
Rapid Engineering of
Question Answering Systems

using the lightweight Qanary Approach

Tutorial at JIST 2017

Andreas Both

Head of Architecture, Web Technology and IT Research
at DATEV eG

2017-11-10, 7th Joint International Semantic Technology Conference (JIST 2017)

http://wdaqua.eu, https://github.com/WDAqua/

http://wdaqua.eu
https://github.com/WDAqua/

JIST 2017 tutorial: Rapid engineering of QA systems using the lightweight Qanary approach Andreas Both

Tutorial Plan

Introduction and Motivation
Question Answering
Question Answering Systems

Qanary Methodology and Technical Framework
Idea
Knowledge Representation using the qa Vocabulary
Qanary Methodology

Technical Part
Interactive Session: Solution Definition
Coding Session: Implement your first QA system from existing components
Validate the quality of your QA system
Improve and revalidate your QA system
Solve new QA tasks

Final Remarks

2 of 59

JIST 2017 tutorial: Rapid engineering of QA systems using the lightweight Qanary approach Andreas Both

Introduction and Motivation

3 of 59

JIST 2017 tutorial: Rapid engineering of QA systems using the lightweight Qanary approach Andreas Both

Something about me

Dr. Andreas Both

– 2005 Studies of Computer Science, University
Halle (Germany)

– 2010 PhD in Software Engineering and
Programming Languages, University Halle
(Germany)

– 2012 Project Lead of “Semantic Web Project”
(R & D), Unister GmbH (Germany)

– 2015 Head of Research and Development
Department, Unister GmbH (Germany)

2016 Research and Development Lead
Mercateo AG (Germany)

11/2016 – Head of Architecture, Web Technology and
IT Research, DATEV eG (Germany)

4 of 59

JIST 2017 tutorial: Rapid engineering of QA systems using the lightweight Qanary approach Andreas Both

DATEV eG: https://www.datev.com/

• software company and IT service provider

• turnover: > 900 million euros

• age: > 50 years old

• core market: Germany

• fields: accounting, business consulting, taxation, enterprise
resource planning (ERP) as well as organization and planning

• members: > 40.000

• customers: > 2.6 million companies

5 of 59

https://www.datev.com/

JIST 2017 tutorial: Rapid engineering of QA systems using the lightweight Qanary approach Andreas Both

Today’s Goals

You will . . .

• receive a compact overview about Question Answering (QA) and
its challenges

• understand the Qanary methodology, the RDF vocabulary qa and
the component-oriented Qanary framework

• learn to iteratively build, validate and improve your own QA
system using the Qanary framework

Thereafter, you will . . .

• be enabled to implement you own QA system

• take advantage of the Qanary ecosystem for rapid research results

• contribute to the research community to improve the
state-of-the-art

6 of 59

JIST 2017 tutorial: Rapid engineering of QA systems using the lightweight Qanary approach Andreas Both

Schedule

30 min Introduction

30 min Question Answering (QA) using Qanary
20 min RDF-based knowledge design of a QA problem using the qa

vocabulary

15 min coffee break

30 min exercise: model QA ontology using the qa vocabulary, write
SPARQL queries for answering exemplary questions

40 min exercise: implement your own QA system using Qanary
10 min conclusions and outlook

7 of 59

JIST 2017 tutorial: Rapid engineering of QA systems using the lightweight Qanary approach Andreas Both

Question Answering

8 of 59

JIST 2017 tutorial: Rapid engineering of QA systems using the lightweight Qanary approach Andreas Both

Introduction on Question Answering

Overview
• aim: answer users questions using given data

• importance: enables user to actually work with Big Data

• challenges: ambiguity of language, large data sets,

• technologies: information retrieval (IR), natural language
processing (NLP), Linked Data & Semantic Web, artificial
intelligence (AI), . . .

Attributes of QA

• fact-based

• text-based

• statistical

• multilingual

• community-based

• closed/open
domain

• hybrid

• visual

• . . .

