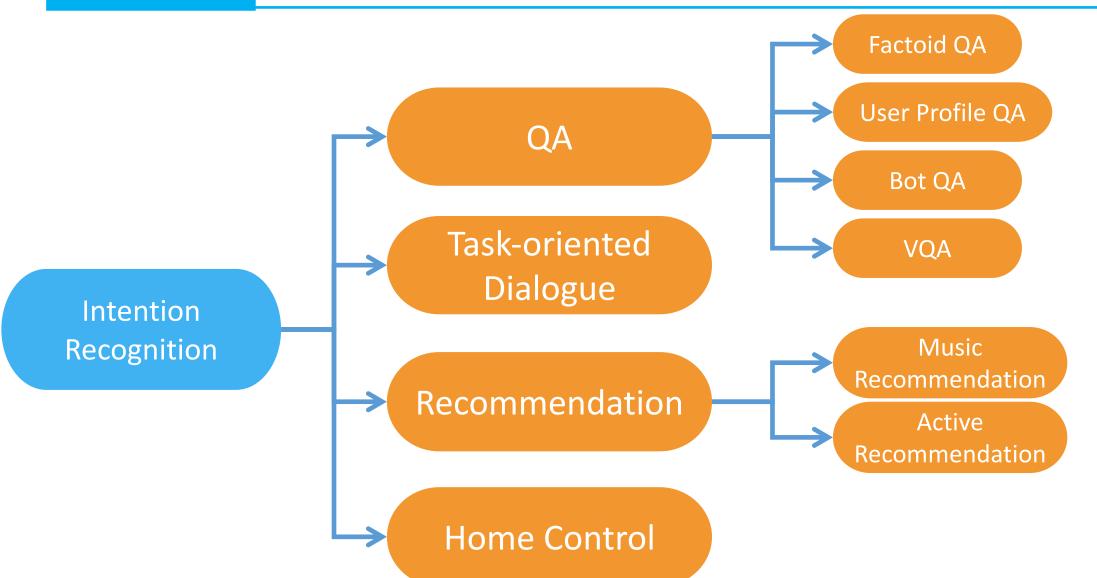
Common Sense KG



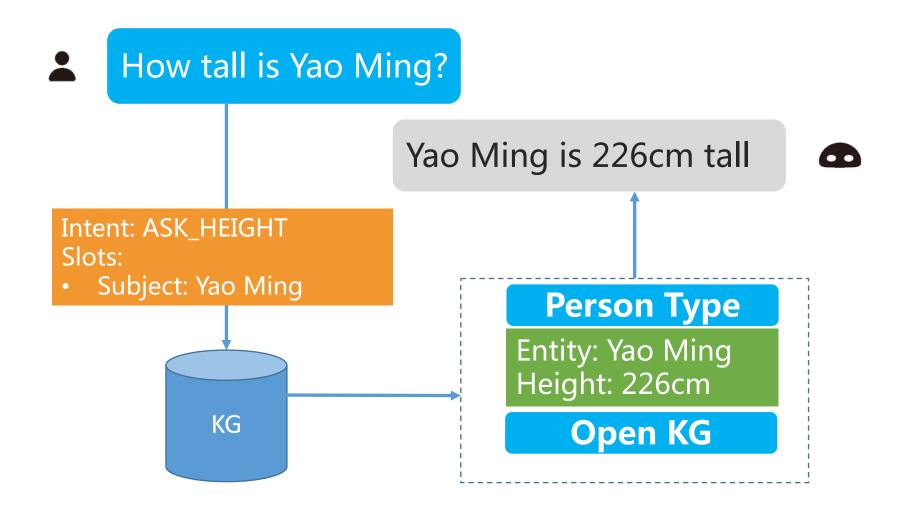
Service Level



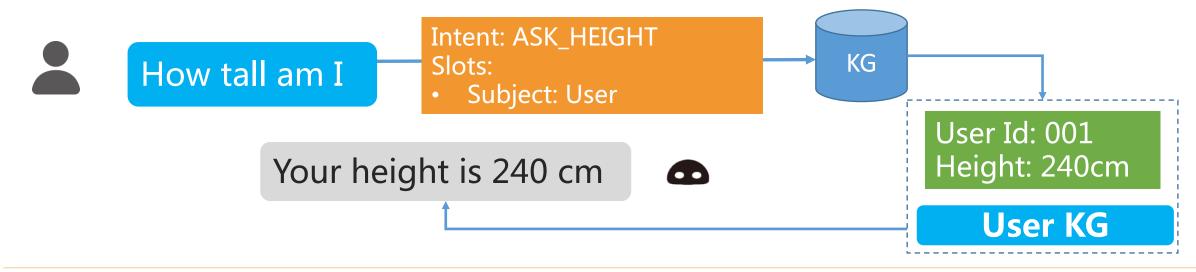
Services



Factoid QA



Attribute/Memory QA



What fruit do you like?

