

Business Process Compliance

Guido Governatori JIST 2017, 12 November 2017

www.data61.csiro.au

A Privacy Act

Section 1: (Prohibition to collect personal medical information)

Offence: It is an offence to collect personal medical information.

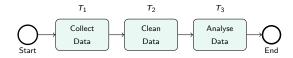
- Defence: It is a defence to the prohibition of collecting personal medical information, if an entity immediately destroys the illegally collected personal medical information before making any use of the personal medical information
- Section 2: An entity is permitted to collect personal medical information if the entity acts under a Court Order authorising the collection of personal medical information.
- Section 3: (Prohibition to collect personal information) It is forbidden to collect personal information unless an entity is permitted to collect personal medical information.

Offence: an entity collected personal information Defence: an entity being permitted to collect personal medical information.

A Privacy Act

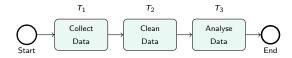
Section 1: (Prohibition to collect personal medical information)

Offence: It is an offence to collect personal medical information.


- Defence: It is a defence to the prohibition of collecting personal medical information, if an entity immediately destroys the illegally collected personal medical information before making any use of the personal medical information
- Section 2: An entity is permitted to collect personal medical information if the entity acts under a Court Order authorising the collection of personal medical information.
- Section 3: (Prohibition to collect personal information) It is forbidden to collect personal information unless an entity is permitted to collect personal medical information.

Offence: an entity collected personal information Defence: an entity being permitted to collect personal medical information.

Is the act complied with?


A Business Process

A Business Process

is the process compliant?

Definition of Compliance

Definition of Compliance

Compliance is a relationship between two sets of specifications

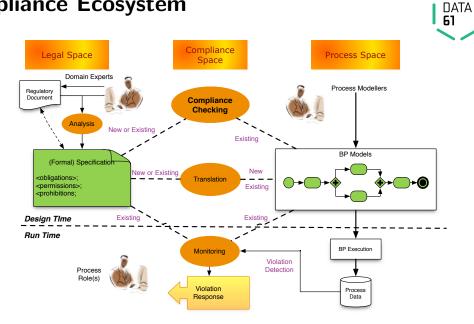
Compliance is a relationship between two sets of specifications

Alignment of formal specifications for business processes and formal specifications for prescriptive (legal) documents.

Compliance is a relationship between two sets of specifications

Alignment of formal specifications for business processes and formal specifications for prescriptive (legal) documents.

• Conceptually sound representation of processes



Compliance is a relationship between two sets of specifications

Alignment of formal specifications for business processes and formal specifications for prescriptive (legal) documents.

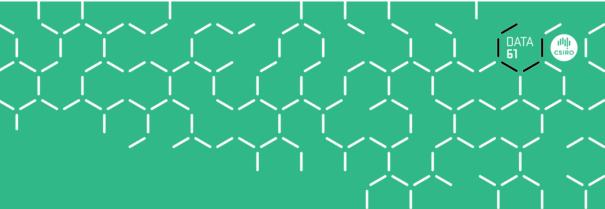
- Conceptually sound representation of processes
- Conceptually sound representation of and reasoning with norms

Compliance Ecosystem

Compliance Recipe

L. Formal Model of Business Processes

Compliance Recipe



- Formal Model of Business Processes
- 2. Formal Model of Relevant Norms/Normative Frameworks

Compliance Recipe

- Formal Model of Business Processes
- 2 Formal Model of Relevant Norms/Normative Frameworks
- Combine, shake well and serve!

Modelling Business Processes

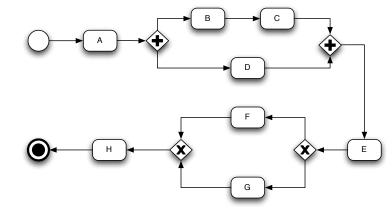
7 | Business Process Compliance | Guido Governatori

What is a business process model?