9 of 59

JIST 2017 tutorial: Rapid engineering of QA systems using the lightweight Qanary approach Andreas Both

Introduction on Question Answering

Our Focus

• natural language input
◦ general: (multilingual) natural language, factoid questions
◦ today: English questions
◦ examples:

• “What is the real name of Batman?”
• “Is Bruce Wayne the real name of Batman?”
• “How many partners had Batman?”

◦ possible sources to answer the questions:
en.wikipedia.org/wiki/Batman, dbpedia.org/resource/Batman,
wikidata.org/wiki/Q2695156

• structured data sets as knowledge base
◦ DBpedia, Wikidata, Freebase, . . .
◦ today: DBpedia

10 of 59

https://en.wikipedia.org/wiki/Batman
http://dbpedia.org/resource/Batman
https://www.wikidata.org/wiki/Q2695156
http://dbpedia.org/

JIST 2017 tutorial: Rapid engineering of QA systems using the lightweight Qanary approach Andreas Both

Excursus: Linked Open Data Cloud

http://lod-cloud.net/

11 of 59

http://lod-cloud.net/

JIST 2017 tutorial: Rapid engineering of QA systems using the lightweight Qanary approach Andreas Both

Excursus: Linked Open Data Cloud

Linking Open Data cloud diagram 2017, by Andrejs Abele, John P. McCrae, Paul Buitelaar, Anja Jentzsch

and Richard Cyganiak. http://lod-cloud.net/

12 of 59

http://lod-cloud.net/

JIST 2017 tutorial: Rapid engineering of QA systems using the lightweight Qanary approach Andreas Both

Question Answering Benchmarks

Challenge to Measure the Quality of QA systems
• high variety of questions

• training requires data

• comparability requires gold standards

QA Benchmarks

• Question Answering over Linked Data (QALD)

◦ hundreds of questions
◦ tasks: Multilingual QA over DBpedia, Hybrid Question Answering, English

question answering over Wikidata
◦ website: http://www.sc.cit-ec.uni-bielefeld.de/qald
◦ e.g., QALD-8 challenge at ISWC 2017

• Largescale Complex Question Answering Dataset (LC-QuAD)

◦ thousands of English questions
◦ https://iswc2017.semanticweb.org/paper-152/
◦ website: http://lc-quad.sda.tech/

13 of 59

http://www.sc.cit-ec.uni-bielefeld.de/qald
https://iswc2017.semanticweb.org/paper-152/
http://lc-quad.sda.tech/

JIST 2017 tutorial: Rapid engineering of QA systems using the lightweight Qanary approach Andreas Both

Question Answering Systems

14 of 59

JIST 2017 tutorial: Rapid engineering of QA systems using the lightweight Qanary approach Andreas Both

Introduction on Question Answering Systems

• BASEBALL1

◦ very early QA system (1963)
◦ using baseball database
◦ answers questions w.r.t. dates, locations, . . .

• START Natural Language Question Answering System2

◦ open-domain QA system
◦ uses particular knowledge bases
◦ demo: http://start.csail.mit.edu/

15 of 59

http://start.csail.mit.edu/

JIST 2017 tutorial: Rapid engineering of QA systems using the lightweight Qanary approach Andreas Both

Introduction on Question Answering Systems

• WATSON3

◦ well known from the Jeopardy show
◦ industrial applicability in several domains
◦ website: https://www.ibm.com/watson/

• Siri4

◦ answering of (spoken) user questions targeting predefined domains
◦ knowledge base representing the iOS functionality
◦ common knowledge

• many more: LUNAR (1977), PHLIQA 1 (1978), AquaLog (2004),
YodaQA (demo, 2015), . . .

16 of 59

https://www.ibm.com/watson/
http://ailao.eu/yodaqa/

JIST 2017 tutorial: Rapid engineering of QA systems using the lightweight Qanary approach Andreas Both

State-of-the-Art of QA Systems

Qanary-based QA system: WDAqua QA

• on-top of Qanary framework

• targets: DBpedia, Wikidata, MusicBrainz (open music
encyclopedia) and DBLP (computer science bibliography)

• custom implementation of answer computation

• Qanary-compatible front-end “Trill”

• demo: www.wdaqua.eu/qa

17 of 59

https://musicbrainz.org/
http://dblp.org/
http://www.wdaqua.eu/qa

JIST 2017 tutorial: Rapid engineering of QA systems using the lightweight Qanary approach Andreas Both

Existing QA systems

Observations
• state of the art not as advanced as expected

• see also QALD challenge

Reasons: How are question answering systems created?