Intent: ASK_LIKE Slots:

- Subject: XiaoBai
- Category: Fruit

I like apple

Bot Id: 111

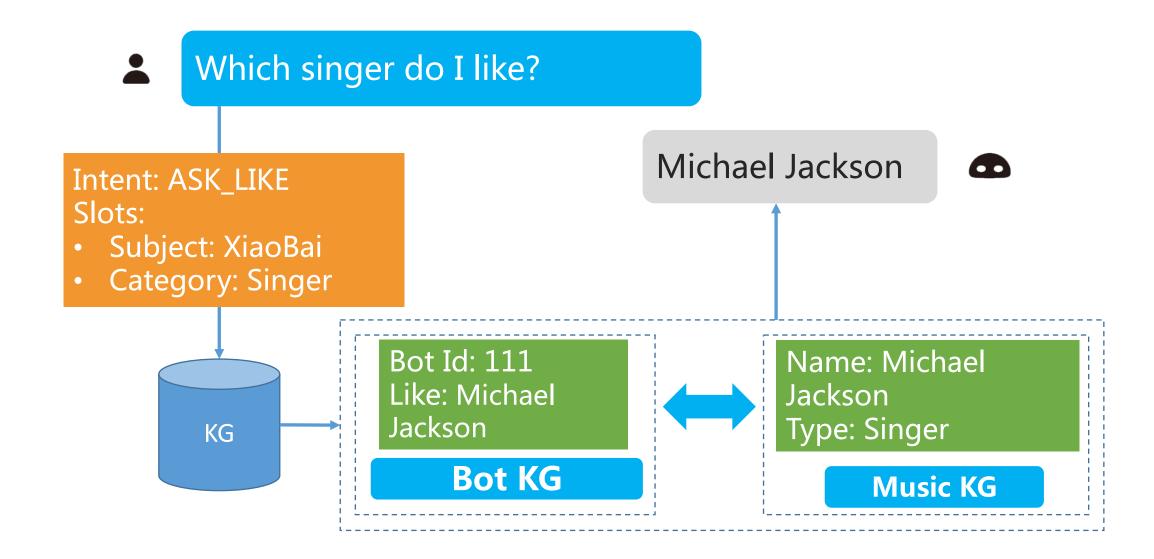
KG

Like: {Object: Apple,

Type: Fruit}

Bot KG

QA with Inference Support



Visual Aided Chatting

Hostess

Xiaobai, there's a visitor at home, say hello

Intent: GREETING

Slots:

Subject: Guest

Dear guest, hello!

User Id: 001

Gender: Female

Marital status: Single

User KG

Guest

Hello Xiaobai, I'm a friend of your master

Intent: GREETING Slots:

- Object: Guest
- Gender: Male

Nice to meet you, sir. Welcome to my master's home. She is a kind-hearted pretty girl.

Task-oriented Dialogue

What's the weather today?

Intent: ASK_WEATHER Slots:

Date: Today

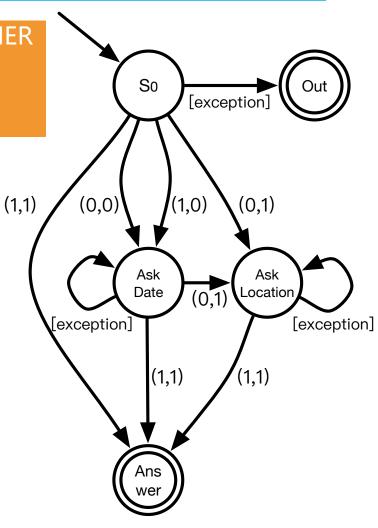
Location:

Please tell me your location

Shanghai

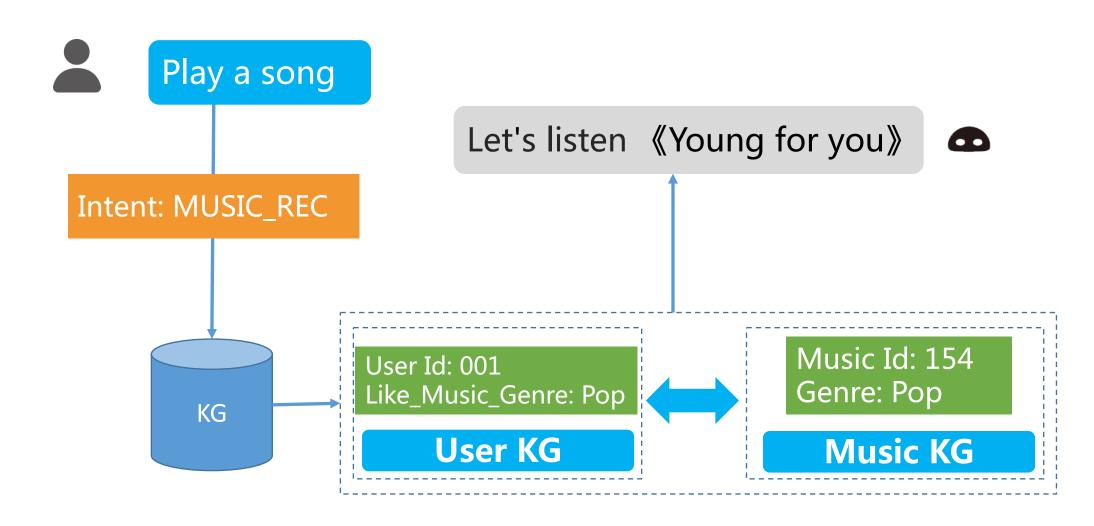
Request(Location)

It's sunny in Shanghai today, The temperature ranges from 25 degrees to 32 degrees.