Self-contained, temporal and logical order in which a set of activities are executed to achieve a business goal. It describes:

- What needs be done and when (control flows)
- What we need to work on (data)
- Who is doing the work (human and system resources)

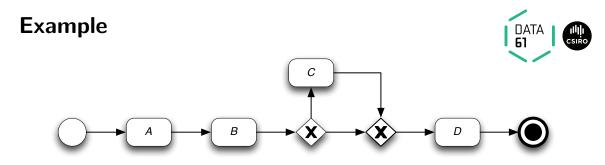
What is a business process model?



Self-contained, temporal and logical order in which a set of activities are executed to achieve a business goal. It describes:

- What needs be done and when (control flows)
- What we need to work on (data)
- Who is doing the work (human and system resources)
- A language for BPM usually has two elements:
 - Tasks are activities to be performed
 - Connectors consist of
 - sequence (a task is performed after another task),
 - parallel—and-split and and-join—(tasks are to be executed in parallel),
 - choice—(x)or-split and (x)or-join—(at least (most) one task in a set of task must be executed).

Business Process Model

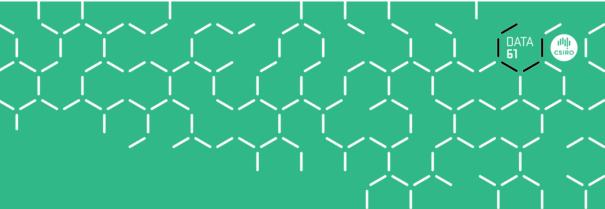

 $t_1: A, B, C, D, E, F, H$ $t_2: A, B, D, C, E, F, H$ $t_3: A, D, B, C, E, F, H$ $t_4: A, B, C, D, E, G, H$ $t_5: A, B, D, C, E, G, H$ $t_6: A, D, B, C, E, G, H$

Let Lit be a set of literals, $\mathcal T$ be the set of traces of a process and $\mathbb N$ be the set of natural numbers

State: $T \times \mathbb{N} \mapsto 2^{Lit}$

The function *State* returns the set of literals describing "what's going on in a trace t after the execution of the *n*-th task in the process".

Tasks


- A: "turn the light on"
- B: "check if glass is empty"
- C: "fill glass with water"
- D: "turn glass upside-down"

Propositions

- p: "the light is on"
- q: "the glass is full"

Trace 1: $\langle A, B, D \rangle$ Trace 2: $\langle A, B, C, D \rangle$

- State(i, 1) = { p }, i ∈ { 1,2 }
- State(1, 2) = { p, q }
- State(2, 2) = { p, ¬q }
- State(2,3) = { p, q }
- $State(1,3) = \{ p, \neg q \}$
- State(2, 4) = { p, ¬q }

Modelling Norms

2 | Business Process Compliance | Guido Governatori

Key components of Normative Systems

A normative system is a set of clauses (norms).

Key components of Normative Systems

A normative system is a set of clauses (norms). Norms are modelled as **if** ... **then** rules

$$A_1,\ldots,A_n\Rightarrow C$$

- Definitional clauses (constitutive rules: defining terms used in a legal context)
- Prescriptive clauses (norms defining "normative effects")
 - obligations
 - permissions
 - prohibitions
 - violations

Key components of Normative Systems

A normative system is a set of clauses (norms). Norms are modelled as **if** ... **then** rules

$$A_1,\ldots,A_n\Rightarrow C$$

- Definitional clauses (constitutive rules: defining terms used in a legal context)
- Prescriptive clauses (norms defining "normative effects")
 - obligations
 - permissions
 - prohibitions
 - violations

Norms are defeasible (handling exceptions)

Example

Contract fragment

- 3.1 A "Premium Customer" is a customer who has spent more that \$10000 in goods.
- 3.2 Services marked as "special order" are subject to a 5% surcharge. Premium customers are exempt from special order surcharge.
- 5.2 The (Supplier) shall on receipt of a purchase order for (Services) make them available within one day.
- 5.3 If for any reason the conditions stated in 4.1 or 4.2 are not met the (Purchaser) is entitled to charge the (Supplier) the rate of \$100 for each hour the (Service) is not delivered.