• in general: hard and complex task

• cumbersome and inefficient
◦ lack of methodology for creating question answering systems

18 of 59

JIST 2017 tutorial: Rapid engineering of QA systems using the lightweight Qanary approach Andreas Both

Processing Steps within QA systems

• Query Analysis and Classification

◦ Named Entity Recognition

◦ Entity Linking, Named Entity Disambiguation

◦ Relation Detection

◦ Query Type Detection

• Query (Candidate) Building (e.g., SPARQL, SQL, Query DSL, . . .)

• Query (Candidate) Ranking (e.g., learning to rank using a gold standard)

• Answer Generation (e.g., Natural Language Generation, data visualization, . . .)

• Answer Validation (Feedback)

→ many similar tasks and distinguished technology

Note: Sometimes steps are not needed or need to be executed several times

(loops) to take advantage of the available knowledge. A good QA framework

should not request limitations here (Qanary has no such limitations).
19 of 59

JIST 2017 tutorial: Rapid engineering of QA systems using the lightweight Qanary approach Andreas Both

Motivation for using a QA framework

20 of 59

JIST 2017 tutorial: Rapid engineering of QA systems using the lightweight Qanary approach Andreas Both

Observations and Requirements

Observations

- limited compatibility

- use predefined QA process

- limited semantics

Derived demands

+ interoperable infrastructure

+ exchangeable components

+ flexible granularity

+ isolation of components

Goals

1. easy-to-build QA systems on-top of reusable components

2. establish an ecosystem of components for QA systems

→ efficient research steps→ enabling of synergies between PhD topics

→ best-of-breed QA system & components for use cases and
research topics

21 of 59

JIST 2017 tutorial: Rapid engineering of QA systems using the lightweight Qanary approach Andreas Both

Qanary Methodology and Technical Framework

22 of 59

JIST 2017 tutorial: Rapid engineering of QA systems using the lightweight Qanary approach Andreas Both

Idea: Knowledge-driven QA system representation

Requirements of knowledge perspective

1. abstract knowledge representation: qa vocabulary
◦ represent all the available knowledge about a question

+ representation of knowledge about question separated from process
+ includes trust & provenance
+ self-describing, reusable and extensible
+ enables efficient collaboration on a data-level
+ agnostic to question format (text, structured, audio, . . .)
+ agnostic to question answering processing steps and implementation

2. align the input/output of the each component in a QA process
◦ required input mapped from KB
◦ computed output mapped into KB
◦ mapping on a logical and sound level

→ Qanary methodology for creating question answering systems

23 of 59

JIST 2017 tutorial: Rapid engineering of QA systems using the lightweight Qanary approach Andreas Both

Knowledge Representation using the qa Vocabulary

24 of 59

JIST 2017 tutorial: Rapid engineering of QA systems using the lightweight Qanary approach Andreas Both

Abstract Knowledge Representation

Idea
Represent all the knowledge about a question using a RDF vocabulary

requirements for knowledge representation

• self-describing, sound knowledge representation

• represent provenance for (all) information

• represent trust for (all) information

derived technology stack

• Resource Description Framework (RDF)

• Web Annotation Data Model (WADM)

• question answering vocabulary (qa)

25 of 59

JIST 2017 tutorial: Rapid engineering of QA systems using the lightweight Qanary approach Andreas Both

Resource Description Framework (RDF)

Introduction to RDF (slides by Manolis Koubarakis)
http://cgi.di.uoa.gr/~pms509/past_lectures/

introduction-to-rdf.pdf

26 of 59

http://cgi.di.uoa.gr/~pms509/past_lectures/introduction-to-rdf.pdf
http://cgi.di.uoa.gr/~pms509/past_lectures/introduction-to-rdf.pdf