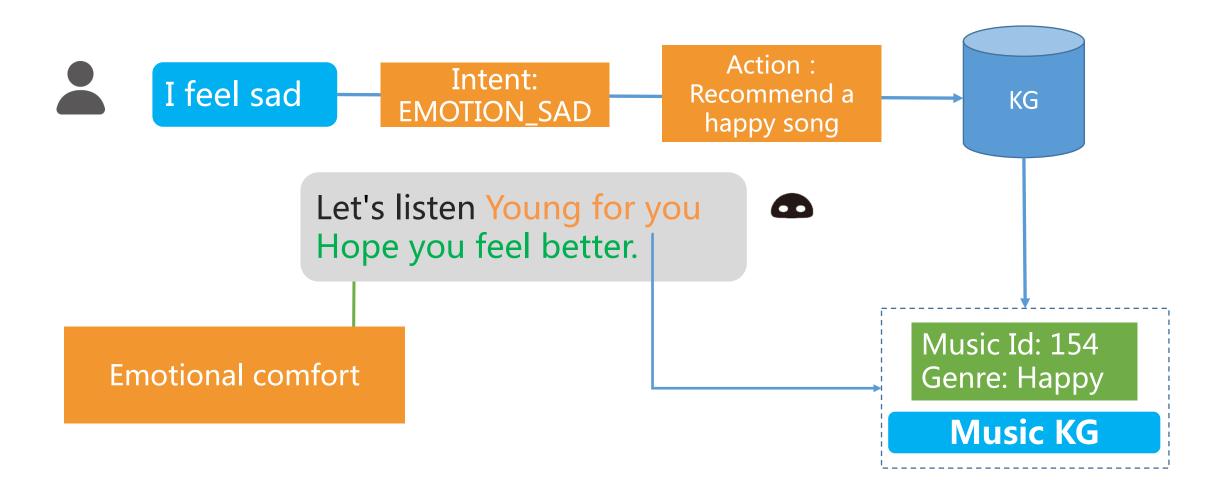


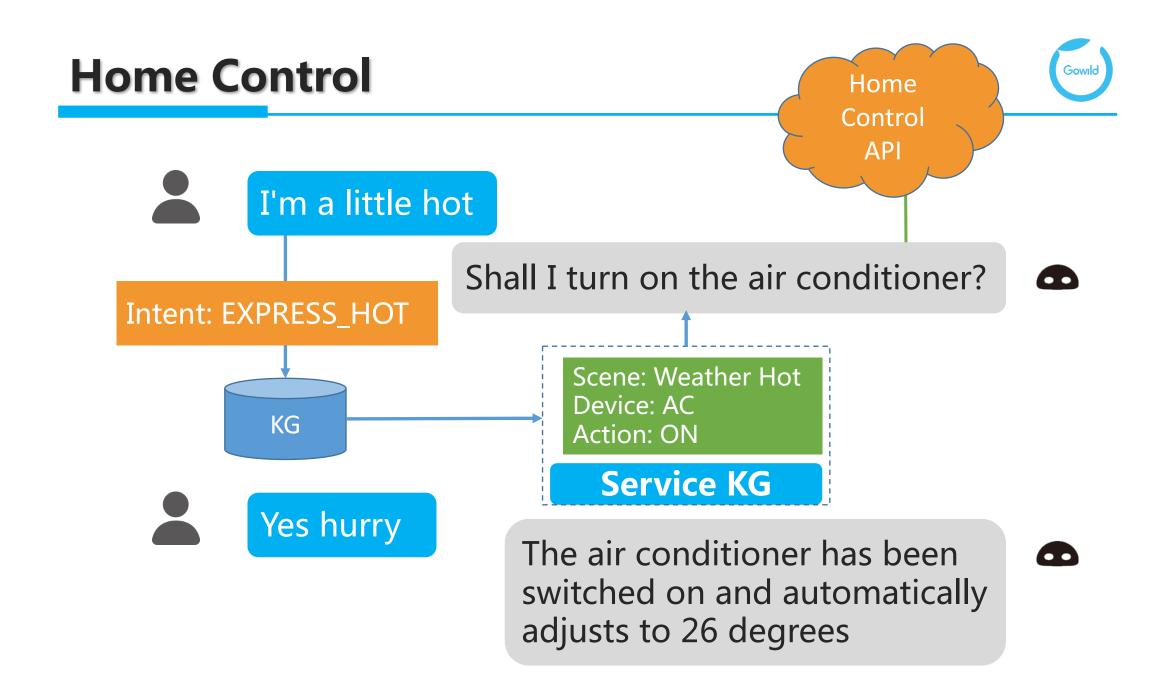
Finite-State Machine

Music Recommendation



Active Recommendation





THANKS