Defeasibility:

Reasonable results with minimum effort

Factual omniscience and (non-)monotonic reasoning

PhD
ightarrow Uni

Defeasibility:

Reasonable results with minimum effort

Factual omniscience and (non-)monotonic reasoning

 $PhD \rightarrow Uni$ Weekend $\rightarrow \neg Uni$ PublicHoliday $\rightarrow \neg Uni$ Sick $\rightarrow \neg Uni$

Defeasibility:

Reasonable results with minimum effort

Factual omniscience and (non-)monotonic reasoning

PhD
ightarrow Uni $Weekend
ightarrow \neg Uni$ $PublicHoliday
ightarrow \neg Uni$ $Sick
ightarrow \neg Uni$ $Weekend \wedge VICdeadline
ightarrow Uni$

Factual omniscience and (non-)monotonic reasoning

PhD
ightarrow Uni $Weekend
ightarrow \neg Uni$ $PublicHoliday
ightarrow \neg Uni$ $Sick
ightarrow \neg Uni$ $Weekend \wedge VICdeadline
ightarrow Uni$

VIC= Very Important Conference

Factual omniscience and (non-)monotonic reasoning

PhD
ightarrow Uni $Weekend
ightarrow \neg Uni$ $PublicHoliday
ightarrow \neg Uni$ $Sick
ightarrow \neg Uni$ $Weekend \land VICdeadline
ightarrow Uni$ $VICdeadline \land PartnerBirthday
ightarrow \neg Uni$

5 | Business Process Compliance | Guido Governatori

Factual omniscience and (non-)monotonic reasoning

 $PhD \rightarrow Uni$ $Weekend \rightarrow \neg Uni$ $PublicHoliday \rightarrow \neg Uni$ $Sick \rightarrow \neg Uni$ $Weekend \land VICdeadline \rightarrow Uni$ $VICdeadline \land PartnerBirthday \rightarrow \neg Uni$

 $Phd \land (\neg Weekend \lor (Weekend \land VICdeadline \land \neg PartnerBirthday)) \land \neg Sick \ldots \rightarrow Uni$

Defeasibility: Example

NATIONAL CONSUMER CREDIT PROTECTION ACT 2009 (Act No. 134 of 2009) Section 29

- (1) A person must not engage in a credit activity if the person does not hold a licence authorising the person to engage in the credit activity.
- (3) For the purposes of subsections (1) and (2), it is a defence if:
 - (a) the person engages in the credit activity on behalf of another person (the principal); and
 - (b) the person is:
 - $({\rm i})\,$ an employee or director of the principal or of a related body corporate of the principal; or
 - (ii) a credit representative of the principal; and

Modelling Obligations: Deontic Logic

Extension of logic with the operators OBL and PERM.

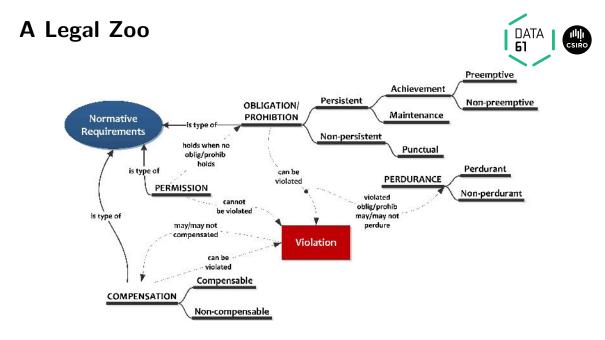
- SpecialOrderPrice(x) = Price(x) + 5%
- OBL^{Supplier} MakeGoodsAvailble1Day
- PERM_{Purchaser} ChargeSupplier

Modelling Norms

Norms are modelled as rules in FCL.

- Language literals p, q, ... (atomic proposition and their negation)
 - deontic literals OBLp (Obligatory p), PERMp (Permitted p), FORB*p* (Forbidden *p*, i.e., OBL $\neg p$.)
 - Rules Normal rules

$$A_1,\ldots,A_n \Rightarrow OB$$


 $A_1 \ldots, A_n$ trigger the obligation of B.