JIST 2017 tutorial: Rapid engineering of QA systems using the lightweight Qanary approach Andreas Both

Web Annotation Data Model (WADM)

Web Annotation Data Model (WADM)
(W3C Working Draft 15 October 2015, http://www.w3.org/TR/annotation-model)

• oa:Annotation

• oa:hasTarget

• oa:hasBody

• oa:annotatedAt

• oa:annotatedBy

<myIRI> a oa:Annotation;

oa:hasTarget <questionIRI> ;

oa:hasBody <TextSelector> ;

oa:annotatedBy <DBpediaSpotlight> ;

oa:annotatedAt "..."^^xsd:date ;

27 of 59

http://www.w3.org/TR/annotation-model

JIST 2017 tutorial: Rapid engineering of QA systems using the lightweight Qanary approach Andreas Both

qa Vocabulary

introducing new QA-related concepts on-top of WADM:
qa:Question

rdfs:subClassOf oa:Annotation.

qa:Answer, . . .

qa:Dataset, . . .

qa:AnnotationQuestion, . . .

. . .

• K. Singh, A. Both, D. Diefenbach, and S. Shekarpour. “Towards a
message-driven vocabulary for promoting the interoperability of
question answering systems.” In Proc. of the 10th IEEE Int. Conf.
on Semantic Computing (ICSC), 2016

• website: https://github.com/WDAqua/QAOntology

28 of 59

https://github.com/WDAqua/QAOntology

JIST 2017 tutorial: Rapid engineering of QA systems using the lightweight Qanary approach Andreas Both

From knowledge representation to methodology

Conclusion: Advantages of using an ontology

• agnostic to question format (text, structured, audio, . . .)

• agnostic to question answering processing steps

• agnostic to implementation
◦ programming language
◦ component granularity

29 of 59

JIST 2017 tutorial: Rapid engineering of QA systems using the lightweight Qanary approach Andreas Both

From knowledge representation to methodology

Methodology

1. abstract knowledge representation
◦ advantage: independent representation

2. align the input/output of the each component
◦ on a logical and sound level

30 of 59

JIST 2017 tutorial: Rapid engineering of QA systems using the lightweight Qanary approach Andreas Both

Qanary Methodology

31 of 59

JIST 2017 tutorial: Rapid engineering of QA systems using the lightweight Qanary approach Andreas Both

Overview

A trivial Question Answering system

Goals of Architecture

● Separate tasks of Question
Answering systems (QA systems).

● Fast Engineering of QA processes.

● Reusable for other QA approaches.

● Scalable with the growing number of
components.

● Extensible for the inclusion of other
QA approaches.

Developer’s Benefits

● Easy-to-use template for new
components.

● Focus on main functionality of your QA
component.

● Rapid creation QA systems from existing
components semi-automatically.

● Contribute your QA component to the
Qanary ecosystem.

This work is part of the project “Answering Questions using Web Data” (WDAqua).
It is funded by the European Union’s Horizon 2020 research and innovation program under the Marie
Sklodowska­-Curie grant agreement No. 642795.

Component Creation

1. Create Java Web service using
provided Maven Archetype.

2. Define input data by writing
corresponding SPARQL query.

3. Implement your core functionality.

4. Define output data by writing
corresponding SPARQL query.

5. Run you component (automatic
registration to service repository)

Task: Create a
Question Answering
System capable of

analyzing the
natural language

questions.

"What is the real name of Batman?"

DBpedia
property
alterEgo

DBpedia
resource
Batman

Each component creates
annotations of the textual
question while analyzing
previously computed data.

Tutorial on Rapid Engineering of Modular Question Answering
Systems using the lightweight Approach

32 of 59

JIST 2017 tutorial: Rapid engineering of QA systems using the lightweight Qanary approach Andreas Both

It’s about the components, stupid.

• an agile QA framework can only provide common features
◦ central data access, logging, . . .

• any particular problem solving/algorithm needs to be separated
from the pipeline

→ create exchangeable, isolated components only communicating via
data

→ component data needs to be mapped/aligned to the data of the
QA process

33 of 59

JIST 2017 tutorial: Rapid engineering of QA systems using the lightweight Qanary approach Andreas Both

Component data alignment

Goal: Establish common ground for the research community

Two options:

normalized exchange of data
(input/output)

alignment of input/output of each component with qa

• input represented using qa (RDF)

→ input required for the component C

• output from the component C

→ output represented using qa (RDF)
34 of 59

JIST 2017 tutorial: Rapid engineering of QA systems using the lightweight Qanary approach Andreas Both

Component data alignment

alignment of input/output of each component with qa

if component provides output using a presentation as

. . . semantic data (RDF)
◦ logical representation of

alignment

• ontology alignment (OWL,
DOL)

• SPARQL query

. . . non-semantic data (API,
JSON, XML, CSV, . . .)
◦ SPARQL query

Note: many options for
alignment

• NER/NED
◦ DBpedia Spotlight (NIF)

P. N. Mendes, M. Jakob, A. Garca-Silva,
and Ch. Bizer: “DBpedia Spotlight:shedding
light on the web of documents.” In
I-SEMANTICS, 2011

• relation detection
◦ PATTY

N. Nakashole, G. Weikum, and F. M.
Suchanek. PATTY: “A taxonomy of
relational patterns with semantic types.” In
EMNLP-CoNLL, 2012

• query construction
◦ SINA

S. Shekarpour, E. Marx, A.-C.N. Ngomo,
and S. Auer. SINA: “Semantic interpretation
of user queries for question answering on
interlinked data.” Web Semantics: Science,
Services and Agents on the WWW, 201535 of 59

JIST 2017 tutorial: Rapid engineering of QA systems using the lightweight Qanary approach Andreas Both

Component data alignment: NED

• create component’s input:

◦ fetch question URI (from Qanary triplestore)

• processing:

◦ retrieve textual question representation from URI
◦ compute named entities within the text

• store component’s output:

◦ for each named entity:

• create a oa:TextSelector within the Qanary triplestore containing the
positions of the particular Named Entity

→ benefit: easily replace the NED component

→ benefit: measure quality against exchangeable relation detection and query
construction components

36 of 59

JIST 2017 tutorial: Rapid engineering of QA systems using the lightweight Qanary approach Andreas Both

Component data alignment: Relation Detection

Relation Detection Example

• create component’s input:

◦ fetch question URI (from Qanary triplestore)
◦ fetch Named Entities which are already available

• processing:

◦ retrieve textual question representation from URI
◦ compute relations within the text

• store component’s output:

◦ for each detected relation:

• create a relation resource within the Qanary triplestore (using a
oa:TextSelector to mark the positions)

→ benefit: any improvement on the NED component (i.e., replace) will improve
the quality here

→ benefit: measure quality against exchangeable query construction components

37 of 59

JIST 2017 tutorial: Rapid engineering of QA systems using the lightweight Qanary approach Andreas Both

Component data alignment: Query Construction

SPARQL Query Construction

• create component’s input:

◦ fetch Named Entities (which are already available)
◦ fetch Relations (which are already available)

• processing:

◦ compute SPARQL

• store component’s output:

◦ for each created SPARQL:

• store a resource/SPARQL in the Qanary knowledge base

→ benefit: any improvement on the NED component (i.e., replace) will improve
the quality here

→ benefit: any improvement on the Relation detection component (i.e., replace)
will improve the quality here

38 of 59

JIST 2017 tutorial: Rapid engineering of QA systems using the lightweight Qanary approach Andreas Both

Component data alignment: Relation Detection

Relation Detection Example

• create component’s input:

◦ fetch question URI (from Qanary triplestore)
◦ fetch Named Entities which are already available

• processing:

◦ retrieve textual question representation from URI
◦ compute relations within the text

• store component’s output:

◦ for each detected relation:

• create a relation resource within the Qanary triplestore (using a
oa:TextSelector to mark the positions)

→ benefit: any improvement on the NED component (i.e., replace) will improve
the quality here

→ benefit: measure quality against exchangeable query construction components

39 of 59

JIST 2017 tutorial: Rapid engineering of QA systems using the lightweight Qanary approach Andreas Both