Rules for violations

 $A_1, \ldots, A_n \Rightarrow OBLB_1 \otimes OBLB_2 \otimes OBLB_3 \otimes \cdots \otimes OBLB_n$

 $A_1 \ldots A_n$ trigger the obligation of B_1 but if B_1 is violated then B_2 is obligatory and so on.

Modelling Obligations

Let Lit be a set of literals, ${\mathcal T}$ be the set of traces of a process and ${\mathbb N}$ be the set of natural numbers

Force: $T \times \mathbb{N} \mapsto 2^{Lit}$

Modelling Obligations

Let Lit be a set of literals, ${\mathcal T}$ be the set of traces of a process and ${\mathbb N}$ be the set of natural numbers

Force: $T \times \mathbb{N} \mapsto 2^{Lit}$

The function *Force* returns the set of literals describing what is obligatory for a particular task.

Persistent Obligations: Achievement vs Maintenance

• For an *achievement obligation*, a certain condition must occur at least once before the deadline

'Customers must pay before the delivery of the good, after receiving the invoice'

• For *maintenance obligations*, a certain condition must obtain during all instants before the deadline:

'After opening a bank account, customers must keep a positive balance until bank charges are taken out'

Modelling Maintenance Obligations

Definition (Maintenance Obligation)

An obligation o is a maintenance obligation in t if and only if

$$\exists n, m \in \mathbb{N} \colon n < m,$$

 $o \notin Force,$
 $o \notin Force,$
 $\forall k \colon n \leq k \leq m, o \in Force$

A maintenance obligation o is violated in t if and only if

 $\exists k : n \leq k \leq m, o \notin State(t, k).$

Modelling Maintenance Obligations

Definition (Maintenance Obligation)

An obligation o is a maintenance obligation in t if and only if

$$\exists n, m \in \mathbb{N} \colon n < m,$$

 $o \notin Force,$
 $o \notin Force,$
 $\forall k \colon n \leq k \leq m, o \in Force$

A maintenance obligation o is violated in t if and only if

 $\exists k : n \leq k \leq m, o \notin State(t, k).$

Maintenance obligations can be used to model prohibitions.

Graphical Illustration of a Maintenance Obligation

$$t \circ \underset{1}{\circ} force \circ \underset{n-1}{\circ} force \circ \underset{n}{\circ} force \circ \underset{k}{\circ} force \circ \underset{m}{\circ} force \circ \underset{m}{\circ$$

Modelling Achievement Obligations

Definition (Achievement Obligation)

An obligation o is an achievement obligation in t if and only if

$$\exists n, m \in \mathbb{N} \colon n < m,$$

 $o \notin Force,$
 $o \notin Force,$
 $\forall k \colon n \leq k \leq m, o \in Force$

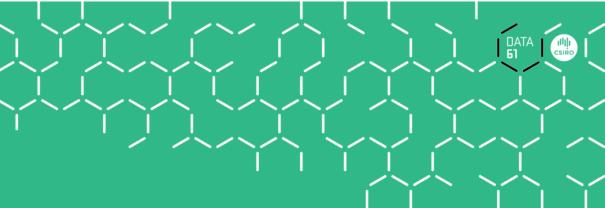
An achievement obligation o is violated in t if and only if

- *o* is preemptive and $\forall k : k \leq m, o \notin State(t, k)$;
- *o* is non-preemptive and $\forall k : n \le k \le m, o \notin State(t, k)$.