Component data alignment: NED

• create component’s input:

◦ fetch question URI (from Qanary triplestore)

• processing:

◦ retrieve textual question representation from URI
◦ compute named entities within the text

• store component’s output:

◦ for each named entity:

• create a oa:TextSelector within the Qanary triplestore containing the
positions of the particular Named Entity

→ benefit: easily replace the NED component

→ benefit: measure quality against exchangeable relation detection and query
construction components

40 of 59

JIST 2017 tutorial: Rapid engineering of QA systems using the lightweight Qanary approach Andreas Both

Case Study

DBpedia Spotlight NIF
Wrapper (NEI+NED)

process(M)→M

PATTY Service
(relation detection)

process(M)→M

SINA
(query construction)

process(M)→M

Exemplary Question Answering System

Fig. 2: Architecture of the exemplary question answering system.

Our exemplary QA system consists of three components: DBpedia Spotlight for
named entity identification and disambiguation, a service using the relational lexical-
izations of PATTY for relation detection, and the query builder of SINA. All information
about a question is stored in a named graph of a triple store using the QA vocabulary.
As a triple store, we used Stardog11.

The whole architecture is described in Fig. 2. Initially the question is exposed by
a web server under some URI, which we denote by URIQuestion. Then a named
graph reserved for the specific question is created. The WADM and the qa vocabu-
laries are loaded into the named graph together with the predefined annotations over
URIQuestion described in Sec. 5.2. Step by step each component receives a mes-
sage M (cf., Fig. 2) containing the URI where the triplestore can be accessed and the
URI of the named graph reserved for the question and its annotations. Hence, each
component has full access to all the messages generated by the previous components
through SPARQL SELECT queries and can update that information using SPARQL
UPDATE queries. This in particular allows each component to see what information is
already available. Once a component terminates, a message is returned to the question
answering system, containing the endpoint URI and the named graph URI (i.e., the ser-
vice interface is defined as process(M) → M). Thereafter, the retrieved URI of the
triplestore and the name of the named graph can be passed by the pipeline to the next
component.

Now let us look into detail about the working of each component.
The first component wraps DBpedia Spotlight and is responsible for linking the

entities of the question to DBpedia resources. First it retrieves the URI of the input
question from the triple store and then downloads the question from that URI. It passes
the question to the external service DBpedia Spotlight by using its REST interface. The
DBpedia Spotlight service returns the linked entities. The raw output of DBpedia Spot-
light is transformed using the binding from Subsection 6.1 to update the information in
the triple store with the detected entities.

The second component retrieves the question from the URI and analyses of all parts
of the question for which the knowledge base does not yet contain annotations. It finds
the most suitable DBpedia relation corresponding to the question using the PATTY
lexicalizations. These are then updated in the triple store (cf., Sec. 6.2).

11 http://stardog.com/, community edition, version 4.0.2

Component

1. DBpedia Spotlight

2. PATTY

3. SINA query execution

Process within components

1. retrieve data from KB

2. process data

3. extend KB

→ vocabulary-driven, component-oriented QA system possible
41 of 59

JIST 2017 tutorial: Rapid engineering of QA systems using the lightweight Qanary approach Andreas Both

Available Architecture
• goal: easy-to-use framework for creating QA systems

42 of 59

JIST 2017 tutorial: Rapid engineering of QA systems using the lightweight Qanary approach Andreas Both

Outlook/Roadmap

• goal: enable infrastructure for optimizing/training of data
interpretation
◦ establish a methodology for representing goal standards within the qa

vocabulary
◦ provide a component for training on-top of ontology
→ best-of-breed QA system for your scope of application

• goal: reduce integration efforts (beyond RDF)
◦ provide RESTful service interfaces for read/write access
→ even easier integration in external systems

• goal: automatic QA process creation
◦ express/analyze data requirements for components
→ you define only your component, Qanary fulfills requirements

• goal: provide benefits for your work

43 of 59

JIST 2017 tutorial: Rapid engineering of QA systems using the lightweight Qanary approach Andreas Both