Graphical Illustration of Achievement Obligations

Achievement preemptive

 $\underbrace{ \begin{matrix} o \notin \textit{Force} & o \in \textit{Force} \\ 1 & n-1 & n \\ \hline o \notin \textit{State} \end{matrix} }_{o \notin \textit{State}} o \notin \textit{Force} \\ e \notin \textit{Force} \\ o \notin \textit{Force$


Achievement non-preemptive

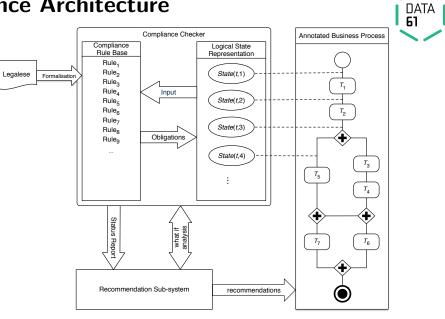
 $t \circ \underbrace{ \begin{array}{c} o \notin \textit{Force} \quad o \in \textit{Force} \quad o \notin \textit{Force} \\ 1 & & & \\ n-1 & & \\ \hline o \notin \textit{State} \end{array} }_{o \notin \textit{State}} \underbrace{ \begin{array}{c} o \notin \textit{Force} \\ m+1 & \\ violation \text{ of } o \end{array} }_{violation \text{ of } o}$

FCL at Work: Exceptions

- r_1 : $person(x) \Rightarrow OBL^m \neg creditActivity(x)$
- r_2 : ownCreditLicense(x) \Rightarrow PERMcreditActivity(x)
- r_3 : person(x), onBehalfOf(x, y), $employee(x, y) \Rightarrow \mathsf{PERM}creditActivity(x)$ $r_1 \prec r_2, r_1 \prec r_3$

BPM Compliance

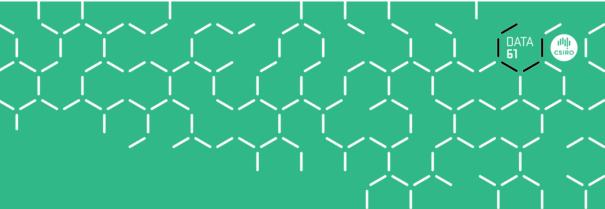
27 | Business Process Compliance | Guido Governatori


Business Process Compliance Problem

Given a business process model

- identify what holds in the process
- identify what norms are valid for the process
 - determine what are the obligations, prohibitions, and permissions in force
 - determine when the obligations, prohibitions and permissions are in force in the process (for each trace)

Compliance Architecture



Finally Compliant!

Definition

- An execution trace is *compliant* iff all violated obligations in force have been compensated for.
- An execution trace is *fully compliant* iff there are no violations.
- A process is (fully) compliant iff all its execution traces are (fully) compliant.

Example and Evaluation

A Privacy Act

Section 1: (Prohibition to collect personal medical information)

Offence: It is an offence to collect personal medical information.

- Defence: It is a defence to the prohibition of collecting personal medical information, if an entity immediately destroys the illegally collected personal medical information before making any use of the personal medical information
- Section 2: An entity is permitted to collect personal medical information if the entity acts under a Court Order authorising the collection of personal medical information.
- Section 3: (Prohibition to collect personal information) It is forbidden to collect personal information unless an entity is permitted to collect personal medical information.

Offence: an entity collected personal information Defence: an entity being permitted to collect personal medical information.

Making Sense of the Act

- Collection of medical information is forbidden.
- Destruction of the illegally collected medical information excuses the illegal collection.
- Collection of medical information is permitted if there is an authorising court order.
- Collection of personal information is forbidden.
- Collection of personal information is permitted if the collection of medical information is permitted

Formalisation of the Privacy Act

- collection of medical information is forbidden
 - \blacktriangleright c destruction of medical information compensates the illegal collection

 $r_1: \Rightarrow OBL^m \neg medicalInfo \otimes OBL^{anpp} destroy$

• collection of medical information is permitted if acting under a court order

 $r_2: courtOrder \Rightarrow \mathsf{PERM} medicalInfo$

• collection of personal information is forbidden

 $r_3: \Rightarrow OBL^m \neg personalInfo$

 collection personal information is permitted if collection of medical information is permitted

 r_4 : PERM*medicalInfo* \Rightarrow PERM*personalInfo*

- $r_1: \Rightarrow \mathsf{OBL}^m \neg \mathit{medicalInfo} \otimes \mathsf{OBL}^{\mathit{anpp}} \mathit{destroy}$
- $r_2: courtOrder \Rightarrow \mathsf{PERM} medicalInfo$
- $r_3: \Rightarrow OBL^m \neg personalInfo$
- r_4 : PERM*medicalInfo* \Rightarrow PERM*personalInfo*

 $\textit{r}_1 \prec \textit{r}_2, ~\textit{r}_3 \prec \textit{r}_4$

State(start) : ¬*courtOrder*

- $r_1: \Rightarrow \mathsf{OBL}^m \neg \mathit{medicalInfo} \otimes \mathsf{OBL}^{\mathit{anpp}} \mathit{destroy}$
- $r_2: courtOrder \Rightarrow \mathsf{PERM} medicalInfo$
- $r_3: \Rightarrow OBL^m \neg personalInfo$
- r_4 : PERM*medicalInfo* \Rightarrow PERM*personalInfo*

 $\textit{r}_1 \prec \textit{r}_2, ~\textit{r}_3 \prec \textit{r}_4$

 $State(start) : \neg courtOrder$ $Force(T_1) : OBL^m \neg medicalInfo$ $OBL^m \neg personalInfo$

- $r_1: \Rightarrow \mathsf{OBL}^m \neg \mathit{medicalInfo} \otimes \mathsf{OBL}^{\mathit{anpp}} \mathit{destroy}$
- $r_2: courtOrder \Rightarrow \mathsf{PERM} medicalInfo$
- $r_3: \Rightarrow OBL^m \neg personalInfo$
- r_4 : PERM*medicalInfo* \Rightarrow PERM*personalInfo*

 $\textit{r}_1 \prec \textit{r}_2, ~\textit{r}_3 \prec \textit{r}_4$

- $r_1: \Rightarrow \mathsf{OBL}^m \neg \mathit{medicalInfo} \otimes \mathsf{OBL}^{\mathit{anpp}} \mathit{destroy}$
- $r_2: courtOrder \Rightarrow \mathsf{PERM} medicalInfo$
- $r_3: \Rightarrow OBL^m \neg personalInfo$
- r_4 : PERM*medicalInfo* \Rightarrow PERM*personalInfo*

 $\textit{r}_1 \prec \textit{r}_2, ~\textit{r}_3 \prec \textit{r}_4$

State(start) : \neg courtOrder Force(T₁) : OBL^m \neg medicalInfo OBL^m \neg personalInfo State(T₁) : medicalInfo

- $r_1: \Rightarrow OBL^m \neg medicalInfo \otimes OBL^{anpp} destroy$
- $r_2: courtOrder \Rightarrow \mathsf{PERM} medicalInfo$
- $r_3: \Rightarrow OBL^m \neg personalInfo$
- r_4 : PERM*medicalInfo* \Rightarrow PERM*personalInfo*

 $\textit{r}_1 \prec \textit{r}_2, ~\textit{r}_3 \prec \textit{r}_4$

State(start) : \neg courtOrder Force(T_1) : OBL^m \neg medicalInfo OBL^m \neg personalInfo State(T_1) : medicalInfo Violated(T_1) : OBL^m \neg medicalInfo

- $r_1: \Rightarrow OBL^m \neg medicalInfo \otimes OBL^{anpp} destroy$
- $r_2: courtOrder \Rightarrow \mathsf{PERM} medicalInfo$
- $r_3: \Rightarrow OBL^m \neg personalInfo$
- r_4 : PERM*medicalInfo* \Rightarrow PERM*personalInfo*

 $\textit{r}_1 \prec \textit{r}_2, ~\textit{r}_3 \prec \textit{r}_4$

State(start) : \neg courtOrder Force(T_1) : OBL^m \neg medicalInfo OBL^m \neg personalInfo State(T_1) : medicalInfo Violated(T_1) : OBL^m \neg medicalInfo Force(T_2) : OBL^{anpp} destroy