Take Away: Qanary methodology

• Qanary: knowledge-driven methodology for QA systems
◦ and reference implementation of methodology, too

• build on-top of the qa vocabulary

• agile approach for creating QA systems
◦ interoperable infrastructure, exchangeable components, flexible granularity,

isolation of components,
◦ collects data in a sound way (provides support for AI components,

particularly ensemble learning), does not fix the QA process to a template,
allows concurrent executions, enables multi-path execution, freedom of
candidate/option filtering (your/developers choice)

• ecosystem of QA components enabling best-of-breed approaches
for your research topics

Join at Github!
github.com/WDAqua/Qanary

44 of 59

http://github.com/WDAqua/Qanary

JIST 2017 tutorial: Rapid engineering of QA systems using the lightweight Qanary approach Andreas Both

Coffee Break

Have break and prepare your notebook.
In the following practical session you will need:

• Internet connection

• text editor or any Ontology Designer

• Git client

• Java and Maven

• Stardog triplestore (free version)

45 of 59

JIST 2017 tutorial: Rapid engineering of QA systems using the lightweight Qanary approach Andreas Both

Our Goal

Implementation of a trivial Question Answering system using Qanary

Goals of Architecture

● Separate tasks of Question
Answering systems (QA systems).

● Fast Engineering of QA processes.

● Reusable for other QA approaches.

● Scalable with the growing number of
components.

● Extensible for the inclusion of other
QA approaches.

Developer’s Benefits

● Easy-to-use template for new
components.

● Focus on main functionality of your QA
component.

● Rapid creation QA systems from existing
components semi-automatically.

● Contribute your QA component to the
Qanary ecosystem.

This work is part of the project “Answering Questions using Web Data” (WDAqua).
It is funded by the European Union’s Horizon 2020 research and innovation program under the Marie
Sklodowska­-Curie grant agreement No. 642795.

Component Creation

1. Create Java Web service using
provided Maven Archetype.

2. Define input data by writing
corresponding SPARQL query.

3. Implement your core functionality.

4. Define output data by writing
corresponding SPARQL query.

5. Run you component (automatic
registration to service repository)

Task: Create a
Question Answering
System capable of

analyzing the
natural language

questions.

"What is the real name of Batman?"

DBpedia
property
alterEgo

DBpedia
resource
Batman

Each component creates
annotations of the textual
question while analyzing
previously computed data.

Tutorial on Rapid Engineering of Modular Question Answering
Systems using the lightweight Approach

46 of 59

JIST 2017 tutorial: Rapid engineering of QA systems using the lightweight Qanary approach Andreas Both

Let’s define pairs/groups using the ranking . . .

47 of 59

JIST 2017 tutorial: Rapid engineering of QA systems using the lightweight Qanary approach Andreas Both

Interactive Session: Solution Definition

48 of 59

JIST 2017 tutorial: Rapid engineering of QA systems using the lightweight Qanary approach Andreas Both

Preparation (15 min interactive session)

Given questions:

• “What is the real name of Batman?”

• “Is Bruce Wayne the real name of Batman?”

• “How many partners had Batman?”

Your Tasks

• model the required annotations for answering these questions

• write the SPARQL query to retrieve the answers for these queries

Note: Typically, the result of a QA process is not a SPARQL query. Due to time

constraints, we exclude the mostly following Answer Generation (e.g., using

Natural Language Generation or visualizations) from this exercise. See

wolframalpha.com from inspiration.

49 of 59

https://www.wolframalpha.com/

JIST 2017 tutorial: Rapid engineering of QA systems using the lightweight Qanary approach Andreas Both

Coding Session: Implement your first QA system from existing
components

50 of 59

JIST 2017 tutorial: Rapid engineering of QA systems using the lightweight Qanary approach Andreas Both

1. Step: Implement your first QA system

We follow the description on
github.com/WDAqua/Qanary/wiki/Demo:-How-to-Create-a-
Question-Answering-System-capable-of-Analyzing-the-Question-
%22What-is-the-real-name-of-Batman%3F%22