- $r_1: \Rightarrow OBL^m \neg medicalInfo \otimes OBL^{anpp} destroy$
- $r_2: courtOrder \Rightarrow \mathsf{PERM} medicalInfo$
- $r_3: \Rightarrow OBL^m \neg personalInfo$
- r_4 : PERM*medicalInfo* \Rightarrow PERM*personalInfo*

 $\textit{r}_1 \prec \textit{r}_2, ~\textit{r}_3 \prec \textit{r}_4$

 $\begin{array}{ll} State(start): \neg courtOrder\\ Force(T_1): & OBL^m \neg medicalInfo\\ & OBL^m \neg personalInfo\\ State(T_1): medicalInfo\\ Violated(T_1): OBL^m \neg medicalInfo\\ Force(T_2): OBL^{anpp} destroy\\ State(T_2): personalInfo\\ \end{array}$

- $r_1: \Rightarrow OBL^m \neg medicalInfo \otimes OBL^{anpp} destroy$
- $r_2: courtOrder \Rightarrow \mathsf{PERM} medicalInfo$
- $r_3: \Rightarrow OBL^m \neg personalInfo$
- r_4 : PERM*medicalInfo* \Rightarrow PERM*personalInfo*

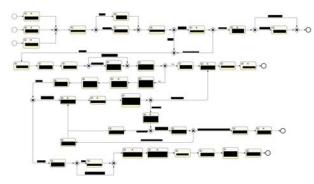
 $\textit{r}_1 \prec \textit{r}_2, ~\textit{r}_3 \prec \textit{r}_4$

 $State(start) : \neg courtOrder$ $Force(T_1) : OBL^m \neg medicalInfo$ $OBL^m \neg personalInfo$ $State(T_1) : medicalInfo$ $Violated(T_1) : OBL^m \neg medicalInfo$ $Force(T_2) : OBL^{anpp} destroy$ $State(T_2) : personalInfo$ $Violated(T_2) : OBL^m \neg personalInfo$

- $r_1: \Rightarrow OBL^m \neg medicalInfo \otimes OBL^{anpp} destroy$
- $r_2: courtOrder \Rightarrow \mathsf{PERM} medicalInfo$
- $r_3: \Rightarrow OBL^m \neg personalInfo$
- r_4 : PERM*medicalInfo* \Rightarrow PERM*personalInfo*

 $r_1 \prec r_2, \ r_3 \prec r_4$

 $\begin{aligned} State(start) &: \neg courtOrder \\ Force(T_1) &: OBL^m \neg medicalInfo \\ OBL^m \neg personalInfo \\ State(T_1) &: medicalInfo \\ Violated(T_1) &: OBL^m \neg medicalInfo \\ Force(T_2) &: OBL^{anpp} destroy \\ State(T_2) &: personalInfo \\ Violated(T_2) &: OBL^m \neg personalInfo \\ State(T_3) &: destroy \end{aligned}$


- $r_1: \Rightarrow OBL^m \neg medicalInfo \otimes OBL^{anpp} destroy$
- $r_2: courtOrder \Rightarrow \mathsf{PERM} medicalInfo$
- $r_3: \Rightarrow OBL^m \neg personalInfo$
- r_4 : PERM*medicalInfo* \Rightarrow PERM*personalInfo*

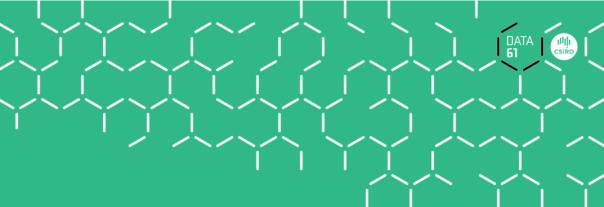
 $r_1 \prec r_2, \ r_3 \prec r_4$

 $\begin{aligned} State(start) &: \neg courtOrder \\ Force(T_1) &: OBL^m \neg medicalInfo \\ OBL^m \neg personalInfo \\ \\ State(T_1) &: medicalInfo \\ \\ Violated(T_1) &: OBL^m \neg medicalInfo \\ \\ Force(T_2) &: OBL^{anpp} destroy \\ \\ State(T_2) &: personalInfo \\ \\ \\ Violated(T_2) &: OBL^m \neg personalInfo \\ \\ \\ State(T_3) &: destroy \\ \\ Compensated(T_3) &: OBL^m \neg medicalInfo \end{aligned}$