• git checkout Qanary ecosystem’s components

• run components

• run Qanary QA system template

• configure your pipeline

• run the pipeline

• test your QA system with some questions on DBpedia

• done

51 of 59

https://github.com/WDAqua/Qanary/wiki/Demo:-How-to-Create-a-Question-Answering-System-capable-of-Analyzing-the-Question-%22What-is-the-real-name-of-Batman%3F%22
https://github.com/WDAqua/Qanary/wiki/Demo:-How-to-Create-a-Question-Answering-System-capable-of-Analyzing-the-Question-%22What-is-the-real-name-of-Batman%3F%22
https://github.com/WDAqua/Qanary/wiki/Demo:-How-to-Create-a-Question-Answering-System-capable-of-Analyzing-the-Question-%22What-is-the-real-name-of-Batman%3F%22

JIST 2017 tutorial: Rapid engineering of QA systems using the lightweight Qanary approach Andreas Both

Validate the quality of your QA system

52 of 59

JIST 2017 tutorial: Rapid engineering of QA systems using the lightweight Qanary approach Andreas Both

2. Step: Validate the quality of your QA system

• interactive validation using TRILL front-end from Qanary
ecosystem

• use Qanary QALD validator to compute precision, recall and
f-measure

53 of 59

JIST 2017 tutorial: Rapid engineering of QA systems using the lightweight Qanary approach Andreas Both

Improve and revalidate your QA system

54 of 59

JIST 2017 tutorial: Rapid engineering of QA systems using the lightweight Qanary approach Andreas Both

3. Step: Improve and revalidate your QA system

• solve questions not implemented before . . .
◦ pick from prepared list
◦ define test cases
◦ extend functionality
◦ validate results in triplestore

• . . .

55 of 59

JIST 2017 tutorial: Rapid engineering of QA systems using the lightweight Qanary approach Andreas Both

4. Step: Solve new QA tasks

• extend the qa vocabulary

• choose existing QA components supporting your task

• implement new QA component for your new use case

• extend test cases and validate your work

56 of 59

JIST 2017 tutorial: Rapid engineering of QA systems using the lightweight Qanary approach Andreas Both

Final Remarks

57 of 59

JIST 2017 tutorial: Rapid engineering of QA systems using the lightweight Qanary approach Andreas Both

Summary

• compact overview about Question Answering (QA) and its
challenges

• Qanary methodology, the RDF vocabulary qa and the
corresponding component-oriented Qanary framework (reference
implementation)

• advantage of the Qanary ecosystem for rapid research results

• learn to iteratively build, validate and improve your own QA
system using the Qanary framework

• you built a QA system capable of answering generic question in a
specific domain (not only the exemplary questions)

→ I am looking forward to your contribution to the research
community to improve the state-of-the-art

58 of 59

JIST 2017 tutorial: Rapid engineering of QA systems using the lightweight Qanary approach Andreas Both

Take Away: Qanary methodology

• Qanary: knowledge-driven methodology for QA systems

• build on-top of the qa vocabulary (i.e., knowledge-driven approach)

• agile approach for creating QA systems
◦ interoperable infrastructure, exchangeable components, flexible granularity,

isolation of components, supports AI-approach

• today, was your first step towards participating in the Qanary
ecosystem of QA components enabling best-of-breed approaches
for future QA systems

Join at GitHub!
github.com/WDAqua/Qanary

Andreas Both

contact@andreasboth.de

xing.com/profile/Andreas Both6

linkedin.com/in/andreas-both-9426722

59 of 59

http://github.com/WDAqua/Qanary
mailto:contact@andreasboth.de
https://www.xing.com/profile/Andreas_Both6
https://de.linkedin.com/in/andreas-both-9426722

	Introduction and Motivation
	Question Answering
	Question Answering Systems

	Qanary Methodology and Technical Framework
	Idea
	Knowledge Representation using the qa Vocabulary
	Qanary Methodology

	Technical Part
	Interactive Session: Solution Definition
	Coding Session: Implement your first QA system from existing components
	Validate the quality of your QA system
	Improve and revalidate your QA system
	Solve new QA tasks

	Final Remarks