The Regorous Evaluation

Formalised Chapter 8 (Complaints) of TCPC 2012. Modelled the compliant handling/management processes of an Australian telco.

41 tasks, 12 decision points (xor), 2 loops shortest trace: 6 traces longest trace (loop): 33 tasks longest trace (no loop): 22 tasks over 1000 traces, over 25000 states



The Regorous Evaluation

TCPC 2012 Chapter 8. Contains over 100 commas, plus 120 terms (in Terms and Definitions Section). Required 223 propositions, 176 rules.

Punctual Obligation	5	(5)
Achievement Obligation	90	(110)
Preemptive	41	(46)
Non preemptive	49	(64)
Non perdurant	5	(7)
Maintenance Obligation	11	(13)
Prohibition	7	(9)
Non perdurant	1	(4)
Permission	9	(16)
Compensation	2	(2)

Conclusions

38 | Business Process Compliance | Guido Governatori

Conclusions

- Extended business processes with semantic annotations
- Developed conceptually sound logic for modelling norms (just hinted today!)
- Business process compliance methodology
- Business process compliance is at least an NP-complete problem (not shown today!)
- Model checking using temporal logic does not work (not shown today!)
- Implemented practical solution

Questions?

Guido Governatori guido.governatori@data61.csiro.au

Bibliography

- Silvano Colombo Tosatto, Guido Governatori and Pierre Kelsen. "Business Process Regulatory Compliance is Hard". IEEE Transactions on Services Computing 8.6 (2015), pp. 958–970. DOI: 10.1109/TSC.2014.2341236.
- Guido Governatori. "Business Process Compliance: An Abstract Normative Framework". *IT Information Technology* 55.6 (2013), pp. 231–238. DOI: 10.1515/itit.2013.2003.
- Guido Governatori. "The Regorous approach to process compliance". In: 2015 IEEE 19th International Enterprise Distributed Object Computing Workshop. (Adelaide, Australia, 21 Sept. 2015). IEEE Press, 2015, pp. 33–40. DOI: 10.1109/ED0C.2015.28.
- Guido Governatori. "Thou Shalt is not You Will". In: *Proceedings of the Fifteenth International Conference on Artificial Intelligence and Law.* (San Diego, 8–14 June 2015). Ed. by Katie Atkinson. New York: ACM, 2015, pp. 63–68. DOI: 10.1145/2746090.2746105.
- Guido Governatori and Mustafa Hashmi. "No Time for Compliance". In: 2015 IEEE 19th Enterprise Distibuted Object Computing Conference. (Adelaide, 21–25 Sept. 2015). Ed. by Sylvain Hallé and Wolfgang Mayer. IEEE, 2015, pp. 9–18. DOI: 10.1109/ED0C.2015.12.
- Guido Governatori and Shazia Sadiq. "The Journey to Business Process Compliance". In: Handbook of Research on BPM. Ed. by Jorge Cardoso and Wil van der Aalst. IGI Global, 2009. Chap. 20, pp. 426–454.
- Guido Governatori et al. "Computing Strong and Weak Permissions in Defeasible Logic". Journal of Philosophical Logic 42.6 (2013), pp. 799–829. DOI: 10.1007/s10992-013-9295-1.
- Mustafa Hashmi, Guido Governatori and Moe Thandar Wynn. "Normative Requirements for Regulatory Compliance: An Abstract Formal Framework". Information Systems Frontiers 18.3 (2016), pp. 429–455. DOI: 10.1007/s10796-015-9558-1.